Train.ipynb 181 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LSTM 모델\n",
    "\n",
    "일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합<br>\n",
    "1. 단방향 LSTM 순환신경망\n",
    "    - 입력 순서를 시간 순서대로 처리하기 때문에 결과물은 주로 직전 패턴을 기반으로 하는 경향 (한계점)\n",
    "2. 양방향 LSTM 순환신경망\n",
    "    - 데이터의 흐름에 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망\n",
    "3. 성능 측정 : 실제 주가와 예측된 주가 간의 평균 제곱근 오차(RMSE)\n",
    "---\n",
    "\n",
    "**2주차 목표 : 단방향 LSTM 과 양방향 LSTM의 성능(RMSE)과 예측률 비교**\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from keras.models import Model, Sequential\n",
    "from keras.layers import Input, Dense, LSTM, Bidirectional\n",
    "from keras.callbacks import EarlyStopping, ModelCheckpoint\n",
    "from keras import backend as K\n",
    "import matplotlib.pyplot as plt\n",
    "from keras.layers.core import Dense, Activation, Dropout"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 단방향(Unidirectional) LSTM\n",
    "----"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## (1) 데이터 불러오기\n",
    "### case1. Simple Price Data (시가, 종가, 고가, 저가, 거래량)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "train = pd.read_csv('/Users/yangyoonji/Documents/2020_2학기/캡스톤디자인/data/scaled/train_scaled.csv')\n",
    "test = pd.read_csv('/Users/yangyoonji/Documents/2020_2학기/캡스톤디자인/data/recent_test/recent_data_scaled.csv')\n",
    "validation = pd.read_csv('/Users/yangyoonji/Documents/2020_2학기/캡스톤디자인/data/scaled/validation_scaled.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "test.columns = ['close','open','high','low','vol']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 불필요한 열 삭제\n",
    "del train['Unnamed: 0']\n",
    "del test['Unnamed: 0']\n",
    "del validation['Unnamed: 0']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "checking if any null values are present in train\n",
      " close    0\n",
      "open     0\n",
      "high     0\n",
      "low      0\n",
      "vol      0\n",
      "dtype: int64\n",
      "checking if any null values are present in test\n",
      " 0    0\n",
      "1    0\n",
      "2    0\n",
      "3    0\n",
      "4    0\n",
      "dtype: int64\n",
      "checking if any null values are present in validation\n",
      " close    0\n",
      "open     0\n",
      "high     0\n",
      "low      0\n",
      "vol      0\n",
      "dtype: int64\n"
     ]
    }
   ],
   "source": [
    "# NULL value 없나 확인해보기\n",
    "print(\"checking if any null values are present in train\\n\", train.isna().sum())\n",
    "print(\"checking if any null values are present in test\\n\", test.isna().sum())\n",
    "print(\"checking if any null values are present in validation\\n\", validation.isna().sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>close</th>\n",
       "      <th>open</th>\n",
       "      <th>high</th>\n",
       "      <th>low</th>\n",
       "      <th>vol</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.377298</td>\n",
       "      <td>0.313141</td>\n",
       "      <td>0.298986</td>\n",
       "      <td>0.310670</td>\n",
       "      <td>0.840077</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.454963</td>\n",
       "      <td>0.440645</td>\n",
       "      <td>0.393486</td>\n",
       "      <td>0.354839</td>\n",
       "      <td>0.825928</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      close      open      high       low       vol\n",
       "0  0.377298  0.313141  0.298986  0.310670  0.840077\n",
       "1  0.454963  0.440645  0.393486  0.354839  0.825928"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test.head(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "#### Keras RNN 계열의 모델을 트레이닝할 때 요구되는 데이터의 형식 : 3차원\n",
    "3차원 데이터 : **(size, timestep, feature)** <br>\n",
    "일반적인 MLP모델에서는 size, feature만 있는 2차원 모델 <br>\n",
    "RNN계열은 '시간'이라는 개념이 있기 때문에 한 차원 늘어난다. -> **timestep**\n",
    "\n",
    "---\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "def make_dataset(data, label, window_size = 20):\n",
    "    feature_list = []\n",
    "    label_list = []\n",
    "    for i in range(len(data)-window_size):\n",
    "        feature_list.append(np.array(data.iloc[i:i+window_size]))\n",
    "        label_list.append(np.array(label.iloc[i+window_size]))\n",
    "    return np.array(feature_list), np.array(label_list)    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "# feature , label 분리\n",
    "feature_cols = ['open','high','low','vol']\n",
    "label_cols = ['close']\n",
    "\n",
    "##----train_data----##\n",
    "train_feature = train[feature_cols]\n",
    "train_label = train[label_cols]\n",
    "train_feature, train_label = make_dataset(train_feature,train_label,20)\n",
    "\n",
    "##----test_data----##\n",
    "test_feature = test[feature_cols]\n",
    "test_label = test[label_cols]\n",
    "test_feature, test_label = make_dataset(test_feature,test_label,20)\n",
    "\n",
    "##----validation_data----##\n",
    "validation_feature = validation[feature_cols]\n",
    "validation_label = validation[label_cols]\n",
    "validation_feature, validation_label = make_dataset(validation_feature,validation_label,20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train, y_train, X_val, y_val = train_feature, train_label, validation_feature, validation_label"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_test, y_test = test_feature, test_label"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(25, 20, 4)\n"
     ]
    }
   ],
   "source": [
    "print(X_test.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(25, 1)\n"
     ]
    }
   ],
   "source": [
    "print(y_test.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "_________________________________________________________________\n",
      "Layer (type)                 Output Shape              Param #   \n",
      "=================================================================\n",
      "lstm_5 (LSTM)                (None, 20, 64)            17664     \n",
      "_________________________________________________________________\n",
      "lstm_6 (LSTM)                (None, 50)                23000     \n",
      "_________________________________________________________________\n",
      "dense_3 (Dense)              (None, 1)                 51        \n",
      "=================================================================\n",
      "Total params: 40,715\n",
      "Trainable params: 40,715\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "#keras 활용한 LSTM 모델 생성\n",
    "\n",
    "model = Sequential() \n",
    "model.add(LSTM(64, return_sequences=True, input_shape=(20, 4))) #첫번째 LSTM 은 유닛수 50개\n",
    "model.add(LSTM(50, return_sequences=False)) #두번째 LSTM 유닛수는 64개\n",
    "model.add(Dense(1, activation='linear')) # 아웃풋으로 나오는 값은 1개 (다음날 하루 예측)\n",
    "model.compile(loss='mse', optimizer='adam') #손실 함수 ,optimizer= rmsprop\n",
    "model.summary() #모델의 개요"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train on 3444 samples, validate on 167 samples\n",
      "Epoch 1/100\n",
      "3444/3444 [==============================] - 51s 15ms/step - loss: 0.0019 - val_loss: 0.0082\n",
      "Epoch 2/100\n",
      "3444/3444 [==============================] - 50s 15ms/step - loss: 5.9892e-04 - val_loss: 0.0059\n",
      "Epoch 3/100\n",
      "3444/3444 [==============================] - 49s 14ms/step - loss: 4.9118e-04 - val_loss: 0.0043\n",
      "Epoch 4/100\n",
      "3444/3444 [==============================] - 48s 14ms/step - loss: 3.6635e-04 - val_loss: 0.0038\n",
      "Epoch 5/100\n",
      "3444/3444 [==============================] - 52s 15ms/step - loss: 3.2719e-04 - val_loss: 0.0035\n",
      "Epoch 6/100\n",
      "3444/3444 [==============================] - 51s 15ms/step - loss: 2.6066e-04 - val_loss: 0.0025\n",
      "Epoch 7/100\n",
      "3444/3444 [==============================] - 48s 14ms/step - loss: 2.5572e-04 - val_loss: 0.0028\n"
     ]
    }
   ],
   "source": [
    "early_stopping = EarlyStopping() \n",
    "hist = model.fit(X_train, y_train, validation_data=(X_val, y_val),batch_size=5, epochs=100,callbacks=[early_stopping])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "25/25 [==============================] - 0s 5ms/step\n"
     ]
    }
   ],
   "source": [
    "score = model.evaluate(X_test, y_test, batch_size = 5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.0363400761038065\n"
     ]
    }
   ],
   "source": [
    "print(score)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [],
   "source": [
    "predict = model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [],
   "source": [
    "predict = pd.DataFrame(predict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [],
   "source": [
    "predict.to_csv('/Users/yangyoonji/Documents/2020_2학기/캡스톤디자인/data/scaled/predict.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[0.36029412],\n",
       "       [0.54733456],\n",
       "       [0.59053309],\n",
       "       [0.72380515],\n",
       "       [0.72931985],\n",
       "       [0.80652574],\n",
       "       [0.82628676],\n",
       "       [0.68795956],\n",
       "       [0.56617647],\n",
       "       [0.47012868],\n",
       "       [0.50505515],\n",
       "       [0.60248162],\n",
       "       [0.65073529],\n",
       "       [0.55928309],\n",
       "       [0.60615809],\n",
       "       [0.54825368],\n",
       "       [0.46875   ],\n",
       "       [0.53170956],\n",
       "       [0.38327206],\n",
       "       [0.        ],\n",
       "       [0.19990809],\n",
       "       [0.48115809],\n",
       "       [0.56204044],\n",
       "       [0.91498162],\n",
       "       [0.94209559]])"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y_test"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'predict' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-1-7afe4e74bf1a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpredict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m: name 'predict' is not defined"
     ]
    }
   ],
   "source": [
    "predict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAIMCAYAAAD2G2pnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd8VHX2//HXnVQSEkgIPQlJIPTemyiiYMOCIBZcXduK63a36+q6u99tv7WuZe26KygKFuwiNnoP0sukF5gkENLb3N8flyBSU6bcSd7Px4NHTLhzPyeRJGc+c875GKZpIiIiIiLS1jn8HYCIiIiIiB0oMRYRERERQYmxiIiIiAigxFhEREREBFBiLCIiIiICKDEWEREREQGUGIuIiIiIAEqMRUREREQAJcYiIiIiIoASYxERERERAIL9tXBcXJyZlJTkr+VFREREpI3YuHFjoWmanc92nd8S46SkJDZs2OCv5UVERESkjTAMI7Mx16mUQkREREQEJcYiIiIiIoASYxERERERwI81xqdSW1tLTk4OVVVV/g6l1QgPDyc+Pp6QkBB/hyIiIiJia7ZKjHNycoiKiiIpKQnDMPwdTsAzTZOioiJycnJITk72dzgiIiIitmarUoqqqio6deqkpNhDDMOgU6dO2oEXERERaQRbJcaAkmIP09dTREREpHFslxgHki+++IJVq1a16B7t27f3UDQiIiIi0hJKjFvAE4mxiIiIiNiDEuNTuPLKKxk1ahSDBg3imWeeAeCjjz5i5MiRDBs2jGnTppGRkcHTTz/Nww8/zPDhw/n666+5+eabefPNN4/dp2E3uKysjGnTpjFy5EiGDBnCO++845fPS0REREROz1ZTKY73x6Xb2ZF3xKP3HNgjmvtnDjrrdS+88AKxsbFUVlYyZswYrrjiCm6//Xa++uorkpOTKS4uJjY2ljvvvJP27dtzzz33APD888+f8n7h4eG89dZbREdHU1hYyPjx47n88stV/ysiIiJiI7ZNjP3pscce46233gIgOzubZ555hilTphwbeRYbG9uk+5mmye9+9zu++uorHA4Hubm5HDhwgG7dunk8dhERERFpHtsmxo3Z2fWGL774gmXLlrF69WoiIiI477zzGDZsGLt37z7rY4ODg3G73YCVDNfU1ADw6quv4nK52LhxIyEhISQlJWmEmoiIiIjNqMb4BCUlJcTExBAREcGuXbtYs2YN1dXVfPnll6SnpwNQXFwMQFRUFKWlpccem5SUxMaNGwF45513qK2tPXbPLl26EBISwueff05mZqaPPysRERERORslxie46KKLqKurY+jQodx3332MHz+ezp0788wzzzBr1iyGDRvG3LlzAZg5cyZvvfXWsea722+/nS+//JKxY8eydu1aIiMjAbjhhhvYsGEDo0eP5tVXX6V///7+/BRFRERE5BQM0zT9svDo0aPNDRs2fOdjO3fuZMCAAX6JpzXT11VERETaMsMwNpqmOfps12nHWEREREQEJcYiIiIiIoASYxERERHxgSNVtf4O4ayUGIuIiIiI1+wqOMKd/93I9Ie+oqq23t/hnJFt5xiLiIiISODaXVDKo5/t4YNvCogKC+b7k5Nx+2noQ2MpMRYRERERj9l3sJRHlu3l/W/yiQgJ4u6pfbjtnGQ6RoT6O7SzUimFl7Vv3x6AvLw8Zs+efcZrH3nkESoqKo69f8kll3D48GGvxiciIiLiCftdZfzktc1c+PBXLN91kPnn9mbFr8/nnhn9AiIpBu0YN0t9fT1BQUFNekyPHj148803z3jNI488wrx584iIiADggw8+aHaMIiIiIr7gdJXx+PJ9vLMll7DgIH4wpTd3TEkhNjIwkuHjacf4BBkZGfTv35+bbrqJoUOHMnv2bCoqKkhKSuLBBx9k8uTJvPHGG+zfv5+LLrqIUaNGcc4557Br1y4A0tPTmTBhAmPGjOG+++77zn0HDx4MWIn1Pffcw5AhQxg6dCiPP/44jz32GHl5eUydOpWpU6cC1hHThYWFADz00EMMHjyYwYMH88gjjxy754ABA7j99tsZNGgQ06dPp7Ky0pdfLhEREWmjMgrL+fmiLVzw0Jd8uC2f285J4etfT+U3F/cPyKQY7Lxj/OFvoOAbz96z2xC4+G9nvWz37t08//zzTJo0iVtuuYUnn3wSgPDwcFasWAHAtGnTePrpp0lNTWXt2rXcddddLF++nJ/85CfMnz+f733vezzxxBOnvP8zzzxDeno6mzdvJjg4mOLiYmJjY3nooYf4/PPPiYuL+871Gzdu5MUXX2Tt2rWYpsm4ceM499xziYmJYe/evSxcuJBnn32Wa665hsWLFzNv3rwWfqFERERETi2rqILHl+9lyeZcgh0Gt0xK5gfn9qZzVJi/Q2sx+ybGfpSQkMCkSZMAmDdvHo899hgAc+fOBaCsrIxVq1YxZ86cY4+prq4GYOXKlSxevBiAG2+8kV//+tcn3X/ZsmXceeedBAdbX/7Y2NgzxrNixQquuuoqIiMjAZg1axZff/01l19+OcnJyQwfPhyAUaNGkZGR0dxPW0REROS0sosr+PfyfSzelIPDYfC9Cb2Yf25vukSH+zs0j7FvYtyInV1vMQzjlO83JKZut5uOHTuyZcuWRj3+RKZpnvWaE68/nbCwb5+dBQUFqZRCREREPCr3cCX/Xr6PNzZk43AYzBvfi/nn9aZrK0qIG6jG+BSysrJYvXo1AAsXLmTy5Mnf+fvo6GiSk5N54403ACtxTUtLA2DSpEm89tprALz66qunvP/06dN5+umnqaurA6C4uBiAqKgoSktLT7p+ypQpvP3221RUVFBeXs5bb73FOeec44HPVEREROTU8g5X8vu3vuG8f37O4o05XD8uka9+OZUHLh/UKpNiUGJ8SgMGDODll19m6NChFBcXM3/+/JOuefXVV3n++ecZNmwYgwYN4p133gHg0Ucf5YknnmDMmDGUlJSc8v633XYbiYmJDB06lGHDhrFgwQIA7rjjDi6++OJjzXcNRo4cyc0338zYsWMZN24ct912GyNGjPDwZy0iIiIC+SWV3Pf2Ns775xcs2pDNNaMT+OKX5/HgFYPp1qF1JsQNjDO9TO9No0ePNjds2PCdj+3cuZMBAwb4JZ4GGRkZXHbZZWzbts2vcXiSHb6uIiIiYm8HjlTx1Bf7WbA2C7dpMmd0Aj+c2pv4mAh/h9ZihmFsNE1z9Nmus2+NsYiIiIh43cHSbxPiOrfJnFHx/HBqHxJiAz8hbiolxidISkpqVbvFIiIiImfy/RfXs6uglFkjevKj81NJ7NT2EuIGSoxFRERE2qiq2np25B/hR+en8vML+/o7HL+zXfOdv2qeWyt9PUVEROR00gvLMU3o06W9v0OxBVslxuHh4RQVFSmZ8xDTNCkqKiI8vHV3kIqIiEjzOF3lAKTERfo5EnuwVSlFfHw8OTk5uFwuf4fSaoSHhxMfH+/vMERERMSG0gvLAEjprMQYbJYYh4SEkJyc7O8wRERERNoEp6uc7h3CiQi1VUroN7YqpRARERER39lfWK7d4uMoMRYRERFpg0zTxOkqIyVOjXcNlBiLiIiItEGFZTWUVtVpx/g4SoxFRERE2iCnq6HxTjvGDZQYi4iIiLRBzkKNajuREmMRERGRNsjpKiM02EHPju38HYptKDEWERERaYOcrnKSO0XicBj+DsU2lBiLiIiItEFOjWo7iRJjERERkTamps5NVnGFEuMTKDEWERERaWOyiiuod5uaYXwCJcYiIiIibcy3o9q0Y3w8JcYiIiIibcyxUW2aYfwdSoxFRERE2hinq4y49qF0aBfi71BsRYmxiIiISBvjdJWrvvgUlBiLiIiItDEa1XZqSoxFRERE2pDDFTUUl9coMT4FJcYiIiIibch+19HGO5VSnESJsYiIiEgbolFtp6fEWERERKQNcRaWE+wwSIiN8HcotqPEWERERKQNcbrKSOwUQUiQ0sAT6SsiIiIi0oZoVNvpKTEWERERaSPq3SaZRRX0Vn3xKSkxFhEREWkjcg5VUFPvVuPdaSgxFhEREWkjnA2j2jqrlOJUlBiLiIiItBH7G0a1xWnH+FSUGIuIiIi0Ec7Ccjq0CyE2MtTfodiSEmMRERGRNsLpKiOlcySGYfg7FFtSYiwiIiLSRmhU25kpMRYRERFpA0qrajlYWq2JFGegxFhERESkDUgvtCZSaIbx6SkxFhEREWkDNKrt7JQYi4iIiLQBzsJyHAb06hTh71BsS4mxiIiISBvgdJURHxNBWHCQv0OxLSXGIiIiIm2A01WuxruzUGIsIiIi0sq53SbphRrVdjZKjEU8xO022ZZbQk2d29+hiIiIfEfBkSoqa+u1Y3wWwf4OQCTQ7TtYxpJNOby9OZe8kip+ekEqP72gr7/DEhEROebbiRRKjM9EibFIMxwqr2Hp1jwWb8olLfswQQ6DKalxxLYP5fX12fzo/FSCHDpuU0RE7MFZWAagUoqzUGIs0kg1dW6W7zrIkk05fL77ILX1JgO7R3PvpQO4fHgPukSF8+E3+cx/dRNf7XUxtV8Xf4csIiICWDvGkaFBdI0O83cotqbEWOQMTNMkLaeEJZtyeDctj8MVtXSOCuPmiUnMGhnPgO7R37l+2oCudIoMZdH6bCXGIiJiG/tdZSR3jsQw9GrmmSgxFjmF3MOVvL05l8WbcnC6ygkLdjBjUDdmjezJ5D5xBAedum81NNjBVSN68vLqDArLqolrr2fmIiLif05XOaN6xfg7DNtTYixyVFl1HR9tK2DxxhzWpBdhmjA2OZYfTEnh4iHdiQ4PadR95o5J4LkV6by1KZfbp6R4OWoREZEzq6qtJ6+kkjmd4/0diu0pMZY2rd5tsmp/IUs25fLRtgIqa+tJ6hTBzy7oy1UjepIQ2/RjM1O7RjEysSOvb8jmtnOS9bKViIj4VXphOaYJKZ3VeHc2SoylTdpzoJTFR0esHThSTXR4MLNG9mTWyHhGJnZscTJ77ZhEfrV4K5uyDjGqV6yHohYREWm6Y6Pa4jSq7WyUGEubUVhWzdK0PJZsyuWb3BKCHQbn9evM/TPjOb9/F8JDPHd2/KVDu/PHpdt5fX22EmMREfErp+voqDbNMD6rRiXGhmFcBDwKBAHPmab5txP+PhF4Geh49JrfmKb5gYdjFWm2d7bk8otFadS5TYb07MD9Mwcyc1gPrzXHRYYFM3NYD95Ny+MPMwfRPkzPQUVExD+cheV07xBORKh+F53NWb9ChmEEAU8AFwI5wHrDMN41TXPHcZfdCywyTfMpwzAGAh8ASV6IV6TJsosr+N2SbxiW0JG/zhpC365RPln3mjEJvLY+m/fS8rh2bKJP1hQRETmR01Wm3eJGOvXMqe8aC+wzTdNpmmYN8BpwxQnXmEDDQNcOQJ7nQhRpvnq3yc8XbcFhGDx67XCfJcUAIxI6ktqlPa9vyPbZmiIiIsczTROnq1wn3jVSYxLjnsDxv9lzjn7seA8A8wzDyMHaLf6RR6ITaaFnvnKyPuMQD145iPiYpk+YaAnDMJg7JoHNWYfZc6DUMzfNXA3Pz4D/zQa32zP3FBGRVstVVk1pdZ12jBupMYnxqdrzzRPevw54yTTNeOAS4L+GYZx0b8Mw7jAMY4NhGBtcLlfToxVpgu15JTz06W4uHdKdK4ef+FzON2aNjCckyOD19S3cNS7cB6/dAC9eBK6dsO9T2PiCZ4IUEZFW69hECo1qa5TGJMY5QMJx78dzcqnErcAiANM0VwPhQNyJNzJN8xnTNEebpjm6c+fOzYtYpBGqauv52etbiIkI5c9XDvbbLOHYyFCmD+zGkk05VNfVN/0G5YXw/j3w5DhwfgHn3ws/3wkpU+HTB+CIqpZEROT0NKqtaRqTGK8HUg3DSDYMIxS4Fnj3hGuygGkAhmEMwEqMtSUsfvP/Pt7NngNl/HPOMGIiQ/0ayzVjEjhUUcuyHQcb/6DaSvj6X/DocNjwAoy8CX68Gab8EkIj4bKHwV1nJc3miS/giIiIWJyuMsKCHfTs2M7foQSEsybGpmnWAXcDHwM7saZPbDcM40HDMC4/etkvgNsNw0gDFgI3m6Z+W4t/rNpXyHMr0vnehF6c29f/r0xM7hNHz47teG191tkvdrthy0J4fBR89iAknwN3rYHLHoL2Xb69LjYZpv4Odr8PO098nioiImJxFpaTHBeJw6FTWBujUQPtjs4k/uCEj/3huP/eAUzybGgiTVdSWcsv3kgjJS6S3148wN/hABDkMJg9Kp7Hlu8l51DF6ZsA938On94HBd9Aj5Ew6xlImnz6G4+/C7a9CR/8EpLPhXYdvfMJiIhIwHK6yhjYI/rsFwrQuFIKkYBx/zvbOFhazcNzh9Mu1HMn2bXUnNHxALyxIefkvzyww5oy8d8robIErn4ebvvszEkxQFAwzHzMqkNedr8XohYRkUBWU+cm+1ClRrU1gRJjaTWWpuXx9pY8fnx+KsMS7LV7Gh8TweQ+cby5MYd699Eqo9ICePdH8PQkyFkHF/4J7l4PQ2aDo5Hfmj2Gw4S7YONLkLHSa/GLiEjgySoup95talRbEygxllahoKSKe9/exvCEjvxwam9/h3NKc8ckkHu4ktU7M+Hzv8JjI6x64nHz4cdbYNKPISS86Tc+73fQsRcs/QnUVnk+cBERCUj7NaqtyZQYS8Bzu01++WYaNXVuHp47nOAge/6zvrB/J25p9yVDlkyFL/8GfWfA3evgov+DiNjm3zg0AmY+AkV7rUkWIiIiHD/DWDvGjdWo5jsRO/vvmky+3lvIX64aTPLp5jRmrLBGm3WIh7hU60+nVIjra0178OacY9OEvZ8Q9ukf+IO5iw21/Ui98VU6pE703Bq9z4eh18KKh2HQVdB1oOfuLSIiAcnpKiOufRjR4SH+DiVgKDGWgLbvYCn/98FOpvbrzPVjE09/4dZFcCjDaljLXAm1Fd/+XVg0dOpjJclxR992SoXYlOaVNhwvb4s1aSL9K4hNIXf6M8x+N5J7C7pxW2rLbn2SGf9nnYi39Mdwy8fgsE/zoYiI+J6zsFy7xU2kxFgCVk2dm5++voWI0CD+PnvomU+3y1wJyVPghkXWrOAjuVbpQeHRP0V7IeNr2Prat48xHNAx8dud5eOT5rPtMh/OhuV/gq2vQ7tYuPgfMOr79AwOZfjmlSzakM2tk5M9eyJfZCeY8Vd46w5Y/zyMu8Nz9xYRkYDjdJVx0eBu/g4joCgxloD1+PK9bMs9wtPzRtIl6gw7u6UHoGgfjPye9b7DAR0TrD+9z//utdVl1rVF+6Bwz7eJc8YKqKv89rqwDlai3Cn129KMuL4QEQer/w1rnrKum/wz6094h2MPnTsmgd8u+YbN2YcZmRjjoa/GUUOvsZLxz/4I/S+xSkdERKTNOVRew6GKWo1qayIlxhKQNmYe4onP9zF7VDwXDe5+5oszj44x63WWucAAYe2tEWg9hn/34243HMn57g5z4V6rROL4XeYGQ6+F8++1ku8TzBzWgz+9t4NF67M9nxgbhnVK3pMTrJrq6xZ6t35aRERsyVlYBqjxrqmUGEvAKa+u4+eLttC9Qzvun9mIJrPMlRDaHroPa/6ijqNlFR0Toc+07/5ddenRHeZ9cDgD+lx4cmJ9nPZhwVw6pDtL0/K477KBRIZ5+NswJsk6LvqTe2HH21YznoiItCka1dY89pxrJXIGf35/J1nFFTw8dzhRjem0zVgJCeOsxjtvCIuCHiNg6ByY8sszJsUNrh2bQHlNPe9vzfdOTOPmQ/fh8MGvoPKQd9YQERHbcrrKCQkySIhp5+9QAooSYwkon+08wMJ1WfxgSm/GJjdi9m95Ebh2QtIk7wfXBCMTY+jdOZLXN2R7Z4GgYLj8cagogk//4J01RETEttILy0iMjbDtbH+70ldLAkZRWTW/XryVAd2j+dmFjZx1dqy+2F6JsWEYzB2TwMbMQ+w7WOqdRboPhYl3w6ZXrOZBERFpM5yucpVRNIMSYwkIpmnymyXfcKSyjkfmDicsuJEzejNXQXA76DHSuwE2w6yR8QQ7DF5f76VdY4Bzf2PVHL/7Yx0XLSLSRtS7TTKLKkg53aFXclpKjCUgvLEhh093HOBXF/WjX7eoxj8wcwUkjIHgUO8F10xx7cO4YEBXFm/KpabO7Z1FQiPgskegeD989Q/vrCEiIraSc6iCmnq3JlI0gxJjsb2sogr+uHQ7E1I6ccuk5MY/sPIQFGxr3Jg2P5k7NoHi8ho+23nAe4v0ngrDroeVj1pfDxERadWcmkjRbEqMxdbq3SY/X7QFh2Hw/64ZhsPRhJm8WWsA03aNd8ebktqZ7h3CvdeE12DGXyC8o3VctLveu2uJiIhf7XcdnWGsUoomU2Istvafr/azIfMQD145iJ4dmzhyJmMFBIVCz9HeCc4DghwGc0bF8+UeF3mHK8/+gOaKiIWL/ga5G2Hds95bR0RE/M5ZWE6HdiHERtqvjNDulBiLbW3LLeHhT/dw6ZDuXDm8Z9NvkLnSSopDznBctA3MGZ2AacKbG3O8u9CQ2dDnAvjsQTjs5R1qERHxG6erjJTOkRg6+bTJlBiLLVXV1vOz17cQExHKn68c3PRv7qojkJ9m6zKKBgmxEUzq04lFG7Jxu03vLWQYcOlDgAnv/wJML64lIiJ+43SVkxKn+uLmUGIstvSPj3az92AZ/5wzjJjmvBSUvQ5Mt+3mF5/O3DGJ5ByqZNX+Iu8uFNMLzr8X9n4M25d4dy0REfG50qpaDpZWayJFMykxFttZua+QF1amc9OEXpzbt3PzbpK5AhzBkDDWs8F5yfSBXenQLoTX1md5f7Fxd1pHWH/4a6go9v56IiLiM+mF1kSK3kqMm0WJsdhKSUUt97yRRkrnSH5z8YDm3yhjpXWoR2hg/GAIDwniqhE9+WT7AQ6V13h3MUfQ0eOii+HT+7y7loiI+JRtR7Xlp8G2JVDn5d9xLaTEWGzlD+9uw1VazSNzh9MutJGn252ophzyNgVEffHx5o5JoKbezVubc72/WLchMPFHsPl/4PzS++uJiIhPOF1lOAzo1SnC36F819ZF8PZ8MOydeto7OmlT3k3L450tefx4WipD4zs2/0bZ68BdFzD1xQ0GdI9mWHwHFm3IxvRFY9x5v4GYZFj6E6j14qg4ERHxmf2F5cTHRBAW3MzNJW/JT4OugyAo2N+RnJESY7GFgpIq7n3rG4YndOSu83q37GaZK61npAnjPBOcD10zJoFdBaVszSnx/mIh7WDmo3AoHb78u/fXExERr3O6yu3XeGeakL8Vug/zdyRnpcRY/M7tNvnlm2nU1ps8PHc4wUEt/GeZucr65guP9kyAPjRzWA/CQxy8tt5Hc4ZTzoXh82DlY1DwjW/WFBERr3C7TdILy+w3qu1QBlSXQLeh/o7krJQYi8+VV9ex31XGqv2FvL05l/ve2cbXewu597IBJLf0+MraKsjZEHBlFA2iw0O4dEgPlqblUVFT55tFp//JOhnvXR0XLSISyPKPVFFV67bfjnHBVuttAOwY27vQQwJKdV09B49Uc7C0ioKSag4cqeJAaRUHj1RTUPLtf5dVn5zwXTa0O9ePTWx5ELkboL4akia3/F5+MndMAos35fD+1nzmjE7w/oINx0UvvhXW/gcm3OX9NUVExOOcrjIA+yXG+WlgBEGXgf6O5KyUGMtZ1btNisqqKThSxYEjRxPeY3++ff9QRe1Jjw0NctAlOoyu0eH07xbFuX070zU6nK5HP9bwp32Yh/4pZqwEDEgc75n7+cGYpBhS4iJZtCHbN4kxwOCrYevrsPzPMOAy6OiBJykiIuJTDaPaettuVNtW6DIAQsL9HclZKTGW0yosq+aa/6wmo7CcE08qdhgQ195KbuNjIhjVK+aUCW9MRIhvz2rPXAFdB0O7GN+t6WGGYXDNmAT+9uEu9h0so08XH/yAazgu+olx8N7P4YY3rI+JiEjAcLrKiAwNoktUmL9D+a78NOhzgb+jaBQlxnJaizZk43SV84MpKcTHtPtOwhvXPrTlTXKeVlcD2eth1E3+jqTFZo3syf/7eDdvbMjmt5e04KCTpuiYANPug49+A9sWw5DZvllXREQ8wllYTkrn9r7dkDqb0gIoPxgQ9cWgxFhOw+02Wbgui/Epsb5LzFoqbzPUVQZs493xukSFc37/LizelMM9M/oR4qsnIWPvgG/esI6L7n2+VX8sIiIBwekqZ3SSzV4xzU+z3na3/0QK0FQKOY2v9xWSXVzJ9eN6+TuUxstcYb1tBYkxWE14hWU1fLbzoO8WdQTBzMeg6jB8/HvfrSsiIi1SWVNP7uFK+41qyz86kaLbEP/G0UhKjOWUFqzNJDYylBmDuvo7lMbLWAmdB0BkJ39H4hFWo2IYizb4aKZxg26DYeKPIW0BHNjh27VFRKRZ0gutxjv7TaTYArG9ISzK35E0ihJjOcmBI1Us23mQOaPi7Xek5OnU10H2WkhqHbvFAMFBDmaPiueL3QcpKKny7eLjfmC93fOhb9cVEZFmcRbadVRbYJx410CJsZxk0fps6t0m13lirrCv5KdBTRn0mujvSDzqmtEJuE14c6OPd42julk/yPZ84tt1RUSkWRpGtbX4oCxPqiiGkqyAqS8GJcZygvqjTXeT+8SRZKdvrrM5Vl8cuAd7nEqvTpFMSOnE6xuycZ84M8/bUmdAzjrrB5uIiNia01VGjw7hRITaaK5CAJ1410CJsXzHl3sOkldSxfXjAmi3GKz64k59ICqAaqIbae6YBLKLK1njLPLtwn1ngOmGfZ/5dl0REWmyhlFttnKs8U6JsQSoBWuziGsfxoUDAyjBdNdD1ppWM43iRBcN7kZ0eDCv+7oJr8dIiIiDvR/7dl0REWkS0zRxusptWF+cBtHxAdUUr8RYjsk7XMnyXQe5ZnS87+bmesKBbVBdAkmtq4yiQXhIEFeO6MmH2wooOcWx217jcEDqhbBvmfXkQ0REbMlVWk1ZdR0pdiuBLNgaUPXFoMRYjvP6+mxMCKymO7DKKKDVNd4db+6YBGrq3Ly9Jde3C6dOh8pDkLPet+uKiEij7Xc1jGqzUSlFdRnvNnX+AAAgAElEQVQU7g2o+mJQYixH1dW7eW19FlNSO5MQG+HvcJomcyV07AUd4v0didcM6tGBwT2jeW19Nqbpwya83ueDEQR7VE4hImJXthzVdmA7YCoxlsC0fNdBDhypDrymO7fbSoxbaRnF8eaOSWRn/hG25R7x3aLtOkLiBNirsW0iInbldJUTFuygR4d2/g7lWw1HQXdTKYUEoAXrsugaHca0/l38HUrTuHZaL/W30sa7410+rAdhwQ5eW5/l24X7TrfquEtyfLuuiIg0SnphOclxkTgchr9D+VZBmtXAHd3D35E0iRJjIbu4gi/3uJg7OoHgQGq6A8hcZb1tRSfenU6HdiFcMqQ7727Jo7LGh81wqTOst9o1FhGxJaerzF5lFGDtGHcfCoaNkvVGCLAsSLzh9fXZGMDcQGu6A8hYYY2C6djL35H4xNwxCZRW1/HBN/m+W7RzP+iYqFPwRERsqKbOTfahSlLibNR4V1cNB3cFXH0xKDFu82rr3by+IZup/brQs6ONapMawzSP1hdPCrhnpM01LjmWpE4Rvi2nMAxr1zj9S6it8t26IiJyVlnF5dS7TXvtGB/cCe7agKsvBiXGbd6yHQdwlQZg0x1YY2DKXa16TNuJDMNg3vherM84xLbcEt8t3HcG1FZYO/QiImIbthzVFoBHQTdQYtzGLViXRY8O4ZzXL8Ca7gAyjyZpvVr/RIrjXTMmgcjQIJ5fke67RZMmQ3A7nYInImIzzmOJsY12jPPTIDQKYpL9HUmTKTFuwzKLyvl6byFzxyQSZKdO1sbKWAntu0Kn3v6OxKeiw0OYMzqBpWl5HDjio9KGkHaQcq41z9iXc5RFROSMnK4y4tqHER0e4u9QvpV/9MQ7R+ClmYEXsXjMwnXZBDkM5o5J8HcoTWea1kSKXm2nvvh435+URL1p8srqDN8tmjodDmeCa7fv1hQRkTNyFpbba7fYXW+N+AzA+mJQYtxm1dS5eWNDNtP6d6Fbh3B/h9N0h9KhNK9NjGk7lV6dIrlwQFdeXZvlu9FtqdOttyqnEBGxDaerjN52SoyL9lk9KQFYXwxKjNusj7cXUFReE5hNd2CVUUCbqy8+3q2TkzlcUcuSzT46eKNjAnQZpLFtIiI2cai8hkMVtfYa1dZw4l137RhLAFmwNov4mHZMSe3s71CaJ3MlRHSyZuy2UWOTYxncM5oXVqTjdvuo7rfvdMhaDZWHfbOeiIiclrOwDLBh411wOMQF5u9nJcZtkNNVxmpnEdeNTbTX8ZFNkbHSGtPWBuuLGxiGwa2Tk9nvKufLvS7fLJo6A8x62L/cN+uJiMhp2XJUW34adBkIQcH+jqRZlBi3QQvXZRHsMJgzOt7foTTP4SwoyWrTZRQNLh3Sgy5RYbzgq9Ft8WMgvKOOhxYRsQGnq5yQIIOEGJsc0GWa1gzjAK0vBiXGbU5VbT1vbMxh+qCudIkKwKY7+La+uI023h0vNNjBTROT+HpvIbsLSr2/YFAw9LkA9n4Kbrf31xMRkdNyuspIjI0gOMgm6dzhTKgqCdj6YlBi3OZ8tK2AwxW1XD+2l79Dab7MldauZZdB/o7EFq4fm0h4iMN3u8Z9Z0BFIeRt8s16IiJyStaoNjuVUQTuiXcNlBi3MQvWZtGrUwQTe3fydyjNl3m0vjgAB4d7Q0xkKLNGxvPWllwKy6q9v2CfC8BwWId9iIiIX9TVu8ksstkM4/w0MIICeuNKmUUbsvdAKesyigO76e5IPhQ7rcRYjrllUjI1dW5eXZPl/cUiYiF+rOYZi4j4Uc6hSmrrTXrbbVRb5/4QEqClmigxblMWrMsiJMhgzqgAbboDa7cYrBPv5Jg+XdpzXr/O/HdNJtV1Pjjwo+906wdgaYH31xIRkZPYclRbwdaAri8GJcZtRlVtPYs35nDR4O50ah/m73CaL2MFhEYF7FGT3nTr5GQKy6pZmpbv/cVSZ1hvNZ1CRMQvnHYb1VZaAGUHArq+GJQYtxnvbc3nSFUd148N0JPuGmSuhMTxATsf0Zsm94mjb9f2PL8iHdP08oEfXQdBdE/VGYuI+Ml+VzkdI0KIjQz1dyiWhsa7AN+4UmLcRixYm0lK50jGp8T6O5TmK3NB4R6NaTsNwzC4ZVIyO/OPsNpZ5O3FIHU6OL+AOh80/AkAm7MOkV9S6e8wRMQGnK4yUuJsVEbRcBR0tyH+jaOFlBi3AbsKjrAp6zDXj03ECOST4o7VF+tgj9O5ckRPYiNDfTO6re8MqCmDzFXeX0t4aWU6s55axfdfXE9dvWZIi7R1thvVVpAGsSkQHu3vSFpEiXEbsGBtFqHBDq4eGcBNd2AlxiER0GO4vyOxrfCQIOaNS+SzXQdJLyz37mLJUyAoTHXGXmaaJn//aBcPLN3BwO7R7Coo5dW1Ppg+IiK2VVpVi6u02l6Nd/lpAV9fDEqMW72Kmjre2pTLpUO6E2OXOqTmylgJCWMhKMTfkdjavAm9CHE4eHGll3eNQyMh+RzVGXtRbb2bX7yRxlNf7OeGcYm8e/dkJvXpxL8+2U1xeY2/wxMRPznWeGeXUW2Vh+BwlhJjsb+laXmUVtdx/bgAb7qrKIaD21VG0QhdosKZOawHb2zIoaSi1ruLpc6A4v1QtN+767RB5dV13PbyBpZsyuUXF/blz1cOJshhcP/MQZTX1PPPj3f7O0QR8ZOGUW297bJj3Eoa70CJcau3YG0WqV3aM7pXjL9DaZmGOlY13jXKrZOTqaytZ+F6L7/k3ne69Va7xh5VVFbN9c+uYcW+Qv5+9RB+NC31WH9A365R3DQhidfWZ7Ett8TPkYqIPzhd5TgMSOwU4e9QLAWBfxR0AyXGrdi23BLSckq4YVyAN92BlRgHh0PPUf6OJCAM7BHNhJROvLwqg1pvNmrFJEFcP52C50FZRRVc/dQqdh8o5ZkbRzF3zMmv9vzkglRiI0K5/93t3h/NJyK243SVkxAbQVhwkL9DseSnWSM8I+P8HUmLKTFuxRasyyI8xMFVgd50B5C5AuLHQHAAH07iY7dOTia/pIoPt3n5dLq+06367+pS767TBmzLLWHWU6s4XFnLgtvHM21A11Ne16FdCL+6qB8bMw/x9pZcH0cpIv6233aj2ra2it1iUGLcapVV1/HO5lwuG9qDDu0CvFmtqgQKvoFeE/0dSUA5v38XkuMivX/gR+oMcNdaM42l2VbsLWTuf1YTFuzgzTsnMjLxzOVPc0YlMDS+A3/9YBdl1XU+ilJE/M3tNskostGotppy64yBVlBfDEqMW613tuRSXlMf+E13AFlrwHRDL9UXN4XDYfD9SUmkZR9mU9Yh7y2UOB7COqjOuAXe2ZLL919aR0JsBEvumkifLmf/hedwGPzx8kEcLK3m8eV7fRCliNhBXkklVbVu+4xqO7AdMLVjLPZlmiYL1mbRv1sUIxI6+juclstYAY4Qq5RCmuTqkfFEhwfzvDcP/AgKgd5TYe+noHrXJnvuayc/eW0Lo3rFsOjOCXSNDm/0Y0ckxjB7VDwvrEjH6SrzYpQiYhcNo9qS7VJK0XDiXXftGItNbc0pYXveEW4Y3yvwm+7AOtij5ygItUn3bQCJDAvmunGJfLStgOziCu8t1HcGlBV8+wNSzsrtNvnL+zv48/s7uXRId16+ZSzR4U0ve/rVRf0ICw7iT+/t8EKUImI3DU+Ce9ullCI/DSI6Wc13rYAS41ZowdosIkKDuHJ4D3+H0nLVpZC3RWPaWuCmCUkYhsHLqzK8t0ifCwFDp+A1Uk2dm58t2sKzX6dz88QkHr9uRLO7y7tEhfPTC1L5fLeLz3Ye8HCkImI3zsJyIkOD6BJlk2b0/DSrvrg1bMShxLjVOVJVy7tpeVw+rAdRzdh9sp3sdWDWq764BXp0bMclQ7rz+vps7zVpte8MPUeqzrgRyqrruOWl9byzJY9fX9Sf+2cOxOFo2S+U701IonfnSB58bwfVdfUeilRE7Ci90Gq8s8UrwnU1cHBnq6kvBiXGrc7bm3OprG0lTXdglVEYQdZR0NJst0xKorS6jkXrs723SOoMyN0I5YXeWyPAuUqrufaZ1ax2FvH/5gxj/nm9PfLLLTTYwf0zB5FZVOHdenIR8Tunq9w+jXeundZUolZSXwxKjFuVhqa7wT2jGRrfCpruwJqP22M4hEX5O5KANiIxhpGJHXlpVQb1bi81yPWdDphWE56cJL2wnKufWsX+g+U8d9NoZo/y7HzxKX07M31gV/69fB8FJVUevbeI2ENlTT25hytJibNLfXHDiXfD/RuHBykxbkU2ZR1mV0EpN4zr5e9QPKOmwtqBVBmFR9w6OYWs4gqWeasOtdswaN8V9nzknfsHsLTsw8x+ahVl1XUsvGM8U/t18co69146kDq3yV8/3OmV+4uIf6UXWhMpbLNjnJ8GoVEQk+zvSDxGiXErsmBtFu3Dgrl8WCtougPIWW+9RJM02d+RtAozBnWlZ8d23nup3eGA1Ath/3Kor/XOGgHoi90HufaZNUSEBbF4/kSGe3GEYmKnCO6cksI7W/JYl17stXVExD+chdZECtskxgVbodsQ6+d/K9F6PpM2rqSilve25nHF8B5EhgX7OxzPyFwJhsM6QEJaLDjIwc0Tk1iXXsy23BLvLJI6A6qPWIeyCIs35nDbyxtI6RzJ4vkTfTJ3dP55fejRIZz7393uvbIZEfELW80wdtdbp9K2ovpiUGLcaizelEN1nbv1NN0BZK6ynomGd/B3JK3G3LEJRIYGeW/XuPdU6zCWvW17OoVpmjz1xX5+8UYa41Jiee2O8XSJavzBHS3RLjSI3106gJ35R1i4Lssna4qIbzhdZfToEE5EqA02wIr2QW1Fq5pIAUqMWwXTNFmwLothCR0Z1KOVJJF11VYpheqLPSo6PIQ5oxNYmpbHgSNeaNAKi4JeE2FP251n7Hab/HHpDv7+0S4uH9aDF28e6/PRiZcO6c74lFj+3ye7OVRe49O1RcR7nEdHtdlCQ+Ndtza4Y2wYxkWGYew2DGOfYRi/Oc011xiGscMwjO2GYSzwbJhyJuszDrHvYBk3tKbd4tyNUFelxNgLvj8piXrT5JXVGd5ZoO8MKNwNh7x0fxurrqvnR69t5qVVGdw2OZlH5g4nNNj3+w+GYfDA5YMorarjoU/3NO3Bpmk9MfUi0zRZtb+QqtpWMHPZtQfWPwdut78jkVbONE17jWrL3wJBYdC5n78j8aiz/sQ2DCMIeAK4GBgIXGcYxsATrkkFfgtMMk1zEPBTL8Qqp7FgbSZR4cHMHNpKmu7AGtMG1u6jeFSvTpFcOKArr67NorLGC4lJ6gzrbRvbNT5SVctNL6zj/a35/P6SAdx7WcsP7miJ/t2iuXF8L15dm8mOvCONf+DKR+DhQVDm8kpc1XX1/Oz1LVz/7Frm/28jtfUBnFDu/giePR/e/wVkr/V3NNLKuUqrKauuI8UO9cVgNd51HQhBreAwseM0ZitjLLDPNE2naZo1wGvAFSdcczvwhGmahwBM0zzo2TDldIrLa/hgWwGzRvSkXWjzjpS1pcwV0GUQRMT6O5JW6dbJyRyuqGXJ5hzP3zyuD8SmtKk645LKWq55ejUbMw/xyNzh3D4lxd8hAfCzC/rSoV0ID7y7HdNsRCOeacKmV6DcBcsf9Hg8JRXWk4e3t+QxY1BXPt/t4p430nAHWpOgacKKh2HhtdCpNwS3g2/e8HdU0srtdzWMarNBKYVpWqPaWll9MTQuMe4JHH9cVs7Rjx2vL9DXMIyVhmGsMQzjIk8FKGe2eGMONXVurm8ts4vBGvWVvQ6SVEbhLWOTYxncM5oXVqR7JylJnQHpX0NNuefvbUOPf7aXPQdKee6mMVw54sQfj/7TISKEX87oz7qMYpZuzT/7A/I2QbETOvWBTf+F3E0eiyW7uIKrn17FxsxDPHrtcP5z42h+dVE/3tmSxwNLG5m420FtJSy5HZY9AIOvhls+gn4Xw/a3NKZQvMpWo9oOZ0FVSaurL4bGJcanei3wxJ9gwUAqcB5wHfCcYRgnDes0DOMOwzA2GIaxweXyzst0bYlpmixcl8WoXjH069aKTobL22J1uqq+2GsMw+DWycnsd5Xz5V4vfC/2nQ711ZD+lefvbTPZxRW8sjqTOaMSOLdvZ3+Hc5K5YxIY3DOa/3t/J+XVdWe++JvFEBQKN74NkZ3hw195pHZ2a85hrnpyFQePVPHKLeO4Yrj15GH+ub25Y0oKr6zO5OGm1kL7Q0kuvHARfPMmTLsfrn4OQtrBkDlQWQz7P/d3hNKKOV3lhIc46NGhnb9DsXaLoVWdeNegMYlxDpBw3PvxQN4prnnHNM1a0zTTgd1YifJ3mKb5jGmao03THN25s/1+gQSa1c4inIXlravpDqwyClB9sZddOqQHXaLCeMEbo9t6TYLQ9rCn9ZdT/OPj3QQ5DH4+va+/QzmlIIfBHy8fRMGRKp78Yt/pL3TXw7bFkDodOibABQ9Yk2G2vt6i9T/beYC5/1lDWLCDxfMnMqF3p2N/ZxgGv724P3NHJ/DY8n3eGyPoCdnr4dmpULQfrlsI5/wcjKP7Rn0ugPCOKqcQr3K6ykjqFOnX3oVjCraCEWTVGLcyjUmM1wOphmEkG4YRClwLvHvCNW8DUwEMw4jDKq1wejJQOdmCtVl0aBfCJUO6e2cBdz2seQoO7vLO/U8nYyXE9YX23jk2VyyhwQ5umpjE13sL2V1Q6tmbB4dBynmw9xOrFq2V2pJ9mKVpedx+TjJdo30zp7g5RvWKZdaInjz7VTqZRacpb8lYAWUFMGS29f6w66DnaPj0D1DVhOa94/x3TSa3v7KBPl3a89YPJ5La9eRXtgzD4C9XDeaiQd3403s7WLzRC3XvLbVlAbx0CYREwG3LrNKJ4wWHwsArYNf71lH2Il7gLCyntx3qi8HaMe7cz3rFpJU5a2JsmmYdcDfwMbATWGSa5nbDMB40DOPyo5d9DBQZhrED+Bz4pWmaRd4KWqCwrJqPtxdw9ch4wkO81HSX/iV89Bt4ejIs/wvUemHu7Ynq66xT01RG4RPXj00kLNjhnV3jvjPgSC4c2O75e9uAaZr83/s7iWsfyh3n9vZ3OGf1m4v7ExJk8Kf3dpz6gm1vWrv8fY+2iDgccMk/rEa8r/7RpLXcbpO/frCT+97extR+Xc56wElwkINHrxvOpD6d+NXirXyyvaBJ63lNfR18/Ht4ez4kToDbl0OX/qe+dsgcqC2HPR/6NkZpE6rr6skurrBHfTFYM4xbYeMdNHKOsWmaH5im2dc0zd6maf7l6Mf+YJrmu0f/2zRN8+emaQ40TXOIaZqveTPotq66rp4/v7eD2nqT68clnP0BzbV3mTWjcOAV1i/GpydZu0reVLAVakohabJ31xEAYiJDmTUynre25FJY5uHZtanTrbetdDrFpzsOsC6jmJ9e0Jf2AXAMe5focH48LZVlOw/y+e4TBgfVVcOOd6D/Zd/dAeo5CkbMs145cjWuBriq1prl/J+vnMwbn8h/bhzVqGPqw4KDeObG0Qzu2YG7F25m9X4/761UHoYF18Dqf8PYH8C8xWeektNrIkT1sOqPRTwsq6gCt2mTxrvSA9arS62w8Q508l3AOXikiuueWcPbW/L4ybRU+nTxYtPdvk+tBHX289YvhfpaeOlSeOeHUFHsnTUzG+YXa8fYV26dnERNnZtX13j4+OCobtaOQiucZ1xb7+ZvH+2id+dIrh3jxSenHvb9ScmkxEXyp6U7qKk7rqlu3zKrw3zInJMfNO1+q4Tgo1+ftSzmUHkNNz6/lve35vPbi/vzpysGExzU+F8zkWHBvHTzGHrFRnD7KxvYmnO40Y/1qMK98Nw0q3l05mPWzvnZZrU6gmDwLNj7qfd+PkqbdWxUW5wNSikKjp5415Z3jMUeNmUd4rLHV7CroJQnbxjJzy70YrPPoUwo3AOpF1rv97kA7loDk34CWxbCE2OtnRFP149mrLRm4EZ7qW5aTtKnSxTn9u3Mf9dkUl3n4QM/UmdAzrpWlyi8tj4bp6uc3148oEmJn7+FBju4b+ZAnIXlvLjyuPKZb96EiE6Qcu7JD2rfGc77LexfDrs/OO29M4vKufqpVaTllPDv60fwg3N7YxhNbxKKiQzlv7eOo2NECDe/uJ59B8uafI8W2fspPDvN2jG+aSmMuqnxjx0yG9y1sPPENhyRlrHVqLb8LdbbbkP8G4eXBM5P9Dbu9fVZXPufNYSFOFhy10TvNdw12Pep9bbPhd9+LDQCLnwQ7vgCOiTA4lvh1dmeO/rX7YasVZpG4Qe3Tk6msKyapWmNmHXbFH1ngOmGfZ959r5+VFpVy6PL9jAuOZZpAwKvQXRqvy5cMKALj322l4NHqqC6DHZ/CIOuOv2u6NjboXN/+Oi3p+w12Jx1iFlPrqK4ooZXbxvHZS08hbNbh3D+d+s4HIbBjc+vJfdwZYvu1yimCaset8onYhKtn3O9JjTtHt2HWzOgVU4hHuZ0ldM5KoyocBucMpe/1drACo/2dyReocTY5mrq3Nz39jZ+vfgbxqXEsvTuyfTv5oN/jHuXQUySdarTiboPtTqzL/q71Sj3xHhY+ZjVqNISB7dbL+f2Un2xr52TGkffru15fkW6Zw9a6DESIuJaVZ3xf750UlhWw+8vHdCsHVE7uPfSgdTWm/ztw13WLnBd5anLKBoEhcDFf4fDmbD68e/81cfbC7ju2TVEhgWzeP5ExiR55rTKpLhIXrllLGXVddz43FrP18Afr7bKarD75F4YMBNu+dgaWddUhmF9HTNWwJETp5qKNJ/TVWafo6Dz01ptfTEoMba1wrJq5j23lv+uyeQHU1J48eYxdIwI9f7CtVXWRIo+F347p/NEjiAYfyf8cK01luvT++DZ81p2UlbG0fpinXjnc4ZhcMukZHbmH2G104NNTw6HVY6zb5k1/i/AFZRU8dwKJ5cP68HQ+JPOMAoYSXGR3D4lmSWbcylZt8B6BSh+7JkflHIeDLgcvn4ISqyRai+uTOfO/22kf7doltw10eOjpAb2iOaFm8eQV1LJTS+s40iVF06WKy2weifSFsLU38OclyG0BQnI4NmACduWeCxEEWdhuT2Ogq48ZD1BbqX1xaDE2La25hxm5uMr2Jp7mEevHc5vL/FhLWPWKuvkudQLz35th3hr2P01r0CZy2pY+ei31suzTZW5AjokQsdWdmBJgLhyRE9iI0M9P7otdbr1wzRnvWfv6wf/+mQ3bjf8ckY/f4fSYned14d+UTVE5nyFe9DV1pOYs5n+ZzDduD+5jweX7uCPS3dw4YCuLLx9PHHtw7wS55ikWJ6aN4rdBaXc9vIGqmo9+AQrdyM8cx4c3Alz/wfn/ur0mwGNFdfHKqnQYR/iIcXlNRyuqKW3HeqLC76x3nbXjrH40OKNOcx+ejUOw+DNOyceOz7VZxrGtCWd07jrDcMa6Xb3Ohj1fVjzJDw5HnZ/1Pg1TRMyV2m32I/CQ4KYNy6Rz3YdJL3wNIdANEfv860TkgL8FLyd+Ud4c1MON09KIiE2wt/htFhkWDD/GOgkmHo+djSyfCmmF7UTfoJj+xJ2rH6fmycm8dS8UbQL9dIs9aOm9uvCv64ZxvqMYu5esIna+pYfU83WRfDCxVaZyG2fWiUUnjJkjtWgVLjXc/eUNsvpslPj3dGJFN20Yyw+UFfv5sGlO/jFG2mMSoxh6Y8mM7hnB98Hsu9TK0ENbeIv//AOcNlDcMsn1kEBC+fCopuslyrPxrULKoo0ps3P5k3oRYjD8d2JBS3VrqN1OMLewB7b9tcPdxEdHsIPz+vj71A8ZuihT8kOTuT3q0xKKs5eplBUVs28XePJMeN4MvZ1Hri0H0E+Op72iuE9efCKwSzbeZBfvbkVt7uZtfDuevj0flhyO8SPgdu/gK6DPBorg2cBhprwxCOcdhrVlp9mzetu39nfkXiNEmObKC6v4XsvrOOFlel8f1ISr9w6lthIH9QTn6hhTFufRpRRnE7iOPjBV3D+vVa3+7/HwoYXrakTp3NsfrEmUvhTl6hwZg7rwRsbchqVKDVa3+lwYNux2tRA89UeF1/tcfGj8/vQIcIGXeGecDgbI2s1YcPncriyloeXnfkAD6erjFlPrWJLfjWuCfcRW7YXNr7oo2AtN47vxT3T+/LW5lwefG9H0xtFq0pg4XWw8hEYfSt8722I7OT5QKN7WDPgt3lhpKW0OfsLywgJMoiPscHxywWt98S7BkqMbWB7XgkzH1/BhsxD/GvOMO6fOYgQf81GbRjT1pj64jMJDoUpv4T5q6xapPd+Ci9eDAd3nfr6jJUQ1d0aASN+devkZCpr61m43oMHfqTOsN4G4K5xvdvk/z7YSUJsO26c0Mvf4XjOdqs5rMvE67lhXC/+uyaT3QWlp7x0Q0YxVz+1itKqOhbeMZ4RM26C5HNh+Z+h3Lcn1P1wah9unZzMS6syePSzJpQqFO2H5y6A/Z/Bpf+yXt0626EdLTFkDhTt+3bmq0gzOV3l9OoU6f+Z6TUV1sZZK64vBiXGfvduWh5XP7UKt2ny5p0TuHpUvH8DOjamzUMvF8f1sYbkX/EkFO6GpyfD8r98dxaqaVo7xr0mtbzxRVpsYI9oJqR04uVVGZ6p5QTo3M9qqgzAU/CWbMphV0Epv5rRn7Bg79bS+tQ3b0DP0RCbws8v7EtUeDAPvLv9pF3Y97fmc/1za+kYEcqS+RMZmRhjfZ9e/HeoLoXlf/Jp2IZh8PtLBjB7VDyPLNvLS40p+9m/HJ6dCuWFcOPbMOY27wc68HJwhKicQlrMNqPaDmy35tJrx1i8od5t8tcPdvLjhZsZ0rMD79492f/jn+qqrSNQzzSmrTkMA0bcAHdvsGrvvvoHPD3JmvUJ1k5O2QE13tnI7VOSyS+p4rX12Z65oWFYu8bpX57ygAi7qqyp51+f7FIh2bUAACAASURBVGFYQkcuG9qKTmN07ba6y4/OLo6JDOWe6f1Y7Sziw21WT4Bpmjz7lZMfLtjEkJ4dWDx/IknH/3LuMgDG/QA2vgR5vt0VdTgM/jZrCNMHduWBpTt4a/NpSnRME9Y8Df+bDdE94Y7PIbmRTcUt1S7GeuVt2+JWMapQ/KOu3k1WcQXJtmi8azjxTjvG4mGHK2q4+cV1/OcrJzeO78Wrt42nc5R3Rh01SeYqqC1veRnF6UTGwaxn4Ma3wF1nzQ5954ewa6n19zrYwzam9uvC2ORYHvl0D6Wemh3bd4Y1BrDhCVEAeGFlOgVHqvj9JYF7mMcpffMmGA7rtLujrhubyIDu0fzl/Z2UVddx/7vb+csHO7lkSDdevW3cqXsezv21dZT0h7/yeS1tcJCDx64bwYSUTtzzxlaW7Tjw3Qvq62DpT+CjX0O/i+HWT6xXw3xpyGwozf+2h0KkibIPVVJbb9LbDo13BVuhXaw1prUVU2LsY7sKjnD5v1ey1lnM32YN4U9XDiY02Cb/G/Y1cUxbc/U+H+avhkk/hS0LYdkDENkZ4lK9u640mmEY3HvpAIrKa3jyi/2euWnSZAhuFzCn4BWWVfPUF/uZPrArY5M9c5qbLZimVUaRPAWiuh77cJDD4I+XDyL3cCUXPvQlr6zO5I4pKfz7upGEh5ymhKRdR7jgAchea40/87HwkCCevWk0g3pE88MFm1jbcDhNTQW8fgNsehnOuQeu+S+ERfk8PvpeDCGRKqeQZntxZTqGAcMTbXCgUH6aVV/cmjYJTsEmGVnb8ME3+cx6chVVtfUsvGM814612UEWe5s5pq05QiPgwj/CD760EvER81r9N1ugGRrfkatG9OT5FelkF1e0/IYh7SDlXGuecQB06j+6bC+VtfX8+uL+/g7Fs/I2waH0oye0fdfY5FiuHN6DA0eqePCKQfzukgE4zjaObfgN0GMEfPoHq+bYx9qHBfPS98cSH9OO217ewM79GfDK5Vaj56UPwbT7Gnd4iTeERsCAy2DHO1apmkgTrN5fxCurM7l5YhJ9u/rhid3x6mrgwI5WX18MSox9ot5t8s+Pd3HXq5vo3y2KpT+azKheMf4O67sOZVrNcS0Z09Yc3YbAze9Zu05iO7+c0Q8D+OfHu/8/e/cdGGV9P3D8/dxl70UIZDLCCIS9VGQogltAcLTuVav+aqtV67Z11NXWto6qVdxVQVGcIEIYCmGvhISElcAFssjed8/vj4dg2JfceO65+7z+uXL33Pc+1Rg+930+38/HOQumT9XGiZafujWY3naW1fHRmiJ+NSbF6WOOdbd1HpgDTjrQ4rlZQ1hy7ySuOyPNvvVMJrjwRag7AMtfdF6cnRATGsAHt4wlPegQwe9fgK1kizaNc/TNusRzlMzZ0FQFhT/qHYkwkIaWNu7/bDOpsSGeMWmzLA9srV5fXwySGLtcdWMrt7y7lleW7uSq0cn877ZxdI8I0jus4zmrTZvwKj2jgrnl7F4s2GxhU3GV4wumT9Ued3RiKqIOnvsuj2B/M3dP8bLyHptVOwyWPlUrgziBQD/z0Yfs7JE0Sts5XvUKlBc6IdDO69G0i0/9HieGau4yP4alxxRd4jhO70laXaaMiBad8Pz3+RRXNvL85UMICfDTOxytjAK0cedeThJjFyosrWX6Kz+xoqCcp6YP5q8zMz233VPBYohKdV6bNuE1fjupL3FhATzVlYEKx4pKhvhBHt22bc3uShblHuT2ib2JC/OAQ7HOtGel1gEm8/gyCoed+zj4BcHCB52/9uns+QnevgA/k4mDl3/BiuZ0rn0rm8r6FvfHciyzv3bIMf87aK7TOxphAKt3VfDOz3u44cw0xvZ2wQCarjiwRZto6wOzBiQxdpFFOQeY/srP1Da18tGt47hmXKrnnmpvb9OW7uQ2bcIrhAX6cc95/Vm39xDfb7NjvPfp9JsKRaug0Qk70E6mqipPf7udhIggbh7vhX8BbJ2r/eXW73znrx3eHSb9SavtzXfjHYHcL+H9GRCeADcvIj1zDP+9fhT7DjVyw5w1zuuq4ojM2dDWCPnf6h2J8HANLW088NkWUmJCuP98DyihaFeyWSt91Kte3428//+hDt5YvpPb3l9P726hfPV/4z3/RHt7mzZ31xcLw7hiVBL9uofx7Pd5NLc52JM1fRqoVm3ogof5eksJm4uruHdqP4IDPPTuTle1NUPuAq222N9Fo2XH3AZx/eD7P7nnsNna/8Kn12sHgm76XrsjAYztHcurvx5BjqWGuz/e5PidDkclj4XIZCmnEKf1wsJ89lY08PwsDymhAK0E68A2n6gvBkmMna6xxcqLi3ZwzoB4Pv3NGfSI9IDZ5qdTuFg7jOOuxvfCcPzMJh66cCB7Kxp4f9VexxZLGg1BUR43Hrq5zcrzC/MYkBDOzBFe2KezcDE0V5+wG4XT+AVoE/EO7YZVL7vuc1RVG0f9zb3a7vd1X0LI0RsQ5w7sziMXDWRJXimfrnPSoJquMplg8OXaAbz6cn1jER5rze5K3vl5D9efkco4TymhAG0IV2u9T3SkAEmMnW7VrnJa2mzccGbayXt/epqCH7QeswEeMFlHeKxJ/eM5Oz2Of/1YwCFHajfNftB3ivZzZ3PSyGkneH/VXoorG3nowoGYT9eizIi2zoWQOK1lniv1OQcGXKx1qKje7/z1rW3w1e9g+Qsw/Fq48oOTtpi8/ow0zugdy5Nfb2ffISe0HHRE5iztTknuF/rGITxSY4uV++dtJik6mPvP97AWkQe2aI89ZMdYdMHSvDKC/c2eXz7RrqpInzZtwpAevmggdc1t/GtJgWML9ZsGDeVaT10PUN3Qyr+XFHJ2ehwT+nXTOxzna67V6n4HTdcOg7natKe126+LH3fuui0N8Mk1sOE9mHA/XPpv7YvWSZhMCs/PGoKqqjzw2RZsNh1LKroPhm4DZNiHOKEXF+Wzp6KB5y4fQmigh5RQtCvZpN1V7uZhCbuLSGLsRKqqsjS/lDP7xBprtxikTZuwy4CECK4cncz7q/ayu7y+6wv1naKNJN7hGVPwXskqpKaplYcuHKh3KK6R9612+Ctztns+LzoNzrpb26Xe+7Nz1myohPcu01r9XfQ3OOdhuw4LJ8eE8PBFGfxUWMGH2Q6WATlCUbRd46JVUKVzaYfwKOv2VPL2T7u5dlwqZ/aJ0zuc45VsgfgM93yp9gCSGDvRzrJ69h1qZNKAeL1DsV+htGkTnfOH8/oR6Gfi2e+2d32RkBit1tgDxkMXVzbwzk97uHxEEgN7ROgdjmtsnQuRKZA0xn2fOf4PEJEE396v7R47oqoY3j5fOxl/xXsw+pZOvf3qMclM6NeNZ77NY2+FA1/oHNVe373tM/1iEB6lqdXKffO2kBgVzJ88ccqmqh4eBe0b9cUgibFTZeWXAjDJKLdi25ph1zJp0yY6JT48iNsn9mFhzkFW76ro+kLpU7VfuLVOaAHngBcW5mMywb1T++kah8vUl2sdQAbPdG+rpYAQmPYUHNwK6+d0fZ2DufDWVO3n5NrPIePSTi+hKArPXZ6Jn1nhvrk6llTE9NK+EEo5hTjsb4vy2V1ez/OeWEIBUF2sTW6UxFh0RVZ+GX3jw0iOOfFBEI8jbdpEF91ydm8SIoJ4+pvtXU8y+k3THrd/5bzAOmnLvioWbLZwy/jexugg0xW5X2iHvtxVRtFRxnRIO1vrINFQ2fn37/kJ5pwPqHDTd9oh4S7qERnM45cMYs3h29a6yZytfVko7dwdl8r6Fv3bzgmnWr+3kv+u3M2vx6ZwZl8PLKGADhPvJDEWnVTf3Maa3ZVM7m+Q3WKQNm2iy4IDzNx/fn+27q/my81d7DzQfTD0HAELH9Z+Ft1MVVWe/mY7saEB/GaiFw7zaLd1HnQbCN0Huf+zFUVr39ZUA0uf7tx7t3+lDe4I6w43L3JK/JePSGTKwHieX5hPYalOU+gGzdDq6zuxa7xsRxmjn17MWyt1TOiFU7WXUPSMDOZBTz7bULIFFLM+vz90Iomxk/y8s4IWq41J/Q1UX1zwA6SeJW3aRJdMH5ZIZmIkL3yfT1NrF2pIFQWu+Qy69YP//eqXg6Bu8uP2UrJ3V/L7KemEB3npoZKqYu2wV+bl+pVLdR+k1QSvexsObLXvPWvfgk+v09pD3bQQolKcEoqiKDwzM5OQADP3zt1Mm1WHdoFh8dBrImybp9Vvnkb+gVru/HADVpvK/9YUya6xl/jHDzvYVVbPc5cPIcwTSyjalWzWhva4aiiQB5LE2Emy8ksJDTAzKi1a71Ds096mTbpRiC4ymRQevmggluqmru9khcTAdQsgfgB8/Cu3dalos9r463fb6R0XylVjnJN0eaT2Q16uHOphj8kPQnC0dhDvVImdqsLSZ+Cbe7Qa9OsWHDe4w1Hx4UH85bLBbC6u4vXlu5y6tt0yZ8OhPbB//SkvK61t4qZ31hISYOZ35/RlZ1k92/bXuCdG4TIbig7x5opdXD0mhfHpHlpC0e7AFp8qowBJjJ1CVVWy8ss4s28cgX4Ga9Mm9cXCAeN6x3JeRndeXVpIaW1T1xYJidEml3UfBB//GvK/c26QJ/Dx2mJ2ltXzwAUD8Dd78a/BrfMgcZR26EtPwdFw7mNQ9PPJOzJY2+Dr38Oy52D4NXDlhycd3OGoS4b04MLMBF5avIO8AzokmgMvBnPgKUdEN7ZYufW99VTWt/DW9aO5eXxvAswmPt+4z42BCmdrarVy39zNJEQE8dCFHtiFoqO6Uqgt8ZnBHu28+G8E9ykorWN/VSOTjVRGUbhYuz0Zl653JMLgHrxgAM1tNv7xgwNDP4Kj4dovICETPrkW8r5xXoDHqGtu46XFOxidFs3UjO4u+xzdleZph7z0OHR3IsOv1XaeFj0KzcfU97Y2aqUT69+BCffBpS+fcnCHoxRF4cnLBhMR5M+9n26m1d0lFUGR2uHTbZ9rXwiOYbOp3PPpJrbsq+KfVw0jMymSyBB/zhkQz1ebLfqUgAineGlxATvL6nn28iGeX8JV0j7xTnaMRScdadNmlIN37W3a+kqbNuG43t3CuGZcKp+sLSL/QG3XFwqOguu+0H4Jf3od5C5wXpAdvLFsJ+V1LTx04UAUb/753zZPO+Q1aIbekWhMZrjgBai1wIq//fJ8++CO/G/hwhfhnEfc8nspNiyQp2dkkmOp4eUlhS7/vONkzoL6Utiz/LiXXliUz3fbDvDwhQOZOijhyPMzRiRSXtfCisJyd0YqnGRTcRVvLN/JVaOTjTFhs2ST9piQqW8cbiaJsRMszSujf/dwekYZpDi9aJXWpi19qt6RCC9x97nphAX68cy3Dgz9AG0n7dr5WreKuTdAzhdOia/dwZom3lyxm4uH9GB4ikHOA3SFqmplFL0mQLgH7YqnjIUhV8Gql6FiJ1TvgzkXgGUjzH4Hxtzq1nDOH5zA9GE9eWVpIdv2V7v1s0mfCoERsPXo0pJP1xbzWtZOfj02hZvHH10CM6l/NyKD/Zm/oYudYIRu2ksoukcE8dBFHtyFoqMDWyC6l/Z72YdIYuyg2qZW1u2tNM5uMWj1xdKmTThRdGgA/3dOOst2lLF8R5ljiwVFaIMckkbDvJu0281O8vdFO2iz2bh/mofX9jlq/wY4tNtzyig6Ou/P2u+fL+/SBnfUWOCaz2HQdF3C+fOlg4kJDeCeTzfR3ObghL7O8A+GgZfA9gXQqtXn/1xYzkPzt3J2ehxPXDrouDsagX5mLh7Sg0W5B6hrPr4EQ3iuf/1YQEFpHX+dmUmEp5dQtCvZ7HP1xSCJscN+Kqyg1apKmzbh8647M5WUmBCe/mY7VkcniwWGwzXzIHkMfHaLUyaF5R2oYe76Yq47I42UWIMM4emqrXO1w10DL9E7kuOFJ8DE+7WDeDYr3Pidrl/SI0P8ee7yIew4WMdLix2ok++KzFnQXAMFiygsreP2D9bTu1sor/x6xEkPhc4ckUhTq43vt+k7MVLYb3NxFf9ZtpMrRiUZJ1dorNI6p/hYfTFIYuywZTtKCQv0kzZtwucF+pl54PwB5B+s5dN1xU5YMBx+PQ9SxsHnt8KWTx1a7q/f5hEW6Mf/ndPX8dg8mc0KOZ9r/4176i3Qsb+Fac/ALT9AwmC9o2HygHiuGJXE68t2sqHokPs+OG0ChMbTvPETbnpnLQF+Jt66fvQpdxRHpESTEhPCfOlOYQjNbVbum7eZ+PAgHr4oQ+9w7NfeczxBEmPRCaqqsjSvjPF944zT8knatAkXujAzgZGp0fxt0Q7n3OoNDINfz9XucMz/DWz+uEvLrCwoZ9mOMu46py9RIQGOx+XJ9qyAuoOeWUbRzi8AzrjTaYM7nOGRizNIiAjij3M3d21gTVeY/WgbOB2lYCH1NZW8ed0okmNOfTdDURSmD0/k550VHKjuYotE4Tb//rGQHQfr+OvlmUQGG6SEAjqMgpZSCtEJ+QdrOVDTxOQBBqovljZtwoUUReGRiwZSXtfM68t2OmfRgFD41aeQNh7m3w6bPurU2202lWe+3U5iVDDXnZHmnJiOZW2F4jVg84A2WlvnQkC41g5M2C0iyJ/nZw1lV1k9LyzMd8tnqqrKv8qGEkArb409aPeB0BnDE1FV+HKTHMLzZFv2VfHasp3MHplkrHauoB28C++hTWr0MZIYO2BpnnbIaGI/g/zgSJs24QbDU6K5ZGhP3lyxi5LqRucsGhACV38CvSfCF3fAhvftepuqqrz9025yS2q4//z+BPk7eQCPtVWL5d8j4a3z4Kv/0zc5bmuG3K+0ARI+NMLVWcanx3HNuBTe/mk3a3ZXuvzzXlpcwL/yo6gOSmRYlf0j0XvFhTIsOYr5GyUx9lTNbVbum7uFuLAAHrnYQCUU7Uo2+2R9MUhi7JCs/FIG9oggITJI71Dsc6RNm5RRCNe6f1p/bCrO3XkLCIGrP4Y+k2HBXbD+3VNebqlq5OZ31/HUN9s5Oz2OS4b0dF4s1jbY+AG8PEqLJSQGRt6gPff13folxwU/QHO1dqhLdMmDFwwkOTqEP87dTL0LOz/M37iPf/5YwOyRyUSMvhp2ZWmTxuw0c0QieQdq2V4iI6I90ctLCsk/WMtfZxqshAKgpQHKd0CC75VRgCTGXVbT1Mq6vYcM2qZtgt6RCC+XHBPCjWel8fmG/Wzd58T+sP7BcNX/oO8U+Op3sG7OcZfYbCofZu9l6j+Ws2pnBY9enME7N47BZHLCXRJrm1bK8fIo+PJOCIrSdrJvXQoXv6RNbdvwHnxzjz7J8bZ5EBIHvSa5/7O9RGigHy/MGkLxoQae/S7PJZ+xZnclD8zbyhm9Y3l6RiZK5mxQbZAz3+41Lh7SEz+TIrvGHmjb/mpezdrJ5SOSOGeAB/URt9fBHO3nUXaMRWf8VFCO1aYaq26ocDGknilt2oRb3Dm5LzGhATz1TS6q6mD7to78g+DKD7UBCV//Htb+98hLe8rrufrN1Tw8fxtDkyNZ+PsJ3Dy+F2ZHk2Jrm3bw75Ux8MVvtY4ZV38Mt2VB//O10iRFgckPw/h7YP0c+PaP2qANd2muhfzvtEl3Lhyn7AvG9o7lxjN78f7qvfzk5Clze8rr+c3760iKCeY/14wkwM8E8QOge6ZWH26nmNAAJvXvxpeb9jveHlE4TUubjT/O3UxsaACPGbGEAuCA7x68A0mMu2xpfinhQX6MSInSOxT7VBVDWZ50oxBuExHkzx+mpJO9u5Ifcg86d3H/ILjyA+h3AXxzL9bVr/PG8p1Me2k5uSU1PHd5Jh/cPNbxfsU2K2z+BF4dq3XFCAiBqz6C3yyH/hccX6uvKHDuY3DW3bDuLfjufvclx3nfQFuTZ3ejMJD7z+9P77hQ7p+3hdqmVqesWdXQwk3vrAVgzg2jiQzpcIs983LYtxYqd9u93ozhSRysaWbVzgqnxCcc9/LSQvIO1PLMjMyj//0aSclmCI6GyGS9I9GFJMZdoKoqWfllTEjvhp9R2rQVHj7YIWOghRtdPSaFPt1Cefa7PFqtTi4t8AuEK96jNm0q5u/vx7LwJSb068bieyZy5eiU46aGdYrNClvmwitjYf5t4Hc4Ef/NChhw0akPryoKTPkznHEXrHkDvn/QPcnx1nkQmaINRREOC/I38+IVQympbuSprx0cdY62k3j7B+vZd6iRN64bRWrsMXfuBl+uPW777Pg3n8S5A+MJD/Tjc+lp7BG27a/m1aWFzByeyJQMA5ZQtCvZotUX++ghfYNkdZ4lt6SG0tpmJhqtvljatAk38zObeOjCgewqr+fD1XudunZzm5W/L93DmB3XsoQxPOH/Hm+kZ9M9woHDsDarlmC+Og4+v0Wryb/ifS0hHniJ/X9RKApMfQrG3QHZr8GiR1ybHNeXw84l2q6jj/5l5gojUqK5bUIfPllXzNI8+w/GHUtVVR78fCurd1Xy/KwhjE6LOf6iqBRIOUMrp7DzZyXI38yFmT34ftsBGlpkRLSeWtps3DdvC9GhATx2iUFLKEDrtFOa67P1xSCJcZdk5Wtt2ib1M0hiLG3ahI7OGRDPmX1ieenHAqobnHNLemPRIS7590r+9WMB5w9NYdg9X8DAS1EWPgQ//7vzC9ps2k7da2fCZzeDyQ9mvwu3r4SMS8HUhV+ViqJNdxt7O6x6GX54zHXJcc58UK0wWLpRONsfzkunX/cw/vT5li7//L6atZPPNuzj91PSmT488eQXZs7SSt4O5ti99owRiTS0WJ1friQ65dWsQraX1PDMjExjDxEqywNriyTGonOy8ksZ1DOCeEd2ptxJ2rQJHSmKwsMXDaS6sZWXlxY4tFZji5Unv85l5ms/U9vUxts3jOIfVw4jJiIUZr0NGdO13dmVL9m3oO1wJ4DXzoR5N2nPzZoDt/8Eg6Z3LSHuSFHg/Gdh9K3w87/gxz+7Jjne9hl0GwjdBzl/bR8X6Gfmb7OHUV7XwhNf2Z+wtvt6i4UXFuYzfVhP7j73NHfsMmZoX8o6cQhvTFoMiVHBfL5BulPoJddSw8tLCpk+rCfnGbmEAjpMvJPEWNipuqGV9XsPGasbhbRpEzob1DOSWSOSePfnvRRVNHRpjZ93ljPtpeW8tXI3vx6bwqI/TDi6FZLZHy5/S6vVXPw4rPj7yRez2SDnC/jPWTD3Bq010ay34bc/w+CZjifEHSkKXPgCjLoZVv4Dljzp3OS4qkj78ps5S+4IuUhmUiR3Tu7L/I37WZhzwO73bSg6xD2fbmZ0WjTPzRpy+rr30FjoPRm2fW53uz+TSeGyYT1ZUVBGWW2z3bEJ52i1al0ookICePwSL/hiWrIF/EMhpo/ekehGEuNOWlFYhk3FeGOgpU2b0Nkfp/XHbFJ47vvO9YataWrlwc+38Ks3szEp8PFt43hqeibhQSc48W32gxlvaJ0ZfvwzLH/h6NdtNshdAK+fDXOvB1ublkzfsUpLqE1OnozXTlHgwhe1ISAr/gZLn3He2u2HtdoPbwmXuGtyXzJ6RPDw/K1U1rec9vriygZue28dCRFBvH7tKAL97PzZypwN1UWwb43dsc0ckYhNhQWbLXa/RzjHa1k7yS2p4ekZg4kONXAJRbuSzZCQ6dzNAYPx3f/nXbQ0r4zIYH+GJds301530qZNeIjuEUHcNqE332wtYf1e+8btLs49yHl/X8Yna4v5zYTefP/7CYzrHXvqN5n9YMbrMORKWPIUZD2n7dBu/wpenwCfXqvV3c/8L9yxWttpdVVC3JHJBBf9A0ZcB8ufh6xnnbPu1s8gaTTE9HLOeuKEAvxM/P3KoVQ3tvLoF9tOeW1NUys3vbOWljYbb98wmpjOJEwDLgS/4E6VU/SNDyczMZL50p3CrbaX1PDvJQVcOrQn0wYl6B2O42w2OLDVp8soQBLjTrHZVJbtKGNCv26ODwxwlyNt2iQxFvr7zcTexIcH8uTX20859KOirpn/+99GbnlvHdEhAXxx51k8eOFAgvztTGBNZpj+Ggy9GrKegX8OgU+ugdYGbUf5zmwYMts9CfFRcZng4n/CsGsg66+w7IXTv+dUSvPg4FbpXewmAxIi+P2UfnyztYSvTrI722q1ceeHG9hdXs9/rh1J3/iwzn1IYLjWIztnvtYhwE7ThyeybX8NBQdrO/d5osveXLGLYH8zT1zqBSUUAJU7tfNIPjrYo50kxp2QY6mhvK7ZON0oAAoWa71N4/rpHYkQhAT48cdp/dlUXMVXW0qOe11VVb7ctJ8pf1/G99tKuOe8fiy4azxDkrowSMdkhstegVE3gX8ITP8P3LkGhl7p/oT4qLhMcOm/tKR96VNaaUVXbZsHikmbdifc4jcTejM0OYpHv9xGaW3TUa+pqsrjC3JYUVDOMzMzObNPXNc+JHM2NFTAriy733Lp0J6YZUS0W23bX82otJjO3RHwZHLwDpDEuFOy8rU+lobpX9zWAruXQfoUOZQjPMblI5IY2COC577Lo6nVeuT5kupGbn53HXd/vInU2FC++d3Z/O7cdG1kbleZzHDxP7Qd4mFXe86o5PakfciV8ONf7O+i0ZGqarfbe02EMAMdBjY4P7OJv80eQkOLlYc+33bUnY//rtjNR9lF3DGpD1eMcmBqWN9zIShS66ltp27hgYzvG8eXmyzYZES0yzW1WtlZVs+gnhF6h+I8JZu1g/rdBugdia4kMe6EpfmlDEmKJC4sUO9Q7FO0ClrqpL5YeBSzSeGRiwayv6qRd37eg82m8mH2Xs77+3JW7azg0Ysz+Oy3Z9Kve7jeobpWe7nH4FlaF43O9l/evx4O7dFqpIVb9Y0P576p/Vm8/eCRNmkLcw7wzHfbuSizB3+c2t+xD/ALhIzLIO9raLG/i8vMEYnsr2pkzR77avhF1+UdqMVqU70rMT6wBeIztA4/PsxDtk8836H6FjYVV3HXOQaaHFewSNq0CY90Vt84zhkQzytL5JEiKQAAIABJREFUClmaV0r27krO7BPLszOHkBIbond47mMyawcFVZvWf1kxwRl32vferfPAHKhN5BNud9P4XizMOcATX+UQHuTH7z/exNCkKP52xVBMzjiDkjkbNrwHO77XWgjaYWpGAqEBZuZv2H/6Q6rCITmWakBrRekVVFXbMZbfJ7JjbK/lBVqbtklGKaOAX9q0BXby8IcQbvDQhQNoaLWSa6nh2ZmZfHjLWN9KituZ/WDmm9oO4cKHYPVrp3+Pzaq1aes3VbvlLtzObFJ4cfZQ2qwqt72/npjQAN68bpT9B0RPJ/UsCO/RqXKK4AAz0wYn8O3WkqPKlITz5VhqiAjyIyk6WO9QnKN6HzQe8vn6YpDE2G7L8suIDvFnaFcOAelB2rQJD9c3Ppz5d5zJj/dO5KoxKacffuDNzH5aP+WBl8D3f4LsN059/e7lUF8qI6B1lhYXyhOXZpAYFczbN4ymW7gTy+xMZq03dcEiLWGx08zhSdQ2t/Hj9lLnxSKOk2OpIaNnhPf83mo/eJcgibEkxnaQNm1CuMaQpCjjjFZ3NbO/No56wMXw3X2w9r8nv3bbPAgIh37T3BefOKErR6ew8oHJ9E9wQU185iywtWo9uO10Rp9YukcESk9jF2qz2sgrqfGeMgrQ6osVk4yVRxJju2zdX01FfYvBxkBLmzYhDKc9Oe5/IXxzL6ybc/w1rU2Q+5W2u+zvJbdxDc5lu4Y9hmmjeTsx7MNsUrhsWCJZ+WVU1MmIaFfYVV5Pc5vNuw7elWzW8oUAHyxnO4YkxnZYml+KosAEo/QvljZtQhiXXwDMfgfSp8HXv4f17x79euEP0FwNmTIC2uspinYIb/cKqDm+7/fJzBieSJtN5Zut9r9H2M8rD95ZNkl98WGSGNshK7+MoUlRxmniLW3ahDA2v0C48n3tv+Gv7oaNH/zy2tZ5EBIHvSbpFp5wo8xZgAo5n9v9loE9IhiQEH6klZxwrlxLDQF+Jvp0C9U7FOeo2gt1B7TR8kIS49OpqGtm874qY5VRFP4gbdqEMDq/QLjyA+hzDnx5F2z6CJpqtPZdg2Z4zrAS4Vpx6VpJRSfKKUDbNd5UXMWusjoXBea7ciw1DEgIx8/sJSlU8RrtMWWcvnF4CC/5t+o6ywvKUI3Wpq1gMaScIW3ahDA6/yC46kPoPQm+uAO+vBPamrTb68J3ZM4Gy0ao2Gn3Wy4bloiiwBebLC4MzPeoqkqOpca76ouLVmuHeeMz9I7EI0hifBpZ+WXEhgaQmWiQWqLqfVC2XbpRCOEt/IPhqo+g19mwfQFEpUDyGL2jEu40eCaY/GD+7dBg31S7hMggzuoTxxcb9x81tlo4Zn9VI9WNrWR4S30xQHE2JI3SWgQKSYxPxXq4TdvEft2cM8nIHQoOt2mT+mIhvEdACFz9CQy9GiY9KIdqfU1ET5j1ttY54O1pUFVk19umD0+kqLKB9Xvt74MsTi3HUgPgPTvGTdVwMEfKKDqQxPgUNu+roqqhlUkDDFRfXPADRCZDt/56RyKEcKaAEJjxHxj2K70jEXrIuAyunQ+1B+GtqVoycxrnD04gyN/E/I1yCM9Zciw1mBQYmOAlifG+dYAqd6E6kMT4FLLySjEpMCE9Tu9Q7HOkTdt5sqMkhBDeJu0suOk7QIG3L4A9K095eVigH9MGJfD1lhKa22REtDPkWqrp3S2M4AAvKTsoztYGe0hHiiMkMT6FrB1lDE+JJipE2rQJIYTwAN0Hwc2LIDwB3p8BOV+c8vLpwxOpbmxlaV6ZmwL0bl558K77IAh0weRGg5LE+CTKapvZsq+aSUYZ6gHSpk0IIXxBVDLc9D30HA5zb4DsN0566dl944gLC+QLKadwWGV9CyXVTd6TGFvbYP96SJb64o4kMT6J5Tu0b9eTDVVfLG3ahBDCJ4TEwHVfauPDv7sPFv9Zm2B2DD+ziUuH9mRJXinVDa06BOo9vG7iXWmOdpc5eazekXgUSYxPYml+KXFhgWT0MMg3Q2nTJoQQvsU/GK54D0beACv/rvW6th6f/M4YnkiL1SYjoh2Ue7gjhWHygtMpytYeUyQx7kgS4xNos9pYUVDOpP7Spk0IIYQHM/vBxS/BpIdg80fwv6uhpf6oSwYnRtA3Poz5G/fpFKR3yLHU0DMyiOhQg5w7Op3ibAjvqXWyEkdIYnwCm4qrqG5sNdgY6MXSpk0IIXyRosCkB+CSf8LOH+Gdi6G+vMPLCjOGJ7J2zyGKKxt0DNTYcizV3jfYI3mMdLE6hiTGJ5CVX4bZpDDeSG3admVB3ynyAy6EEL5q5A1w5YdQmgtvnQeVu4+8dNmwngByCK+LGlra2FVe7z0H76r3Q3WxDPY4AUmMT2BpfikjU6KJDPbXOxT7FK/WCuilvlgIIXzbgAvhugXa6Oi3poJlEwBJ0SGM7RXDfBkR3SXbS2pRVS+aeFe8WnuUg3fHkcT4GKU1TeRYapjY30Bt2goWgclf2rQJIYTQDlPdvAj8AuGdi2DnUgBmjkhkV3k9m/dV6xyg8eS2d6RI9JJSiuI14B8CCZl6R+JxJDE+RlZ7mzYj1RcXLIbUM6RBtxBCCE23/lpyHJUKH86GLXM5f3APAvxMUk7RBTmWGqJC/OkZGaR3KM5RtBoSR4LZIHfG3UgS42Msyy+je0QgA3sYJMk80qZtqt6RCCGE8CQRPeHGb7Xb5Z/fQuTG/3DewO58tdlCq9Wmd3SG0j7xTvGGczzNdXBgq5RRnIQkxh20Wm0sLyhjUr944/zwS5s2IYQQJxMcBdd8BhmXwaJHuF95j8r6piNDrMTptVpt5B+o9Z7BHpYNoFrl4N1JSGLcwYa9h6htamOSkeqLpU2bEEKIU/EPgllzYPStpO6Yw6tBr7Fgwx69ozKMwtI6Wqw27zl41z7YI2mUvnF4KEmMO8jaUYafSeEsadMmhBDCm5jMcOELcO5jXMBPXJF/LzXVlXpHZQg5hyfeeU1iXLwaug2E4Gi9I/FIkhh3sDSvlJGp0UQEGaQYXdq0CSGEsJeiwNn3sufsFxir5GB96wKoPah3VB4v11JDkL+JXnFheofiOJsNitfKGOhTkMT4sAPVTeQdqGXyACN1o/hB2rQJIYTolNRzbuXh4EcIrt2tDQIpL9Q7JI+WY6lmQEIEZpMX3Jkty4Pmajl4dwqSGB+WlV8KYLz6YmnTJoQQohMURaHnqEu5qvlhrM218PZU2Lde77A8kqqq5JbUeFcZBUhifAqSGB+WlV9Gj8gg+nc3SJJZvU8b+yndKIQQQnTS9OE92WTry8eZ/4WAUHj34l+6HIkjiisbqW1q856OFEXZENoNYnrrHYnHsisxVhTlfEVR8hVFKVQU5U+nuG6WoiiqoiiGOurY0mZjZWE5k/obqU3bIu1R6ouFEEJ0UmpsKCNTo3knzw/15h8gti98dCVs+VTv0DxKTvvEO6/ZMc7WdouNkuvo4LSJsaIoZuAV4AIgA7haUZSME1wXDvwOyHZ2kK62fu8h6poN1KZNVWHDexDXD7oN0DsaIYQQBjRjeCIFpXXk1ATDDd9ofW2/uhtqSvQOzWPkWGowmxT6JxjkbvKp1JXCod1SRnEa9uwYjwEKVVXdpapqC/AxcNkJrnsSeB5ocmJ8bpGVX4q/WeGsvgZp01acDZaNMPY38q1PCCFEl1yU2QN/s8L8jfshKAIuewWsrbD0Kb1D8xg5lmr6dgsjyN+sdyiOKzpcXyyDPU7JnsQ4ESju8Od9h587QlGU4UCyqqpfOzE2t8nKL2N0WgxhgX56h2Kf1a9CUCQMvVrvSIQQQhhUdGgAk/vHs2CzhTarDWJ6aRsuGz+EA9v0Ds8jtI+C9grF2WAOhB5D9Y7Eo9mTGJ9oS1I98qKimIB/APeediFFuU1RlHWKoqwrK/OMcZSWqkbyD9Yyub9B2rRVFcH2r2DkDdqBCSGEEKKLZo5IpKy2mZ92VmhPTPijtvGy6BGtbM+HldU2U1rbTIY3JcY9h4NfoN6ReDR7EuN9QHKHPycBlg5/DgcGA1mKouwBxgELTnQAT1XVN1RVHaWq6qhu3TyjnjcrX0vQDVNfvOZNQIHRt+odiRBCCIObPCCeiCA/5m/Ypz0RHA0TH4BdS6HwR32D09kvB++8oCNFayNYNslgDzvYkxivBdIVRemlKEoAcBWwoP1FVVWrVVWNU1U1TVXVNGA1cKmqqutcErGTLc0vJTEqmL7xBpho01wHG96FjEshKvn01wshhBCnEOhn5qIhPVmYc5D65jbtydG3QHQvbdfY2qZvgDrKLdFGQWf08IIdY8smsLVCstQXn85pE2NVVduAu4CFwHbgU1VVcxRF+YuiKJe6OkBXam6z8nNhOZP6dzNGm7bN/4Omahh3h96RCCGE8BIzRyTS2GplYc4B7Qm/ADjvz1C2HTZ9oG9wOsqx1JAUHUxkiL/eoTjuyGCPMfrGYQB29TFWVfVbVVX7qaraR1XVpw8/95iqqgtOcO0ko+wWr9tziPoWqzHqi202yP4PJI6EpNF6RyOEEMJLjEyJJik6WOtO0W7gpdru4pKnoblWv+B0lOtNB++KsrVe1aEG6b6lI5+efJeVX0qA2cSZfWP1DuX0ChdDRaG2W2yE3W0hhBCGYDIpzBieyE+F5RysOdxxVVFg2tNQXwo//UvfAHVQ19zG7vJ676gvVtXDgz2kjMIePp0YL80vY2zvGEICDNCmbfWrEN4DMk7UQloIIYTouunDE7GpsGBTh7P1SaNg8OXw87+hev/J3+yFth+uL/aKHeOKQmislIN3dvLZxLi4soHC0jomGaGMonS7dkJ4zK1g9oJaJyGEEB6lT7cwhiRF8u22Y6benfsYqFZY+rQ+gekkZ78XdaRoH+whE+/s4rOJcdYOA7VpW/0a+AXByBv1jkQIIYSXGpYcRWFpHWrH/sXRaTD2dtj0EZRs0S02d8ux1BAbGkD3CC/o+Vu8WmvDF5uudySG4LuJcV4pKTEh9I7z8CEZ9RWw5RMYciWExOgdjRBCCC+VEhNCbVMbhxpaj37h7HshOAoWPewzQz9yLDVk9IwwRseq0yleo+0Wm3w25esUn/yn1NRq5eedFcZo07bhHWhrgnG/1TsSIYQQXiwtVtso2lNRf/QLwVEw8U+wezkULNIhMvdqabNRUFrrHWUUDZVQvkPatHWCTybGa3ZX0thqgDZt1lZt0l3vyRA/UO9ohBBCeLG0uBAA9h6bGAOMugli+sCiR71+6MeOg7W0WlXvOHhXnK09SkcKu/lkYpyVX0aAn4lxvT28TVvul1BbIgM9hBBCuFxSdAiKAnsrGo5/sX3oR3m+NoHVi+VaDk+885bE2OQPiSP0jsQwfDQxLuWM3rEEB5j1DuXkVBVWvaI15O47Re9ohBBCeLkgfzM9I4NPnBgDDLgYUs6ErL9CU417g3Oj3JIaQgLM9Ir18DNI9ijKhh5DwT9Y70gMw+cS470V9ewqr/f8bhT71oJlg3YaWArmhRBCuEFqbMjxNcbtFAWmPQX1ZfDTP90bmBvlWKoZ2CMCk8nDzyCdTluLlkdIm7ZO8bmMKytfa9Pm8fXFq1+FoEgYerXekQghhPARqbGhJ98xBkgcCZmzYdXLUL3PfYG5ic2mes8o6JLN2uF9GezRKT6YGJeSFhtCmie3aasqhtwFMOJ6CAzTOxohhBA+Ii02hMr6FqobW09+0bmPaeV+S55yX2BusreygfoWq3ckxkcO3kli3Bk+lRj/0qbNw3eL176pPY65Td84hBBC+JTUWK0zRdGpdo2jUrQWopv/B5ZNborMPXIsXjTxrng1RKVCeILekRiKTyXGq3dV0Nxm8+z64pZ6WP8ODLwYopL1jkYIIYQPST1ZL+NjnX0PhMTCoke8auhHjqUGP5NCeneD361VVe3gXYq0aessn0qMz+obxye3jfPsNm2b/wdN1dKiTQghhNu17xifsJdxR0GRMOlB2LMCdnzvhsjcI8dSQ3r3cAL9PLhrlT0O7YH6Uimj6AKfSoz9zSbG9o4lyN9Df+BtNsh+HXoOlx9mIYQQbhcS4Ed8eOCpD+C1G3kDxKYfHvpxippkg1BVlVxLtdQX+zifSow93s4l2ujGcXdobXGEEEIIN0s7XWeKdmZ/OO8vUFGglQAaXGltM+V1Ld6RGBethsAImZrbBZIYe5LVr0JYAmRM1zsSIYQQPuqUvYyP1f8CSB1/eOhHtWsDc7H2g3cZPbwgMS7OhqTRYPLQO+QeTBJjT1GaBzt/hDG3aKM3hRBCCB2kxYVSWttMQ0vb6S9uH/rRUAEr/+H64FzIa0ZBN1ZB6XY5eNdFkhh7iuz/gF8QjLxR70iEEEL4sF8O4NlRTgHauZghV8KqV7U+/AaVY6khNTaE8CB/vUNxzL51gArJY/SOxJAkMfYEDZWw+WMYcgWExukdjRBCCB+Wdrhl22k7U3R0zqPa7vGPf3FRVK6X4y0T74pXg2KGxFF6R2JIkhh7gvXvQFsjjP2t3pEIIYTwcSmHd4z32LtjDFrf/XF3wNZPYf8GF0XmOjVNrRRVNnjJYI9sSBgsk3O7SBJjvVlbYc2b0HsSdM/QOxohhBA+LiLIn5jQgM7tGAOM/wOExBly6IfX1Bdb22DfemnT5gBJjPWW+yXUWmS3WAghhMdIjQ1hT3kndowBgiJg8oOw9yfI/9Y1gblIzuHE2PClFAe3Qmu9JMYOkMRYb6tfg5jekD5V70iEEEIIQKszLqrsZGIMMOIGiOsHPzxmqKEfOZZquoUHEh8epHcojileoz1KR4ouk8RYT8VrYf86bbfYJP8qhBBCeIbU2BAs1Y00tVo790azH5z3JFQUwro5rgnOBXK95eBd0WqISITIJL0jMSzJxvSU/RoERsKwX+kdiRBCCHFEWmwoqgr7DnVh17jfNOg1QRv60Vjl/OCcrKnVSkFpnXckxsXZUkbhIEmM9VK9H3K+gBHXyslRIYQQHqW9l3Gn64xBa9s29SloPAQr/+7kyJxvx8FarDaVjB4G70hRVQw1+6WMwkGSGOtl7ZuACmNu0zsSIYQQ4ijtvYztHg19rB5DYejV2jmaQ3udGJnz5XrLwbvibO1RdowdIomxHloatNqrARdDdKre0QghhBBHiQrxJyLIz/7pdydyziPaoAkPH/qRY6khLNCPlJgQvUNxTHE2+IdC98F6R2JokhjrYcvH0FSlNUMXQgghPIyiKKTGhnZ9xxggMhHOvAu2zdN663qoHEs1GT0iMJkUvUNxTNFqSBqpHYAUXSaJsbvZbNqtpR7DpA5ICCGEx0qNDXFsxxjgrLshNB4WPeyRQz+sNpXtJbXGH+zRXAcHt0Gy5BWOksTY3XYtgfId2m6xYvBvp0IIIbxWWmwo+6saabXaur5IYDhMfgiKVsH2r5wXnJPsLq+nsdVq/Pri/etAtUl9sRNIYuxuq1+DsO4waIbekQghhBAnlRobgtWmsv9Qo2MLDb8Wug2AxY9DW4tzgnOSHEs1AIN6GrwjRVE2oEDyaL0jMTxJjN2pLB8KF8PoW8AvQO9ohBBCiJNKi3OwM0U7s5/Wvq1yF6x7ywmROU+upYYAs4n07gZvm1qcDfEZEGTwBN8DSGLsTtn/AXMgjLxR70iEEEKIU2rvZexwnTFA3ynQexIse07rb+whciw19EsIw99s4HTIZoV9ayFFyiicwcA/CQbTUAmbP4YhsyGsm97RCCGEEKfULSyQkACz4zvG0GHoRxUsf9Hx9ZxAVVVyLNUMMvpgj9Lt0Fwj9cVOIomxu2x4D1obYOxv9Y5ECCGEOK32lm1O2TEGSMiEYb+GNW9oZRU6K6lu4lBDq/E7UhSv1h4lMXYKSYzdwdqq/SLoNQESpPG2EEIIY0iNCXHOjnG7cx4Bkz8sfNh5a3ZRjtdMvFujHeqPTtM7Eq8gibE7bP9Km18uAz2EEEIYSGpcCMWVDVhtTupBHNEDJt4H+d9CwWLnrNlFuZYaFAUG9jB4Yly0GpLHSAtYJ5HE2B1WvwbRvSB9mt6RCCGEEHZLiw2l1apiqXKwZVtH4+6AmD7w/Z90bd+WY6mmV2wooYEGnhRXewCq9spgDyeSxNjV9q2DfWtg3G/BJP+4hRBCGEd7Z4qiSifVGQP4BcL5z0JFAax53XnrdlKOpcYL6ouztUeZpOs0kqm52urXIDAChv1K70iEEEKITkmLdVIv42P1m6rdRc16DmoPOndtO1Q1tLC/qtE7Bnv4BUHCEL0j8RqSGLtS9X7I/QJGXKeNxRRCCCEMJCEiiAA/k/M6U3R0/l+hrQl+/LPz1z6NXK85eLcaeo6QoWFOJImxK639rza7fMytekcihBBCdJrJpGidKcqdvGMMENsHzrgTNn0IxWudv/4peEVHitZGKNksgz2cTBJjV2lpgPVzoP+F0kJFCCGEYTm1l/GxJvwRwhLgu/vAZnPNZ5xAjqWahIggYsMC3faZTrd/A9ja5OCdk0li7CpbP9XGXkqLNiGEEAaWFhvC3sp6bM5q2dZRYDhMfRIsG7WdYzfJsdQYe7cYOgz2GKNvHF5GEmNXUFXt0F3CEEg9U+9ohBBCiC5LjQ2hqdVGaW2zaz4gc7Y2tW3xE9rIaBdrbLGys6zO+B0pirIhrh+ExOgdiVeRxNgVdi2Fsjxtt1gabgshhDCwVFd1pminKHDB89BQAcued81ndJB3oAabavD6YptNawUrY6CdThJjV1j9GoTGw+CZekcihBBCOKS9ZdteVyXGAD2Hwcjrtb7GpXmu+xwgt6T94J2BW7VVFGjlmpIYO50kxs52aA8U/ACjbtSamAshhBAG1jMqCD+T4roDeO3OeRQCQuH7B7SSRBfJsdQQEeRHUnSwyz7D5YoO1xfLYA+nk8TY2da/q90WGnG93pEIIYQQDvMzm0iOCXF9YhwaB5Mfhl1ZkPe1yz6mfeKdYuRSx+I1EBILsX31jsTrSGLsTG0tsPED6Hc+RCbqHY0QQgjhFKmxIa6rMe5o1M0QnwELH9L69DpZm9VGXkmNscsoQOtIkTxWzjG5gCTGzpT/DdSXwsgb9Y5ECCGEcJq0w72MVReWOABg9oMLnoOqIvj5305ffld5Pc1tNmMfvKsvh4pCadPmIpIYO9O6ORCZDH3P1TsSIYQQwmlSY0Ooa26jor7F9R/WawJkTIcVf4eqYqcunWOpBgx+8K54jfYogz1cQhJjZ6nYCbuXabXFJrPe0QghhBBOkxobAri4M0VHU5/UHn941KnL5uyvIdDPRJ9uoU5d162KV4PJH3oO1zsSrySJsbOsfwcUM4y4Vu9IhBBCCKc60su43MUH8NpFpcD4P0DOfNi9wmnL5lhqGJAQjp/ZwOlPUbbW3s4/SO9IvJKBfzI8SFuzNspywIUQnqB3NEIIIYRTJUUHY1LcuGMMcNbvIDIFvnsArG0OL6eqKjmWamNPvGtr1sZnS/9il5HE2Bm2f6VN7JFDd0IIIbxQoJ+ZnlHB7K10044xgH8wTHsaSnNg3dsOL7fvUCM1TW1kGLm+uGQzWJulf7ELSWLsDOvmQHQa9J6sdyRCCCGES6TFhrLH1b2MjzXwEug1EZY+BfUVDi2VY2mfeGfgHeP2wR6yY+wykhg7qmwH7F0JI28Ak/zjFEII4Z1SY0PcW0oBWp/eC56H5jpY8qRDS+WW1GBSYGCCgRPj4myI7gVh8XpH4rUkk3PU+jna6dBh1+gdiRBCCOEyabGhVDW0UtXghpZtHcUPgLG/0Q65l2zu8jK5lmp6dwsjOMCgnaNUVUuMpYzCpSQxdkRrI2z6CAZeDGHd9I5GCCGEcJlfWra5uZwCYOID2gjkb+/XEsQuyLHUGLuMonIX1JdJGYWLSWLsiNwvoalKDt0JIYTwemlxh1u2ubucAiA4CqY8rvXw3Tq302+vrG+hpLrJ2Ilxcbb2KImxS0li7Ih1cyC2rzalRwghhPBiKTE67hiDVrLYczgsehSaazv1Vu+YeJcNQZHQbYDekXg1SYy76mCu9s115A3a4QAhhBDCiwX5m0mICNJnxxi0A+4XPA91B2DF3zr1Vu/oSJENSWPkoL+LyT/drlo/B8wBMPRXekcihBBCuIXWmUKnHWOA5DEw9GpY9QpU7LT7bTmWGhKjgokKCXBhcC7UeAjKtksZhRtIYtwVLQ2w+RPIuAxCY/WORgghhHCLtNhQfRNjgClPgDkQFj5k91tyLNUM7GHg3eLitdpjiiTGriaJcVfkfA7N1TDqJr0jEUIIIdwmNS6E8rpm6podH9HcZeEJMPF+2PE97Fh02svrm9vYXV5v7DKK4mxQzJA4Uu9IvJ4kxl2x7m2I6w8pZ+gdiRBCCOE2abFaZwq3D/o41tjbtcPv3/8J2ppPeWnegRpU1eD1xcXZ0GMIBITqHYnXk8S4s0q2wP71MOpGOXQnhBDCp+jay7gjvwA4/zmo3AmrXzvlpbntB+8SDdqRwtoK+9ZJfbGbSGLcWevngF8QDL1K70iEEEIIt0qN1bGX8bHSp0C/C2D5C1BTctLLciw1RIX40zMyyI3BOdGBrdDWKImxm0hi3BnNtbDlUxg0E4Kj9Y5GCCGEcKuwQD/iwgLYW67zjnG7aU+DtQUWP3HSS9on3ilGvcsrgz3cShLjztg6D1rqtDIKIYQQwgelxoZ6xo4xQGwfOOMu2PKx1uf3GK1WG/kHao092KNoNUQmQ2Si3pH4BEmMO2P9HIgfBEmj9Y5ECCGE0IXuvYyPdfa9EN4TvrsfbNajXiosraPFajPuwTtV1XaMZbfYbSQxttf+DVCyWQ7dCSGE8GlpsaEcqGmiqdV6+ovdITAMpj4JJZtg4/tHvWT4iXdVRVBbAinj9I7EZ0hibK/1c8A/BIZcoXckQgghhG7aO1MUVXrQrvHgy7UWqj/+RZsSd1iOpZogfxO94sJ0DM4BG94FFOhzjt6R+AxJjO3RVK3VFw++HIIMXKckhBBP11bwAAAYQElEQVRCOKi9l/Gecg+pMwbtTu4Fz2tJcdazR57OsdQwICECs8mAd3obD0H2G9qU3dg+ekfjMyQxtseWT6G1QQ7dCSGE8Hm/DPnwoB1j0AZgjLwB1rwJB3Ox2VS2H+5IYUjZr0NLLUy4T+9IfIokxqejqrD+HUgYAj1H6B2NEEIIoavIEH+iQvw9pzNFR5MfgcBw+P4BiivrqW1uM2ZHiqYaWP0q9L8IEgbrHY1PkcT4dPatg4PbYNRNcuhOCCGEQGvZ5nE7xgChsXDOI7B7ORXr5gEGPXi39k2tjHOi7Ba7myTGp7PubQgIg8xZekcihBBCeITUmBDP3DEGGHkjxGfQa+MLBJqs9E8I1zuizmmph1WvQN/zoOdwvaPxOZIYn0rjIcj5HDJna7dmhBBCCEFabAiWqkaa2zykZVtHZj+Y8gTRzfu4K+IngvzNekfUOevehoYKmHi/3pH4JEmMT2XzJ9DWJIfuhBBCiA5SY0OxqbDvUKPeoZxY+lQ2KBnc0PoJNNfpHY39Whvhp39Br4mQPEbvaHySJMYno6pa7+LEkdBjqN7RCCGEEB4jLe5wL2NPrDMGyupaeLLpSsKth7SyBKPY8B7Ul8pusY7sSowVRTlfUZR8RVEKFUX50wlev0dRlFxFUbYoivKjoiipzg/VzYpWQVmeVqskhBBCiCNS23sZe2idcY6lmo1qOhUp0+Dnf0Fdmd4hnV5bM6x8CVLOhLTxekfjs06bGCuKYgZeAS4AMoCrFUXJOOayjcAoVVWHAPOA550dqNutmwOBETB4pt6RCCGEEB4lNjSAsEA/z+xMwS+joAOmPqGVJyw3QFqy6UOotUgnCp3Zs2M8BihUVXWXqqotwMfAZR0vUFV1qaqq7f91rAaSnBummzVUQu6XMORKCAjVOxohhBDCoyiKQmqs53amyLXUkBwTTHhSBoy4TjvQVrlL77BOztoKK/8BiaOg92S9o/Fp9iTGiUBxhz/vO/zcydwMfOdIULrb9BFYm+XQnRBCCHESaZ7ayxitlCKjx+H+xZP+BOYAWPKUvkGdypZPoKpIqy2WmQm6sicxPtG/IfWEFyrKNcAo4IWTvH6boijrFEVZV1bmofU+7YfuksdC90F6RyOEEEJ4pNTYEIorG2iz2vQO5Sjldc3sqWhgSFKU9kR4Aoy7A7Z9BpaN+gZ3ItY2WPE37aB/+lS9o/F59iTG+4DkDn9OAizHXqQoyhTgYeBSVVWbT7SQqqpvqKo6SlXVUd26detKvK63ZwVUFMqhOyGEEOIUUmNDaLOpWKqa9A7lKD8VlgMwvm/cL0+e9TsIjoHFT+gT1KnkfK6VeUy4T3aLPYA9ifFaIF1RlF6KogQAVwELOl6gKMpw4HW0pLjU+WG60bo5EBQFg6brHYkQQgjhsTy1M8WKgnIig/0ZnBj5y5NBkVqZwq4s2LlEt9iOY7PB8hchPgP6X6R3NAI7EmNVVduAu4CFwHbgU1VVcxRF+YuiKJcevuwFIAyYqyjKJkVRFpxkOc9WVwbbv4JhvwL/YL2jEUIIITxW2uHEeG+l59QZq6rKyoJyzuobi9l0zO7rqJsgKgV+eFxLSD3B9i+hPB8m/BFMMlrCE/jZc5Gqqt8C3x7z3GMd/vcUJ8elj00fgK0VRt6gdyRCCCGER4sPDyTI38Tecs/ZMd5ZVs+BmibG9z1BuaZfIJzzKHx+q1ZvPGS2+wPsqH23ODYdMuQutaeQryftbDZY/w6kngXd+usdjRBCCOHRTCaF1JhQ9nhQZ4qVBdrB/qPqizsaPAu6Z8KSv2gDNfS04zs4uO3wbrFZ31jEEZIYt9udBYf2yKE7IYQQwk6psSHs9aAa45WF5aTEhJASG3LiC0wmOO8JrTXaujluje0oqgrLnofoXlqyLjyGJMbt1s2BkFjIuPT01wohhBCCtLhQ9lY2YLOdsIurW7VabazeVcn49JPsFrfrcy70mqBNw2uqcU9wxypcDCWb4Ox7wGxXVatwE0mMAWoPQN432qE7v0C9oxFCCCEMITU2hJY2Gwdq9G/Ztqm4irrmNs4+WRlFO0WBKX+Ghgr4+d/uCa6j9t3iyGQYcpX7P1+ckiTGABvfB9UqZRRCCCFEJ6TGeE7LtpUF5SgKnNEn9vQXJ46AQTNh1cva5pg77V4G+9bA+N+DX4B7P1ucliTGNiusf0+7rRLbR+9ohBBCCMNIPVzL6wmjoVcWljMkMZKoEDuTzXMeAWsLLHvOtYEda9kLEN4Dhl3j3s8VdpHEeOcSqC7S+hsKIYQQwm49o4LxNyu67xjXNLWyqbjq9PXFHcX20e4Ur38XygtdF1xHe3+GvSvhrLvBP8g9nyk6RRLjdW9DaDeZOCOEEEJ0ktmkkBwTQpHOO8ard1Zgtakn7l98KhPv1wZ6LfmLawI71rLntZxjxPXu+TzRab6dGFfvhx3fw/BrpM5HCCGE6IK0WP17Gf9UWE6wv5kRqVGde2NYPJz5f5D7Jexb55rg2u1bB7uWap8XcJJ2ckJ3vp0Yb3wfVJt8cxNCCCG6qL2Xsarq17JtRWE5Y3rFEOjXhUEZZ9yp7eL+8LjWMcJVlj0PwTEw6mbXfYZwmO8mxtY22PCe1s8wppfe0QghhBCGlBYbSkOLlbI6fSbJWaoa2VVWz9mdqS/uKDAcJj6g1f4WLnZucO0sm6BgIZxxBwSGueYzhFP4bmJcsAhq9sMoadEmhBBCdJXenSlWFpQDdO7g3bFGXK9Nofvhca1blbMtfwGCImHMbc5fWziV7ybG6+dAWAL0O1/vSIQQQgjDSos93Mu4XJ/OFCsKy+kWHkj/7uFdX8QvAM59FEpzYMunzgsO4GAO5H0NY2/XkmPh0XwzMa4qgoIfYMS1YPbXOxohhBDCsBKjgzGbFF12jG02lZ8LyxnfNw5FURxbLGMG9BgGS5+GVidO8lv+IgSEaYmx8Hi+mRhveE8bCSmH7oQQQgiH+JtNJEYF69LLePuBGirqWzjrdGOg7WEywXl/gepiWPtfx9cDKNsBOfNhzK0QEuOcNYVL+V5ibG3VEuO+50FUst7RCCGEEIandaZw/47xkfpiZyTGAL0naofyV7wIjVWOr7fib1qf5DPucnwt4Ra+lxjnfwd1B+XQnRBCCOEkWi9j97dsW1lYTnp8GAmRTpwiN+UJaDwEP/3TsXUqd8HWudpk3VAnJe7C5XwvMV4/ByIStR1jIYQQQjgsNTaE2qY2qhpa3faZTa1W1uyudKwbxf+3d+cxct53Hcff371sz9qO7Vk7h4+dJHZL0jsNSYvXIaIHbSQICFqlIDVIoCJBUbkpIJG2EhSqEqpyVA0kKBTagqDQCFXi6CE8buLGOXrRht2kjmM7jXd2fXvttXd//DGzjo/dzXr3eeZZz7xfUrSzz84881V+fqyPf/ud7zOdq18Nr3onPPIJOLJ//ufZfi90dNVv6KHLRnsF49HvwdNfqvcWd3YVXY0kSS3h7GSKJvYZP/bsQU6dmZz//OLZ/MjvQ5qAr3x4fq8/tAe+/hl4/d2w4qpsa1Ou2isYjx+D626vT6OQJEmZqPQ1f5bx9sEaXR3BLdeWsz/56gr84C/AE38Pw09d+uurHwMCtr4v68qUs/YKxle9Ct79eVh5TdGVSJLUMjasLhHR3B3j6tAwN21azfIlOf0GeNtvQncvfPFDl/a6I/vhiU/B634WrtiQT23KTXsFY0mSlLml3Z1cvXJp03aMR4+P8+39R7LvLz5XbxkG3le/OceenXN/3Y6P1++eN/Br+dWm3BiMJUnSgvU3JlM0w46hGikt8DbQc/GGX4LlV8J/3wNzmbhx7ED9Q/6vuavejqHLjsFYkiQtWKWvebOMdwzVWLG0i1evz/kWyz29cPv7Yc/D9XGvL+Wrfw4T47DtN/KtS7kxGEuSpAXrL/cyenycIyfzHdmWUmL7YI03Xlemq7MJMeZ174byZvjiB2HizMzPOz4Cj94Pr/wpKF+ff13KhcFYkiQtWKVcn0yxJ+dd490jJ9h3aCyfMW3T6eyCN90Dw9+tj2CbySN/BadP1D+0p8uWwViSJC1Yf5NmGVcHhwEY2LI21/c5zw0/Butvhi//EZweu/jnY4fga/fBjT8O636geXUpcwZjSZK0YP3l5swy3j5YY/2qZWd3qJsiAt7yQTi6H3Z+8uKf7/wknDoCt/1W82pSLgzGkiRpwUo9XaxbsYTdtfx2jM9MTPLwMyNs29JHROT2PtOqDMCWH4XqvXBi9MXjJ4/U2yhefkf9fgm6rBmMJUlSJirl3lx3jL+x7zBHT55h6+Ym9Rdf6M331INw9d4Xjz36N3DykLvFLcJgLEmSMrGpXMq1x7g6WCOC4oLxla+A1/4M7LwPDj0H48fh4b+AzW+G9TcVU5MyZTCWJEmZqJRLHDh6ihPjs4w1W4DqYI1XXLOSNb09uZx/Tm7/3frXr3wYdv0tnBiB2367uHqUKYOxJEnKxNRkijzaKY6fOsPjew4ysLmJ0yims2oj3PoeePLTsP2jcO1tsOnWYmtSZgzGkiQpE5Ucg/HO741wZjI1b37xbAZ+HZashLGD7ha3mK6iC5AkSa1h09mRbdn3GW8frLGkq4PX96/O/NyXrLQG7vgI7N1Vn1ahlmEwliRJmbhiWTdrenvYncOOcXWwxi3XrmFpd2fm556X19xV/08txVYKSZKUmf5yKfMd4+8fPsnggWMMFDWNQm3DYCxJkjKTxyzjHUM1AAYWQ3+xWprBWJIkZWbTmhL7D49x8vREZuesDtUo9/Zww1UrMzunNB2DsSRJykylr0RKsPdgNrvGKSWqQzV+aHMfHR1Nvg202o7BWJIkZWZqlvHuWjbB+KkXjjJ89BTb7C9WExiMJUlSZs7OMh7NJhhXB+0vVvMYjCVJUmZWl7pZsbQrs8kU1aEa163t5ZpVyzI5nzQbg7EkScpMRFAp92Yyy/jUmQl2PjNqG4WaxmAsSZIyldUs48efPcTY6Qm2GozVJAZjSZKUqUq5l70Hxzg9Mbmg81SHhunsCN5wfTmjyqTZGYwlSVKm+sslJiYT+w6OLeg81cEar924ipVLuzOqTJqdwViSJGXq7Mi2BbRTHD5xmm/sO+xtoNVUBmNJkpSpSrkEsKBbQ3/16RopwTbHtKmJDMaSJClTa1csYVl354J2jLcP1Vi+pIvXbFyVYWXS7AzGkiQpUxFBf7nEngXsGFcHa7zhujV0dxpV1Dz+aZMkSZmrzzKe347xnpET7Bk9YX+xms5gLEmSMtffV+K50TEmJtMlv7Y6NHUb6LVZlyXNymAsSZIyVyn3Mj4xyfOHL31kW3VomKuvWMr1a3tzqEyamcFYkiRlrn+ekykmJhM7hkbYurmPiMijNGlGBmNJkpS5yjxnGX9r32EOj512TJsKYTCWJEmZu2rlUnq6Oi55x3iqv3irH7xTAQzGkiQpcx0dwaY1JXbXLm3HuDpY44arV9K3fElOlUkzMxhLkqRcVMol9ozOfcd4bHyCx549aBuFCmMwliRJuehvzDJOaW4j23Z+b4TxiUnbKFQYg7EkScpFpVzi5OlJDhw9NafnVwdr9HR2cEtlTc6VSdMzGEuSpFz0T02mmGOfcXWoxs2V1Szr6cyzLGlGBmNJkpSLqZFtc5lMMXz0FN/9/lEG7C9WgQzGkiQpF9esWkpXR8xplvGOxpi2bZu9DbSKYzCWJEm56OrsYMPqZXPaMd4+WGNVqZsbr1nZhMqk6RmMJUlSbqYmU8wmpUR1aJit1/fR2eFtoFUcg7EkScpNpVzi2ZETs45se3r4GC8cOWV/sQpnMJYkSbnpL/dy7NQZRo+Pz/ic7YP1/uIB5xerYAZjSZKUm0pfCYDds/QZVwdrVMolNq4pNassaVoGY0mSlJv+syPbpu8zPj0xySPPjHi3Oy0KBmNJkpSbDauX0REz7xg/secQx8cn2GZ/sRYBg7EkScrNkq5Orlm1bMYd4+pQjY6AN15vMFbxDMaSJClXlXLvjDvG1cFhXr1hFVcs625yVdLFDMaSJClXm8qlaXeMj5w8zdf3HraNQouGwViSJOWqUi5x6MRpDp04f2Tbw0+PMDGZ/OCdFg2DsSRJytWLkynOb6fYMVSj1NPJTZtWF1GWdBGDsSRJylVlKhiPnh+Mq4M1br12DT1dxhEtDv5JlCRJudrUuHHHs7UX+4z3HRrjmdpxBrasLaos6SIGY0mSlKtlPZ1ctXLpeZMpqoPDAH7wTouKwViSJOWu/4LJFNsHa6xbsYQt65YXWJV0PoOxJEnK3bmzjCcnE199eoSBzX1ERMGVSS/qKroASZLU+jaVS9SOneLYqTPsrh1n9Pg4A7ZRaJFxx1iSJOXu7GSKkeNUh2oADDi/WIuMwViSJOWuv9yYTDFygupgjZdfuYJ1K5cWXJV0PoOxJEnK3VQwfur7R/na7lHvdqdFyWAsSZJyt2JpN33Le/jcE3sZPzPpmDYtSnMKxhHxtoh4KiKGIuL90/x8SUT8Y+PnOyOiknWhkiTp8tZf7uW50TG6O4Nbr1tTdDnSRV4yGEdEJ/CXwNuBG4F3RcSNFzzt54GDKaXNwJ8Bf5J1oZIk6fI21U5x06bVlHocjKXFZy47xrcAQymlZ1JK48BngTsveM6dwIONx/8MvCkcTChJks4xNZnCNgotVnMJxuuB5875fm/j2LTPSSmdAQ4D5SwKlCRJreFlV9bvcvfDL1tXcCXS9OYSjKfb+U3zeA4R8Z6I2BURu4aHh+dSnyRJahFvvfEq/v1XBnjVhiuKLkWa1lyC8V5g4znfbwD2z/SciOgCrgBGLzxRSum+lNLNKaWb165dO7+KJUnSZamjI3jlekOxFq+5BONHgS0RcW1E9AB3AQ9d8JyHgLsbj38a+FJK6aIdY0mSJGmxesmPhKaUzkTEe4H/ADqBB1JK346IDwG7UkoPAfcDn4qIIeo7xXflWbQkSZKUtTnNSkkpfQH4wgXH/uCcxyeBd2RbmiRJktQ83vlOkiRJwmAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkACKlVMwbRwwDzxby5tAH1Ap6bxXHdW9frn37cu3bl2vfvqZb+/6U0tqXemFhwbhIEbErpXRz0XWouVz39uXaty/Xvn259u1rIWtvK4UkSZKEwViSJEkC2jcY31d0ASqE696+XPv25dq3L9e+fc177duyx1iSJEm6ULvuGEuSJEnnaatgHBFvi4inImIoIt5fdD1qnojYHRHfjIgnI2JX0fUoPxHxQEQciIhvnXNsTUT8V0QMNr6uLrJG5WOGtf9AROxrXPtPRsQdRdao7EXExoj4ckR8JyK+HRHvaxz3um9xs6z9vK/7tmmliIhO4P+AtwB7gUeBd6WU/rfQwtQUEbEbuDml5EzLFhcRtwHHgL9LKb2ycewjwGhK6Y8b/yhenVL6nSLrVPZmWPsPAMdSSh8tsjblJyKuBq5OKT0eESuAx4CfAH4Or/uWNsvav5N5XvfttGN8CzCUUnompTQOfBa4s+CaJGUspfQ/wOgFh+8EHmw8fpD6X5xqMTOsvVpcSun5lNLjjcdHge8A6/G6b3mzrP28tVMwXg88d873e1ng/zxdVhLwnxHxWES8p+hi1HRXppSeh/pfpMC6gutRc703Ir7RaLXw1+ktLCIqwOuAnXjdt5UL1h7med23UzCOaY61Rx+JALamlG4C3g78cuNXrpJa3yeA64HXAs8Df1psOcpLRCwH/gX41ZTSkaLrUfNMs/bzvu7bKRjvBTae8/0GYH9BtajJUkr7G18PAP9KvbVG7eOFRi/aVE/agYLrUZOklF5IKU2klCaBv8ZrvyVFRDf1YPQPKaXPNQ573beB6dZ+Idd9OwXjR4EtEXFtRPQAdwEPFVyTmiAiehtN+UREL/BW4Fuzv0ot5iHg7sbju4HPF1iLmmgqGDX8JF77LSciArgf+E5K6d5zfuR13+JmWvuFXPdtM5UCoDGu42NAJ/BASukPCy5JTRAR11HfJQboAj7t2reuiPgMcDvQB7wA3AP8G/BPwCZgD/COlJIf0moxM6z97dR/nZqA3cAvTvWdqjVExACwHfgmMNk4/HvUe0297lvYLGv/LuZ53bdVMJYkSZJm0k6tFJIkSdKMDMaSJEkSBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgTA/wPDaQ+sFCSVawAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 864x648 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(12,9))\n",
    "plt.plot(y_test, label='actual')\n",
    "plt.plot(predict, label=\"prediction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x63d8aada0>"
      ]
     },
     "execution_count": 75,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEKCAYAAACymEqVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucVXW9//HXZy7McAfJC4EKCqJcBx0QD79AoxS1RE+cBO+X5FRqmcURsjyGx1Kr46Ww4giGVyDUmtKkY6FoJwUkUC4iF1EGRJCbILe5fH5/fNfAZpjLZmYWe8/s9/Px2A/3Xuu71vouS9581/pezN0RERFJB1mproCIiEgFhZKIiKQNhZKIiKQNhZKIiKQNhZKIiKQNhZKIiKQNhZKIiNSJmU0xs41mtria/WZmD5nZSjN7y8xOr+2cCiUREamr3wLDa9h/PtA9+owBflXbCRVKIiJSJ+4+B9hSQ5ERwGMevA60M7OONZ0zpyErmK6ysrK8efPmqa6GiEijsWvXLgcWJGya5O6TDvM0nYC1Cb+Lo20fVndARoRS8+bN+fTTT1NdDRGRRsPMdrt7YX1PU8W2Gue20+M7ERGJSzFwfMLvzsD6mg5QKImISFyKgKuiXniDgO3uXu2jO8iQx3ciItLwzOxp4GzgM2ZWDPwnkAvg7r8GXgAuAFYCu4Braz1nJixd0bJlS6/8TqmkpITi4mL27NmTolo1bvn5+XTu3Jnc3NxUV0VEYmBmu9y95ZG+bsa2lIqLi2ndujVdunTBrKp3cVIdd2fz5s0UFxfTtWvXVFdHRJqQjH2ntGfPHjp06KBAqgMzo0OHDmplikiDy9hQAhRI9aB/dyISh4wOpRq5w4cfwq5dqa6JiEjGUChVp6wMNm2CFStg374GP/22bdt4+OGH63TsBRdcwLZt25Iuf+edd/Kzn/2sTtcSETmSFErVycmBbt1COK1YEf7ZgGoKpbJarvXCCy/Qrl27Bq2PiEg6UCjVpEULOPlk2L0bVq0Kj/QayLhx41i1ahUFBQWMHTuWl19+mXPOOYfLLruMPn36AHDxxRdzxhln0KtXLyZNOjDlVJcuXfj4449Zs2YNp512GjfccAO9evXi3HPPZffu3TVed+HChQwaNIi+fftyySWXsHXrVgAeeughevbsSd++fRk1ahQAr7zyCgUFBRQUFNC/f3927NjRYPcvIlKVWLuEm9lw4EEgG3jE3e+ptD8PeAw4A9gMXOrua6J944HrgTLgW+4+K9r+HeBrhPmT3gaudfd6dQNbseIWdu5cWH2B8hLYsAe25EJeflLnbNWqgO7dH6h2/z333MPixYtZuDBc9+WXX2bu3LksXrx4fzfrKVOmcNRRR7F7924GDBjAV77yFTp06FCp7it4+umn+Z//+R+++tWv8swzz3DFFVdUe92rrrqKX/ziFwwdOpQ77riDH/3oRzzwwAPcc889vPfee+Tl5e1/NPizn/2MiRMnMnjwYHbu3El+fnL3LiJSV7G1lMwsG5hIWE+jJzDazHpWKnY9sNXduwH3A/dGx/YERgG9CGt1PGxm2WbWCfgWUOjuvQlhNyque9gvNxeaNYN9JbG8X6owcODAg8b9PPTQQ/Tr149Bgwaxdu1aVqxYccgxXbt2paCgAIAzzjiDNWvWVHv+7du3s23bNoYOHQrA1VdfzZw5cwDo27cvl19+OU888QQ5OeHvKoMHD+bWW2/loYceYtu2bfu3i4jEJc4/ZQYCK919NYCZTSOsrbE0ocwI4M7o+0zglxb6Go8Aprn7XuA9M1sZne+DqM7NzawEaEEtk/slo6YWzX7usHo1bN0KXU6G9u3re9lDtGx5YPD0yy+/zEsvvcQ//vEPWrRowdlnn13luKC8vLz937Ozs2t9fFed559/njlz5lBUVMRdd93FkiVLGDduHBdeeCEvvPACgwYN4qWXXuLUU0+t0/lFRJIR5zul6tbRqLKMu5cC24EO1R3r7uuAnxHC6UPC5H5/qeriZjbGzOab2fzS0tL6340ZdO0KLVuGcNq5s16na926dY3vaLZv30779u1p0aIF77zzDq+//nq9rgfQtm1b2rdvz6uvvgrA448/ztChQykvL2ft2rWcc8453HfffWzbto2dO3eyatUq+vTpw2233UZhYSHvvPNOvesgIlKTOEMpmXU0qitT5XYza09oRXUFPgu0NLMqX6C4+yR3L3T3wgZ77JSVFXrkNWsGK1fC3r11PlWHDh0YPHgwvXv3ZuzYsYfsHz58OKWlpfTt25cf/vCHDBo0qD4132/q1KmMHTuWvn37snDhQu644w7Kysq44oor6NOnD/379+c73/kO7dq144EHHqB3797069eP5s2bc/755zdIHUREqhPbhKxmdhZwp7ufF/0eD+DuP0koMysq8w8zywE2AEcD4xLLVpQjrMUx3N2vj7ZfBQxy92/WVJeqJmRdtmwZp512Wt1ubs8eWLYsvGs69dTQfTwD1evfoYiktVRNyBpnS2ke0N3MuppZM0KHhKJKZYqAq6PvI4G/eUjJImCUmeWZWVegOzCX8NhukJm1iN49DQOWxXgPVcvPDy2mvXtDV/Hy8iNeBRGRpii2UIreEd0EzCIExwx3X2JmE8zsoqjYZKBD1JHhVg60kJYAMwidIl4EbnT3Mnd/g9AhYgGhO3gWcLhrxjeM1q2hSxfYsQPef79BxzCJiGSqjF1PqcEePa1fHz6f/Wz4ZBA9vhNpurSeUmPVsWN4jLd+PeTlQaXBrSIikjyFUn2ZwYknhkG1a9aEnnmtW6e6ViIijZLmvmsIWVlhjry8vNBVXIvfiYjUiUKpoeTkQPfuoeW0YgWUlDT4JVq1anVY20VEGhuFUkPKywtdxfftCy0mdRUXETksCqWG1qoVnHQSfPopvPdetV3Fb7vttoPWU7rzzjv5+c9/zs6dOxk2bBinn346ffr04Q9/+EPSl3Z3xo4dS+/evenTpw/Tp08H4MMPP2TIkCEUFBTQu3dvXn31VcrKyrjmmmv2l73//vvrd98iIg1AHR0AbrkFFtawdEVddO8O//7vsG4ddO58yO5Ro0Zxyy238M1vhskoZsyYwYsvvkh+fj7PPfccbdq04eOPP2bQoEFcdNFFhLHCNXv22WdZuHAhixYt4uOPP2bAgAEMGTKEp556ivPOO4/bb7+dsrIydu3axcKFC1m3bh2LFy8GOKyVbEVE4qJQikuLFnD00bBhQ3isd/TRB+3u378/GzduZP369WzatIn27dtzwgknUFJSwve//33mzJlDVlYW69at46OPPuK4446r9ZKvvfYao0ePJjs7m2OPPZahQ4cyb948BgwYwHXXXUdJSQkXX3wxBQUFnHTSSaxevZqbb76ZCy+8kHPPPTeufxMiIklTKAE8kMTSFXXhHsYwvf9+6Cretu1Bu0eOHMnMmTPZsGHD/tVen3zySTZt2sSbb75Jbm4uXbp0qXLJiqovV/WjwiFDhjBnzhyef/55rrzySsaOHctVV13FokWLmDVrFhMnTmTGjBlMmTKlfvcrIlJPeqcUJ7PQVbx58zBH3q5dB+0eNWoU06ZNY+bMmYwcORIIS1Ycc8wx5ObmMnv2bN5///2kLzdkyBCmT59OWVkZmzZtYs6cOQwcOJD333+fY445hhtuuIHrr7+eBQsW8PHHH1NeXs5XvvIV7rrrLhYsWNCgty4iUhdqKcUtOzu8X1q2LPTIO/XU0GoCevXqxY4dO+jUqRMdO3YE4PLLL+fLX/4yhYWFFBQUHNaiepdccgn/+Mc/6NevH2bGfffdx3HHHcfUqVP56U9/Sm5uLq1ateKxxx5j3bp1XHvttZRHPQR/8pOf1HJ2EZH4ae67I2XXLnjnnTDDeI8eIawaOc19J9J0NcWlKyRRixbhUd6uXWHl2gz4y4CIyOFSKB1JbdvCCSfA9u2wdm3t5UVEMkxGv1Ny96TG/zSoY44JPfI++ih0FT/22CN7/QaSCY99ReTIy9iWUn5+Pps3b07NH66dO0O7dqG11AgHrbo7mzdvJj8/P9VVEZEmJtaODmY2HHgQyAYecfd7Ku3PAx4DzgA2A5e6+5po33jgeqAM+Ja7zzKzHsD0hFOcBNzh7jUONKqqo0NJSQnFxcVJjwFqcOXlobVUUgLHHbe/R15jkZ+fT+fOncnNzU11VUQkBqnq6BBbKJlZNvAu8EWgGJgHjHb3pQllvgn0dfevm9ko4BJ3v9TMegJPAwOBzwIvAae4e1ml868DznT3GgfzVBVKaeGjj+DMM8PjvNdfD+syiYikgabY+24gsNLdV7v7PmAaMKJSmRHA1Oj7TGCYhZc8I4Bp7r7X3d8DVkbnSzQMWFVbIKW1Y4+FF16A3bvhwgtDBwgRkQwWZyh1AhK7mBVH26os4+6lwHagQ5LHjiK0pqpkZmPMbL6ZzS8tLa3TDRwRPXvCM8/A8uUwcmQs6zCJiMTBzIab2XIzW2lm46rYf4KZzTazf5rZW2Z2QW3njDOUqurWVvlZYXVlajzWzJoBFwG/q+7i7j7J3QvdvTAnJ807GQ4bBpMmwUsvwTe+oTFMIpL2olcoE4HzgZ7A6OjVS6IfADPcvT+hIfEwtYgzlIqB4xN+dwbWV1fGzHKAtsCWJI49H1jg7h81cJ1T59pr4fbbYfJkuPfeVNdGRKQ2ybyicaBN9L0th2bAIeIMpXlAdzPrGrVsRgFFlcoUAVdH30cCf/PQ86IIGGVmeWbWFegOzE04bjQ1PLprtO66C0aPhvHjYfr02suLiMQnp+IVSPQZU2l/Mq9Z7gSuMLNi4AXg5lovWo8K18jdS83sJmAWoUv4FHdfYmYTgPnuXgRMBh43s5WEFtKo6NglZjYDWAqUAjdW9LwzsxaEHn3/HlfdU8YMHn00jF+6+uownmnw4FTXSkQyU6m7F9awP5lXNKOB37r7z83sLMKf973dvbzak2bCyPy07RJenc2b4ayzYMuW0FW8W7dU10hEMkxtXcKjkLnT3c+Lfo8HcPefJJRZAgx397XR79XAIHffWN15M3ZGh7TWoUPoKg5wwQUhpERE0ksyr2g+IAzfwcxOA/KBTTWdVKGUrrp1g9//Pqxae8klYYCtiEiaiIbxVLyiWUboZbfEzCaY2UVRse8CN5jZIkI/gGu8lsdzenyX7qZNC50fLrsMnngivHcSEYlZqmZ0SPMBPMKoUWH9pdtvD+sxTZiQ6hqJiMRGodQYjB8fgumuu+Ckk+Caa1JdIxGRWOjxXWNRUgLnnw+vvAKzZsHnP5/qGolIE9bkZglPJ00ilCCsvTR4MKxbB//3f2HePBGRGDTFWcKlobVrF7qK5+eHWcU/ajqzLImIgEKp8TnxRPjjH0MgXXQR7NqV6hqJiDQYhVJjNGAAPP00zJsHV14ZVrEVEWkCFEqN1YgR8N//Dc8+C//xH6mujYhIg1CX8Mbs29+GVavg5z8PY5i+8Y1U10hEpF7U+66xKy2Fiy+GP/85vGu6oNaFHUVEaqUu4TFq0qEEsHMnDBkCK1bAq69CQUGqayQijZy6hEvdtWoFf/pT6DL+pS9BcXGqayQiUicKpabis5+F55+HTz4JwbRjR6prJCJy2GINJTMbbmbLzWylmY2rYn+emU2P9r9hZl0S9o2Pti83s/MStrczs5lm9o6ZLYsWmhKAvn3hd7+DxYvh0kvD+yYRkUYktlAys2xgInA+0BMYbWaV58W5Htjq7t2A+4F7o2N7EhaM6gUMBx6OzgfwIPCiu58K9COs4yEVzjsPHn44dHz41rcgA94ZikjTEWdLaSCw0t1Xu/s+YBowolKZEcDU6PtMYJiZWbR9mrvvdff3gJXAQDNrAwwBJgO4+z533xbjPTROY8bA2LHwq1+FsUwiIo1EnKHUCVib8Ls42lZlmWgVw+1AhxqOPYmwlO6jZvZPM3vEzKrsHWJmY8xsvpnNL83Ex1j33AMjR4ZwevbZVNdGRCQpcYZSVUukVn6WVF2Z6rbnAKcDv3L3/sCnwCHvqgDcfZK7F7p7YU5OBo4RzsqCxx6DM8+EK66AuXNTXSMRkVrFGUrFwPEJvzsD66srY2Y5QFtgSw3HFgPF7v5GtH0mIaSkKs2bwx/+AMcdB1/+MixalOoaiYjUKM5Qmgd0N7OuZtaM0HGhqFKZIuDq6PtI4G8eRvMWAaOi3nldge7AXHffAKw1sx7RMcOApTHeQ+N3zDFhuYucHBg0CKZMSXWNRESqFVsoRe+IbgJmEXrIzXD3JWY2wcwuiopNBjqY2UrgVqJHce6+BJhBCJwXgRvdvSw65mbgSTN7CygAfhzXPTQZp54K//xnWCDw+uvh2mu15IWIpCVNM5RJyspgwgS46y7o3TuMaerRo/bjRCTjaJohiV92NvzoR/Dii/Dhh1BYCDNmpLpWIiL7KZQy0bnnhsd5ffuGmR9uvhn27k11rUREFEoZq3NnePlluPVW+OUv4XOfg/ffT3WtRCTDKZQyWW5uWCDw2Wdh+XLo3z9M6ioikiIKJYFLLoEFC6BLlzDD+PjxmsxVRFJCoSTBySfD//1fmDfvnnvgC18InSFERI4ghZIckJ8Pv/kNPP44zJsXHufNnp3qWolIBlEoyaEq5spr3z60mO6+G8rLU10rEckACiWpWq9eobU0ahT84AfhXdPmzamulYg0cQolqV6rVvDEE2Fdpr/+NTzOe/31VNdKRJowhZLUzAy+/vXQCSInB4YMgQcf1Iq2IhILhZIk54wz4M034fzz4ZZb4KtfhU8+SXWtRKSJUShJ8tq3h9//Hu67D557LgSV1mgSyVhmNtzMlpvZSjOrcsFVM/uqmS01syVm9lSt59Qs4VInr74aOkFs2QITJ8J116W6RiLSgGqbJdzMsoF3gS8SFmCdB4x296UJZboTliH6vLtvNbNj3H1jTddVS0nq5nOf0xpNIpltILDS3Ve7+z5gGjCiUpkbgInuvhWgtkCCmEOptqZdtLLs9Gj/G2bWJWHf+Gj7cjM7L2H7GjN728wWmtn8OOsvtTjmGJg1C+64A6ZODSvbLl+e6lqJSMPIMbP5CZ8xlfZ3AtYm/C6OtiU6BTjFzP5uZq+b2fDaLhpbKEVNu4nA+UBPYLSZ9axU7Hpgq7t3A+4H7o2O7UlYPr0XMBx4ODpfhXPcvcDdC+OqvyRJazSJNFWl7l6Y8JlUab9VcUzl90E5QHfgbGA08IiZtavponG2lJJp2o0ApkbfZwLDzMyi7dPcfa+7vwesjM4n6UprNIlkmmLg+ITfnYH1VZT5g7uXRH+WLyeEVLXiDKVkmnb7y7h7KbAd6FDLsQ78xczerKI5uZ+ZjalodpZqxusjQ2s0iWSSeUB3M+tqZs0IT7eKKpX5PXAOgJl9hvA4b3VNJ40zlJJp2lVXpqZjB7v76YTHgjea2ZCqLu7ukyqanTk5OcnWWepLazSJZISoIXETMAtYBsxw9yVmNsHMLoqKzQI2m9lSYDYw1t1rnK8szlBKtml3PICZ5QBtgS01HevuFf/cCDyHHuulJ63RJNLkufsL7n6Ku5/s7ndH2+5w96Lou7v7re7e0937uPu02s4ZZygl07QrAq6Ovo8E/uZh4FQRMCrqndeV8Axyrpm1NLPWAGbWEjgXWBzjPUh9aI0mETlMsYVSkk27yUAHM1sJ3AqMi45dQhhwtRR4EbjR3cuAY4HXzGwRMBd43t1fjOsepAFojSYROQya0UGOnCVLYORIePddmDAhPNLL0vhtkXRU24wOcdGfCHLkaI0mEamFQkmOLK3RJCI1UCjJkac1mkSkGgolSR2t0SQilSiUJLW0RpOIJFAoSeqZwdixoav4rl1htvHJk/U4TyQDKZQkfSSu0fS1r2mNJpEMlFQomdm3zayNBZPNbIGZnRt35SQDJa7R9NhjcOaZWqNJJIMk21K6zt0/IUzrczRwLXBPbLWSzJa4RtOGDWGNpunTU10rETkCkg2lilm7LwAedfdFVD2Tt0jDSVyjadQouOkmrdEk0sQlG0pvmtlfCKE0K5oUtTy+aolEEtdomjgxvHdasybVtRKRmCQ1952ZZQEFwGp332ZmRwGd3f2tuCvYEDT3XRPx3HNwzTWwe3fooXfOOeEzaFCY+FVEGkyq5r5LNpQGAwvd/VMzuwI4HXjQ3RvFsqIKpSZk9eow6/js2WHgbXk55OXBWWcdCKkzz4RmzVJdU5FGLd1D6S2gH9AXeJyw5MS/uvvQeKvXMBRKTdT27fDqqyGgZs+GhQvD2KbmzUO38oqQKiwMK+KKSNLSPZQWuPvpZnYHsM7dJ1dsi7+K9adQyhBbtsCcOQdC6u23w/aWLcO7qLPPDiF1+ulhzj0RqVa6h9IrhMX2rgM+B2wiPM7rE2/1GoZCKUNt2gSvvBI6SsyeDUuXhu1t2oSQqmhJ9esXuqGLyH7pHkrHAZcB89z9VTM7ATjb3R+r5bjhwINANvCIu99TaX8e8BhwBrAZuNTd10T7xgPXA2XAt9x9VsJx2cB8QqvtS7XVX6EkAHz00YGAmj07LDYI0K4dDB16IKR699big5Lx0jqUAMzsWGBA9HOuu2+spXw28C7wRaAYmAeMdvelCWW+CfR196+b2SjgEne/1Mx6Ak8DA4HPAi8Bp0RLomNmtwKFQBuFktTZunUHh9Tq1WF7hw4Hh1TPnmF+PpEMktahZGZfBX4KvEwYNPs5YKy7z6zhmLOAO939vOj3eAB3/0lCmVlRmX+YWQ6wgTBjxLjEspXKdQamAncDtyqUpMF88MGBgJo9O/yGMPVRxfuoc86BU05RSEmTl6pQSvZt7+3AgIrWkZkdTWi9VBtKQCdgbcLvYuDM6sq4e6mZbQc6RNtfr3Rsp+j7A8B/AK1rqrCZjQHGADRT92BJxgknwNVXh497GKSbGFIzZoRyHTseCKhzzoGTTlJIiTSQZEMpq9Ljus3UPhtEVf+VVm6WVVemyu1m9iVgo7u/aWZn13Rxd58ETILQUqqlriIHM4OuXcPnuutCSK1ceSCg/vpXeOqpUPb44w9uSXXpksqaizRqyYbSi9EjtKej35cCL9RyTDFwfMLvzsD6asoUR4/v2gJbajj2IuAiM7sAyAfamNkT7n5FkvchUjdm0L17+IwZE0LqnXdCQL38cpg89vHHQ9kuXQ5uSXXunMqaizQqh9PR4SvAYEIrZo67P1dL+RxCR4dhwDpCR4fL3H1JQpkbgT4JHR3+1d2/ama9gKc40NHhr0D3io4O0bFnA9/TOyVJC+Xloct5RUvqlVfCuCmAbt1COFW0pjp2TGlVRZKR1h0d6nzy0KJ5gNAlfIq7321mE4D57l5kZvmEGSL6E1pIo9x9dXTs7YRxUaXALe7+50rnPhuFkqSr8nJ4660DITVnTpiBAqBHjwOtqAEDwuM/DeaVNJOWoWRmOzj0PRCE1pK7e5u4KtaQFEqScmVlYRmOisd9c+bAzp1hX05OeOR38snhc9JJB39vecT/XBBJz1BqKhRKknZKS8OEsm+/HcZHrVp14LNt28Fljzvu4KBKDK5jjlHPP4mFQilGCiVpVLZsOTSoVq0K24qLQyeLCq1aHQioysF1wgmaiFbqTKEUI4WSNBl79oTxU4lBlfg9cWXe7OwQTFW1sE4+GVrXONRPMpxCKUYKJckI5eWwfn31razNmw8uf/TRh7auKoKrY0c9FsxwCqUYKZRECL3/qmphrVoFa9eGUKvQvPmhHS4qvnfpokUUM4BCKUYKJZFa7NsH779fdQtr1aqwBH2FrKwwIDixddWtG3zxi9C2beruQRqUQilGCiWRenCHDRuqb2Vt2hTKtWkD3/wmfPvbocegNGoKpRgplERitGNHGCj80EMwc2bo8XfddfC974XHftIoJRNKta2Zl1BuJPA7wsTe82s6p1YyE5H6ad0aBg+G6dPDfIBXXQWTJ4d5Ai+7LASWNDnRmnkTgfOBnsDoaC28yuVaA98C3kjmvAolEWk43bvDpEnw3nvw3e/CH/8Ylpu/8EJ49dVU104a1kBgpbuvdvd9wDRgRBXl7gLuA/Ykc1KFkog0vM9+Fu67LyyU+F//BXPnwpAh8P/+H/zpTwcPAJZ0lWNm8xM+Yyrtr2rNvE6JBcysP3C8u/8p2YsqlEQkPu3bw+23h559v/hF6Hr+5S9D377w5JNhuiVJV6XuXpjwmVRpf41r5plZFnA/8N3DuahCSUTi16IF3HRTWCjxscdCS+mKK8LjvocfPrjLuTQWta2Z1xroDbxsZmuAQUCRmRXWdFKFkogcObm5cOWVofNDUVGYOeLGG+HEE+HHPz50MlpJZ/OA7mbW1cyaAaOAooqd7r7d3T/j7l3cvQvwOnCRet+JSPrJygqP8f7+97AgYmFheMx3wglw223w4YeprqHUwt1LgZuAWcAyYIa7LzGzCWZ2UV3Pq3FKIpIeFi6Ee++FGTNCi+qaa2Ds2DBjhBxxqRo8G2tLycyGm9lyM1tpZuOq2J9nZtOj/W+YWZeEfeOj7cvN7LxoW76ZzTWzRWa2xMx+FGf9ReQIKiiAp5+G5ctDID36KJxyCoweHQJLMkJsoZTkwKrrga3u3o3QS+Pe6NiehOeTvYDhwMPR+fYCn3f3fkABMNzMBsV1DyKSAt26wa9/HZbo+N734PnnoX9/OP/8sGJvBjzdyWRxtpSSGVg1ApgafZ8JDDMzi7ZPc/e97v4esBIY6EG0hjS50Uf/DxVpijp2DI/zPvgA7r47rNQ7dGiYPaKo6OBZzaXJiDOUah1YlVgmemm2HehQ07Fmlm1mC4GNwP+6e5VTV5jZmIpBX6UaCyHSeLVrB9//fhjrNHFi6AQxYkQY6/T441BSkuoaSgOKM5RqHFhVS5lqj3X3MncvIPSJH2hmvau6uLtPqhj0lZOTcxjVFpG01Lx5mIV8xQp44omwCOFVV4WxTr/8JezaleoaSgOIM5RqG1h1UBkzywHaAluSOdbdtwEvE945iUimyMmByy+HRYvC3HqdOsHNN4exTv/1X7B1a6prKPUQZyjVOLAqUgRcHX0fCfzNQx/1ImBU1DuvK9AdmGtmR5tZOwAzaw58AXgnxnsQkXSVlQVf+lIY6zRnDgwcCD/8YRjrNHZsWBo+E5VPJUbLAAATAUlEQVSUhHWu/vKXsJRIIxPrOCUzuwB4gLDWxhR3v9vMJgDz3b3IzPKBx4H+hBbSKHdfHR17O3AdUArc4u5/NrO+hI4R2YRAneHuE2qrh8YpiWSIRYtC54jp00OL6uqrQ0B1757qmjWsnTurXiF41arw7q2sLJQ76ijYvLlOl9AifzFSKIlkmNWr4Wc/gylTQsth5EgYNy50LW8M3OGjj6oPno0bDy5/1FEHL0+f+OlUuX9ZchRKMVIoiWSoDRvgwQfDpK+ffALnnRfCaejQ0FEilUpKQqumqtBZvRoS/8wyg+OPrzp0Tjop9FBsYAqlGCmURDLc9u3wq1/B/feHVsaZZ8L48WH+vawYX63v2FF16KxaFcZfVTxmA8jPDwFTVfCceCLk5cVXzyoolGKkUBIRICyR8dvfwk9/GlbHPe20MAHsZZeF+fYOl3tojVUXPJs2HVy+Q4fqWzsdO8YbkIdJoRQjhZKIHKS0NEz8es898Pbb4dHY974HX/taWPsp0b59Bx6zVQ6d1asPHh+VlVX1Y7aKFlDbtkf2PutBoRQjhZKIVMkdXnghhNNrr8FnPhMG5Cb2bvvgg4OnNGre/NDHbBW/u3SBZs1SdjsNSaEUI4WSiNTqtddCd/I//SmEU1Whc/LJ4TFbqjtJHAEKpRgplEQkaSUldXu/1MQ0yfWUREQaHQVSSimUREQkbSiUREQkbSiUREQkbSiUREQkbSiUREQkbSiUREQkbSiUREQkbSiUREQkbcQaSmY23MyWm9lKMxtXxf48M5se7X/DzLok7BsfbV9uZudF2443s9lmtszMlpjZt+Osv4iIHFmxhZKZZQMTgfOBnsBoM+tZqdj1wFZ37wbcD9wbHdsTGAX0AoYDD0fnKwW+6+6nAYOAG6s4p4iINFJxtpQGAivdfbW77wOmASMqlRkBTI2+zwSGmZlF26e5+153fw9YCQx09w/dfQGAu+8AlgF1W+tXRETSTpyh1AlYm/C7mEMDZH8Zdy8FtgMdkjk2etTXH3ijqoub2Rgzm29m80tLSw+78u7O0qWX8dFHT5EJk9aKiKSDOEOpqrndK//pXl2ZGo81s1bAM8At7v5JVRd390nuXujuhTk5OUlW+YDS0m3s2fMey5ZdzuLFI9i7d91hn0NERA5PnKFUDByf8LszsL66MmaWA7QFttR0rJnlEgLpSXd/NpaaA7m57enf/zVOPvnnbN36v8yd24sPP3xUrSYRkRjFGUrzgO5m1tXMmhE6LhRVKlMEXB19Hwn8zcOf+kXAqKh3XlegOzA3et80GVjm7v8dY90BMMvm+ONvpbDwLVq16sfy5dfx1lvD2bPn/bgvLSKSkWILpegd0U3ALEKHhBnuvsTMJpjZRVGxyUAHM1sJ3AqMi45dAswAlgIvAje6exkwGLgS+LyZLYw+F8R1DxVatOhOQcFsunefyPbtf2fevN6sW/cr3MtrP1hERJKmlWcP0+7da3j33RvYuvUl2rU7mx49HqF585Mb5NwiIulCK882Es2bd6Fv37/Qo8cj7NixgHnz+rB27QOEhpyISOZIYoKEW81sqZm9ZWZ/NbMTaz2nWkp1t2dPMe+++3W2bHmeNm3OokePKbRseWqDX0dE5EirraUUTWjwLvBFQue0ecBod1+aUOYc4A1332Vm3wDOdvdLa7quWkr1kJ/fmT59/shppz3Brl3LmT+/gA8+uJfy8sMfFyUi0sjUOkGCu892913Rz9cJPalrpFCqJzPj2GMvZ8CAJXTocCGrV49jwYJB7Nz5dqqrJiJSHzkVExBEnzGV9iczQUKi64E/13ZRhVIDycs7jt69n6Fnz9+xd+8HvPnmGaxZ8yPKy/elumoiInVRWjEBQfSZVGl/MhMkhIJmVwCFwE9ru6hCqYEdc8xIBgxYytFH/xtr1tzJm28OYMeON1NdLRGRhpbMBAmY2ReA24GL3H1vbSdVKMWgWbPP0LPnk/Tu/QdKSjbx5ptnsnr19ykr25PqqomINJRaJ0gws/7AbwiBtDGZk6r3XcxKSraxatWtbNjwKC1anEaPHlNo23ZQSuoiIpKsZMYpRZMXPABkA1Pc/W4zmwDMd/ciM3sJ6AN8GB3ygbtfVM3pwjkVSkfGli2zWL78BvbuLaZz5+/QtetdZGe3SGmdRESqk6rBswqlI6i09BNWrx7H+vW/Ij//ZE49dTLt2g1NdbVERA6hGR0yQE5OG0455WH69ZsNOAsXns27795EaemOVFdNRCQtqKWUImVln/Leez+guPhB8vJOoEeP/+Goo76Y6mqJiABqKWWc7OyWdOt2P/37v0ZWVj5vvXUu77zzNUpKtqW6aiIiKaOWUhooK9vD++//iA8+uI9mzTpyyim/5jOf+VKqqyUiGUwtpQyWnZ3PSSf9hNNPf4Pc3KNYvPjLLFt2JSUlm1NdNRGRIyrWUEpiWvM8M5se7X/DzLok7BsfbV9uZuclbJ9iZhvNbHGcdU+FNm0KOeOM+Zx44n+yceM05s7tyaZNz6S6WiIiR0xsoRRNaz4ROB/oCYw2s56Vil0PbHX3bsD9wL3RsT0Jo4N7AcOBh6PzAfw22tYkZWU1o2vXOznjjPnk5XVmyZKRLFnyb+zbl9RgaBGRRi3OllKt05pHv6dG32cCw8zMou3T3H2vu78HrIzOh7vPAbbEWO+00KpVP04//Q26dv0xH39cxNy5Pfnoo6fIhHeAIpK54gylZKY131/G3UuB7UCHJI+tkZmNqZhyvbS0ca5vlJWVw4knjqewcCEtWnRn2bLLWbx4BHv3HjLnoYhIkxBnKCUzrXl1ZZKeEr067j6pYsr1nJycwzk07bRseRr9+7/GySf/nK1b/5e5c3vy4YePqtUkIk1OnKGUzLTm+8uYWQ7QlvBoLqkp0TOJWTbHH38rhYVv0apVP5Yvv4633hrOnj0fpLpqIiINJs5QqnVa8+j31dH3kcDfPPz1vwgYFfXO6wp0B+bGWNdGo0WL7hQUzKZ794ls3/535s3rxbp1v8a9PNVVExGpt9hCKXpHdBMwC1gGzHD3JWY2wcwqpi6fDHQws5XArcC46NglwAxgKfAicKO7lwGY2dPAP4AeZlZsZtfHdQ/pyiyLTp2+yYABi2nT5ixWrPgGixYNY/fuVamumohIvWhGh0bO3dmwYQorV96Kewldu/6Yzp1v5kAPehGRw6elK2LUlEOpwt6961i+/N/ZsuV52rT5F3r0mEzLlqemuloi0khpmiGpl7y8TvTp80dOO+0Jdu16h/nzC/jgg3spL2+c3eFFJDOppdQE7dv3Ee++eyMff/wMrVqdwamnPkqrVn1SXS0RaUT0+C5GmRZKFTZunMmKFd+ktHQbJ5xwG23a/As5OW3Izm5NdnYbcnJak53dmqysZqmuqoikGYVSjDI1lAD27fuYlStvYePGJ6stY5YXBVQIrIrgOjTAKrZXX1YBJ9I0KJRilMmhVGH37lXs27eJsrJPKCvbQWnpwf8sK/uE0tId1e4vL9+V1HUODbi6h50CTiR1FEoxUijVX3l5KWVlO5MKsEP3H1w2+YBrVmWAhW1tyclpR05OxT8Tvx/YlpXVgjDHr4gcDoVSjBRK6SWZgKs57LZTWrqd0tJtuJfUcrXspMKrupDLzm5DVlbjnjtRpC5SFUr6r02OuKysHLKy2pGb265e53F3ysv3UFq6bX9IhcDadtC2A/8M33ftend/ubKynbVeJzu7Va3hVVPIZWXlq7UmkiS1lCSjhVbbJ9WG2IGQqz7soKzGa4THkIeGWHZ2W7KzW2CWi1kuWVm5+79X9dssp9YyB37n1FJGM35IzdRSEkmB0Go7itzco+p0vLtTVvZpFeF1aIgltuL27l0XbduFewnupdGjyCP1l0SLIezy93+ys5sn/K7u+8G/K44xa6aWZQZTKInUg5mRk9OKnJxW5OUd1jqUVXIvo7y8JAqq8Dnwu7SKbUe2THn57uh3aRXH7aWsbDfl5buB+sxab5WCq/pgOzj8agrAg8tVF5ohYBWIqaRQEkkjZtlkZ2cD+amuSr2Ul5dGAbYn+lT9PYRYzWWqOqa0dFu1x9SvtZlFVlYeB9YZtYSQsoO2A9G+Q/dXd8zB2xvqmEP3VxyTm3s0/fvPSebG04ZCSUQaXHgs2hpofUSv6+4JLbqqgq+m8DvwveJcBwLuwPcD7+EP3n/w9qqOOXR/dedqqGNyctom868trSiURKTJMDPMmkUDrxvfH8iiWcJFRCSNxBpKZjbczJab2UozG1fF/jwzmx7tf8PMuiTsGx9tX25m5yV7ThERabxiCyULAyEmAucDPYHRZtazUrHrga3u3g24H7g3OrYnMAroBQwHHjaz7CTPKSIijVScLaWBwEp3X+3u+4BpwIhKZUYAU6PvM4FhFrqNjACmufted38PWBmdL5lziohIIxVnKHUC1ib8Lo62VVnG3UuB7UCHGo5N5pwAmNkYM5tvZvNLS7X6qohIYxBnKFU1Aq3yAILqyhzu9kM3uk9y90J3L8zJUSdDEZGGVp9+A9WJM5SKgeMTfncG1ldXxsxyCH04t9RwbDLnFBGRmNWn30BN4gyleUB3M+tqZs0IHReKKpUpAq6Ovo8E/uZh9FcRMCpK2a5Ad2BukucUEZH41affQLVie67l7qVmdhMwC8gGprj7EjObAMx39yJgMvC4ma0ktJBGRccuMbMZwFKgFLjR3csAqjpnbXXZtWuXm9nuOt5KTlSHpqCp3EtTuQ/QvaSjpnIfUL97aW5m8xN+T3L3SQm/q3rHf2alcxzUb8DMKvoNfFxThWPj7i8AL1TadkfC9z3Av1Vz7N3A3cmcM4l61LlFaGbz3b2wrsenk6ZyL03lPkD3ko6ayn1A7PdSn34D1dKMDiIiUhf16TdQLYWSiIjURX36DVRLfaVrN6n2Io1GU7mXpnIfoHtJR03lPiDGe6lPv4GaZMRy6CIi0jjo8Z2IiKQNhZKIiKQNhVI1msoSGWY2xcw2mtniVNelvszseDObbWbLzGyJmX071XWqKzPLN7O5ZrYoupcfpbpO9RHN4v9PM/tTqutSH2a2xszeNrOFlcboNDpm1s7MZprZO9F/M2eluk7J0DulKkTTZ7wLfJHQpXEeMNrdl6a0YnVgZkOAncBj7t471fWpDzPrCHR09wVm1hp4E7i4kf7vYkBLd99pZrnAa8C33f31FFetTszsVqAQaOPuX0p1ferKzNYAhe5e7eDOxsLMpgKvuvsjUe+4Fu6+LdX1qo1aSlVrMktkuPscahkX0Fi4+4fuviD6vgNYRjWzxKc7D3ZGP3OjT6P8G6KZdQYuBB5JdV0kMLM2wBBC7zfcfV9jCCRQKFUn6SUyJDWi2Yb7A2+ktiZ1Fz3yWghsBP7X3RvrvTwA/AdQnuqKNAAH/mJmb5rZmFRXph5OAjYBj0aPVR8xs5aprlQyFEpVO+ypMeTIMbNWwDPALe7+SarrU1fuXubuBYSR8APNrNE9XjWzLwEb3f3NVNelgQx299MJM1/fGD3+boxygNOBX7l7f+BToFG8G1coVU1LZKSp6P3LM8CT7v5squvTEKLHKi8Dw1NclboYDFwUvYuZBnzezJ5IbZXqzt3XR//cCDxHeJTfGBUDxQmt75mEkEp7CqWqaYmMNBR1DpgMLHP3/051ferDzI42s3bR9+bAF4B3Ulurw+fu4929s7t3Ifx38jd3vyLF1aoTM2sZdaAhetR1LtAoe626+wZgrZn1iDYNI6y6kPY0zVAVqps+I8XVqhMzexo4G/iMmRUD/+nuk1NbqzobDFwJvB29iwH4fjRzfGPTEZga9fTMAma4e6PuTt0EHAs8Fy33kwM85e4vprZK9XIz8GT0F+vVwLUprk9S1CVcRETShh7fiYhI2lAoiYhI2lAoiYhI2lAoiYhI2lAoiYhI2lAoiaQxMzu7sc+8LXI4FEoiIpI2FEoiDcDMrojWR1poZr+JJlvdaWY/N7MFZvZXMzs6KltgZq+b2Vtm9pyZtY+2dzOzl6I1lhaY2cnR6VslrIvzZDSzhUiTpFASqSczOw24lDCZZwFQBlwOtAQWRBN8vgL8Z3TIY8Bt7t4XeDth+5PARHfvB/wL8GG0vT9wC9CTMPvz4NhvSiRFNM2QSP0NA84A5kWNmOaE5SjKgelRmSeAZ82sLdDO3V+Jtk8FfhfNudbJ3Z8DcPc9ANH55rp7cfR7IdCFsCigSJOjUBKpPwOmuvv4gzaa/bBSuZrm9KrpkdzehO9l6L9bacL0+E6k/v4KjDSzYwDM7CgzO5Hw39fIqMxlwGvuvh3Yamafi7ZfCbwSrQtVbGYXR+fIM7MWR/QuRNKA/sYlUk/uvtTMfkBYsTQLKAFuJCys1svM3gS2E947AVwN/DoKncTZm68EfmNmE6Jz/NsRvA2RtKBZwkViYmY73b1Vqush0pjo8Z2IiKQNtZRERCRtqKUkIiJpQ6EkIiJpQ6EkIiJpQ6EkIiJpQ6EkIiJp4/8D0X6cfNYCYU8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# 모델 학습 과정\n",
    "fig, loss_ax = plt.subplots()\n",
    "\n",
    "acc_ax = loss_ax.twinx()\n",
    "\n",
    "loss_ax.plot(hist.history['loss'], 'y', label='train loss')\n",
    "loss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\n",
    "\n",
    "loss_ax.set_xlabel('epoch')\n",
    "loss_ax.set_ylabel('loss')\n",
    "\n",
    "\n",
    "loss_ax.legend(loc='upper left')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "score_list['50'] = score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "score_list"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "score_list = dict()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Bidirectional LSTM\n",
    "---"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# keras 활용한 Bi-LSTM 모델 생성\n",
    "\n",
    "Bimodel = Sequential()\n",
    "Bimodel.add(Bidirectional(LSTM(50,return_sequences=True,input_shape=(20,4))))\n",
    "Bimodel.add(Bidirectional(LSTM(50)))\n",
    "Bimodel.add(Dense(1,activation='linear'))\n",
    "Bimodel.compile(loss='mse',optimizer='adam')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From /Users/yangyoonji/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
      "Instructions for updating:\n",
      "Use tf.cast instead.\n",
      "Train on 3444 samples, validate on 167 samples\n",
      "Epoch 1/100\n",
      "3444/3444 [==============================] - 85s 25ms/step - loss: 0.0016 - val_loss: 0.0071\n",
      "Epoch 2/100\n",
      "3444/3444 [==============================] - 77s 22ms/step - loss: 5.0811e-04 - val_loss: 0.0047\n",
      "Epoch 3/100\n",
      "3444/3444 [==============================] - 77s 22ms/step - loss: 4.1713e-04 - val_loss: 0.0036\n",
      "Epoch 4/100\n",
      "3444/3444 [==============================] - 77s 22ms/step - loss: 3.6805e-04 - val_loss: 0.0034\n",
      "Epoch 5/100\n",
      "3444/3444 [==============================] - 77s 22ms/step - loss: 3.2470e-04 - val_loss: 0.0035\n"
     ]
    }
   ],
   "source": [
    "early_stopping = EarlyStopping() \n",
    "hist = Bimodel.fit(X_train, y_train, validation_data=(X_val, y_val),batch_size=5, epochs=100,callbacks=[early_stopping])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "226/226 [==============================] - 1s 3ms/step\n"
     ]
    }
   ],
   "source": [
    "score = Bimodel.evaluate(X_test, y_test, batch_size = 5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.005031266614415609\n"
     ]
    }
   ],
   "source": [
    "print(score)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "predict = Bimodel.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAIMCAYAAAD2G2pnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8Y2d18PHf1WLJsmR5H9vj8dizZfYtk4RkkknI1iSQsJMGKKQlCWFp6UJpoeWlpeWFlwKhYUuThqU0hLIlgRIChOzbkJnMltk3e+wZ77K1Wvt9/3h0ZcmSbM+Md53v55OPYunq+pHHy9G55zlH03UdIYQQQgghip1pphcghBBCCCHEbCCBsRBCCCGEEEhgLIQQQgghBCCBsRBCCCGEEIAExkIIIYQQQgASGAshhBBCCAFIYCyEEEIIIQQggbEQQgghhBCABMZCCCGEEEIAEhgLIYQQQggBgGWmPnFNTY3e0tIyU59eCCGEEEIUiZ07d/brul473nEzFhi3tLSwY8eOmfr0QgghhBCiSGia1j6R46SUQgghhBBCCCQwFkIIIYQQApDAWAghhBBCCGAGa4zzicVidHZ2Eg6HZ3op84bdbqepqQmr1TrTSxFCCCGEmNVmVWDc2dmJy+WipaUFTdNmejlznq7rDAwM0NnZSWtr60wvRwghhBBiVptVpRThcJjq6moJiieJpmlUV1dLBl4IIYQQYgJmVWAMSFA8yeTrKYQQQggxMbMuMJ5LnnnmGV566aXzOofT6Zyk1QghhBBCiPMhgfF5mIzAWAghhBBCzA4SGOfx1re+lQsvvJA1a9Zw//33A/DEE0+wefNmNmzYwDXXXENbWxv33Xcf99xzDxs3buT555/n9ttv56c//Wn6PEY2OBAIcM0117B582bWrVvHY489NiOvSwghhBBCFDarulJk+udf7ufAGd+knnN1YzmfvXnNuMd95zvfoaqqiuHhYS666CLe8pa3cOedd/Lcc8/R2tqKx+OhqqqKu+++G6fTySc+8QkAHnzwwbzns9vtPPLII5SXl9Pf388b3vAGbrnlFqn/FUIIIYSYRWZtYDyT7r33Xh555BEAOjo6uP/++9m2bVu65VlVVdVZnU/XdT796U/z3HPPYTKZOH36ND09PdTX10/62oUQQgghxLmZtYHxRDK7U+GZZ57hySef5OWXX8bhcHDVVVexYcMGDh8+PO5zLRYLyWQSUMFwNBoF4KGHHqKvr4+dO3ditVppaWmRFmpCCCGEELOM1BiP4vV6qaysxOFwcOjQIV555RUikQjPPvssJ0+eBMDj8QDgcrnw+/3p57a0tLBz504AHnvsMWKxWPqcdXV1WK1Wnn76adrb26f5VQkhhBBCiPFIYDzKDTfcQDweZ/369XzmM5/hDW94A7W1tdx///28/e1vZ8OGDdx6660A3HzzzTzyyCPpzXd33nknzz77LBdffDHbt2+nrKwMgPe+973s2LGDLVu28NBDD7Fy5cqZfIlCCCGEECIPTdf1GfnEW7Zs0Xfs2JF138GDB1m1atWMrGc+k6+rEEIIIYqZpmk7dV3fMt5x42aMNU37jqZpvZqmvV7gcU3TtHs1TTumadpeTdM2n8uChRBCCCGEmEkTKaX4HnDDGI/fCCxP/XcX8O3zX5YQQgghhBDTa9zAWNf15wDPGIe8BfgvXXkFqNA0rWGyFiiEEEIIIcR0mIzNdwuBjoyPO1P3CSGEEEKIeSQST/Cme5/nkV2dM72UKTEZgXG+8W15d/RpmnaXpmk7NE3b0dfXNwmfWgghhBBCTJed7YPsP+Pjn35xAE8wOuaxA4EIt3/3D3R5h6dpdedvMgLjTmBRxsdNwJl8B+q6fr+u61t0Xd9SW1s7CZ9aCCGEEEJMl5eODWA2aQQjcb70xKExj336cB/PHO7j6UNzJxk6GYHxL4D3p7pTvAHw6rreNQnnnRecTicAZ86c4Z3vfOeYx37ta18jFAqlP77pppsYGhqa0vUJIYQQQkzUC8f62dDk5k+3tvA/OzrY3VE4TtnZrraoHezyTdfyzttE2rU9DLwMXKBpWqemaR/UNO1uTdPuTh3yOHACOAY8AHxkylY7SyQSibN+TmNjIz/96U/HPGZ0YPz4449TUVFx1p9LCCGEEGKy+cIx9nYOsXVZDR+/dgW1Thv/57HXSSbzz8TY2T4IwIH5FBjrun6brusNuq5bdV1v0nX9QV3X79N1/b7U47qu6x/VdX2pruvrdF3fMd45Z7O2tjZWrlzJBz7wAdavX8873/lOQqEQLS0tfO5zn+Pyyy/nJz/5CcePH+eGG27gwgsv5IorruDQIXU54eTJk1x66aVcdNFFfOYzn8k679q1awEVWH/iE59g3bp1rF+/nq9//evce++9nDlzhje+8Y288Y1vBNSI6f7+fgC++tWvsnbtWtauXcvXvva19DlXrVrFnXfeyZo1a7j++usZHp47dTxCCCGEmDteOT5AUoety2pw2iz81XUr2NvpzRv4ekMxjvQEKDGbONTlKxg8zzaWmV5AQb/+e+jeN7nnrF8HN35x3MMOHz7Mgw8+yNatW/mzP/szvvWtbwFgt9t54YUXALjmmmu47777WL58Odu3b+cjH/kITz31FB//+Mf58Ic/zPvf/36++c1v5j3//fffz8mTJ9m1axcWiwWPx0NVVRVf/epXefrpp6mpqck6fufOnXz3u99l+/bt6LrOJZdcwpVXXkllZSVHjx7l4Ycf5oEHHuDd7343P/vZz3jf+953nl8oIYQQQohsLx0fwG41salZXc3e0KRuT3lCrF3ozjr2tVMqW3zTunoe3X2GjsEQi6vLpnfB52AyaoznnUWLFrF161YA3ve+96WD4VtvvRWAQCDASy+9xLve9S42btzIhz70Ibq6VFn1iy++yG233QbAn/zJn+Q9/5NPPsndd9+NxaLel1RVVY25nhdeeIG3ve1tlJWV4XQ6efvb387zzz8PQGtrKxs3bgTgwgsvpK2t7TxeuRBCCCFEfi8e6+fi1mpsFjMAzdUOANoHQjnH7mwfxGzSuPWiZmDu1BnP3ozxBDK7U0XTtLwfl5WpdzrJZJKKigp27949oeePpuv6uMeMPr4Qm82W/n+z2SylFEIIIYSYdD2+MEd7A7zzwqb0fU6bheqyEk55cgPjHe0eVjeUs6m5ApMGB874uGHt7J//JhnjPE6dOsXLL78MwMMPP8zll1+e9Xh5eTmtra385Cc/AVTgumfPHgC2bt3Kj370IwAeeuihvOe//vrrue+++4jH4wB4PGrXpsvlwu/35xy/bds2Hn30UUKhEMFgkEceeYQrrrhiEl6pEEIIIcSIZFLnvmePc6g7O8P70nG152nrsuxyz0VVDjpGBcaxRJLdHUNcuLgSu9VMa00ZB7py45vZSALjPFatWsX3v/991q9fj8fj4cMf/nDOMQ899BAPPvggGzZsYM2aNTz22GMA/Pu//zvf/OY3ueiii/B6vXnPf8cdd9Dc3Mz69evZsGEDP/zhDwG46667uPHGG9Ob7wybN2/m9ttv5+KLL+aSSy7hjjvuYNOmTZP8qoUQQghR7I70+vnirw9x89df4FvPHCOeSLLr1CA/3H6KSoeV1Q3lWcc3VzlyMsYHu3yEY0m2tFQCsLrRPWdKKbSxLtNPpS1btug7dmQ3sDh48CCrVq2akfUY2traePOb38zrr78+o+uYTLPh6yqEEEKI2e/VNg/vuu9lVta7ONTtx2mzEIjEKTGb+KvrVvDhq5ZmHf/l3xzm288e59C/3IDVrPKt33nhJJ/73wO8/KmraXCX8q1njvGlJw6z57PX4y61zsTLQtO0nbqubxnvuNlbYyyEEEIIIaaVPxwD4AtvX8cpT4jfH+zliuU1XL+mPm9Q21ztIJHU6RoKpzfj7Tw1yMKKUhrcpQCsSmWZD3X5uGRJ9TS9knMjgfEoLS0t8ypbLIQQQggxUf6w2v/kslt5y8aFvGXjwjGPb65SwfApT4jmage6rrOzbZCLW0c6bhnlFwfmQGAsNcZCCCGEEAIYCYzL7RPLnWYGxgCnh4bp9oW5cHFl+pg6l42qspI5UWc86wLjmap5nq/k6ymEEEKIiQpEVGDsnGBgvKDcTonZRLsnCIyMgc4MjDVNY1WDi4NzoDPFrAqM7XY7AwMDEsxNEl3XGRgYwG63z/RShBBCCDEH+MMxzCaNUqt5QsebTRpNlaXplm072wcpKzGzst6Vddyq+nIO9/iJJ5KTvubJNKtqjJuamujs7KSvr2+mlzJv2O12mpqaxj9QCCGEEEUvEI7jtFnOahBZc/VIy7YdbYNsbK7AYs7Ovb5t80I2L64kOctzn7MqMLZarbS2ts70MoQQQgghipI/HMc1wTIKAJJJmqscvNY+SCAS51C3j49dvTznsDWNbtY0uidxpVNjVpVSCCGEEEKImeOPqIzxhOz9MfzfBt7T8xVc4S6ePdxHUoctGfXFc40ExkIIIYQQAlA1xuX2CQzh8JyA//0rcNaxovuXPG37a2JPfQFNg43NFVO/0CkigbEQQgghhABUV4pxSykSMfjZnaCZ4fbHOX7bizyXXM+bB3/ARbXJiQXWs5QExkIIIYQQAlA1xuO2anv2S3B6B9x8D1QsorF5KffE34VFS3Kbe9/0LHSKSGAshBBCCCGACWy+O70Tnv8ybLgN1r4DgDKbhR7HctqTdVwWeWGaVjo1JDAWQgghhBCA0a6tQClEPAqP/Tk4F8CN/y/roUXVZTyevIS6/u0Q8kzDSqeGBMZCCCGEEIJwLEE0kSycMX7hHujdD2++B+zZrddW1LnY4diGlozD4cenYbVTQwJjIYQQQgiRHgedNzDuOQDP/Zsqn7jgxpyHP33TKv757vdCRTPsf3SqlzplJDAWQgghhBD4w2MExk/9C9hccOOX8j7X7bDSVFUGq98CJ56B4cEpXOnUkcBYCCGEEEIQSAXGeWuMu/bA8uuhrGbsk6x+GyRjcPjXU7DCqSeBsRBCCCGEwB+OAXkyxpEA+E5DTe6o5xwLN0P5QjjyxBSscOpJYCyEEEIIIfBHjIzxqMB44Ji6nUhgrGnQeiWcfB6SyUle4dSTwFgIIYQQQqRrjHMm1/UfVbc1KyZ2otZtMOxRHSzmGAmMhRBCCCEEgUKlFANHQTNB1ZKJnah1m7o9+dwkrm56SGAshBBCCCHSGeOckdD9R6BiMVhsEzuReyFUL5PAWAghhBBCzE2BSBy71YTVPCo87D868TIKQ+s2aHsREvHJW+A0kMBYCCGEEELgyzcOOplUm+8msvEuU+s2iPrhzK7JW+A0kMBYCCGEEELgD8coH11G4e2AePjsA+MWo8742clZ3DSRwFgIIYQQQhCIxPPUF59lRwpDWTUsWDfn6owlMBZCCCGEEPjD8fwdKeDsA2NQ5RQd2yEWPv/FTRMJjIUQQgghBIFwPHe4R/8RsFeAo/rsT7jkSlWG8YO3wa6HIOKfnIVOIQmMhRBCCCEE/nAMV77hHjUr1ES7s7XsOrj2nyDQDY99BL58AQwPTcZSp4xl/EOEEEIIIcR854/kKaXoPwrLrj23E5pMcPlfwda/hM5X1X+lFee/0CkkgbEQQgghRJFLJnUCkTiuzFKKsFdle2uWnd/JNQ0WXaz+m+WklEIIIYQQosiFYgl0nexSiv5j6vZcNt7NURIYCyGEEEIUOX84BowaB30+HSnmKAmMhRBCCCGKXCCsRjdn1Rh7ToBmgorFM7Sq6SeBsRBCCCFEkfOlAuOsdm1DHeBqAEvJDK1q+klgLIQQQghR5AIRI2OcUWPs7QD3ohla0cyQwFiIlE/9fC+P7T4908sQQgghpp1RY5xVSjHUDhXFFRhLuzYhgB5fmIf/0MH/vNqBo8TCdasXzPSShBBCiGnjH11jnEyA74xkjIUoRrs71CSeOpedj/3wNV5t88zwioQQQojpExhdY+zvgmS86DLGEhgLAezpGMJi0vj5Ry5jYUUpH/zeq/T6wzO9LCGEEGJa+MMxNA3KSlKB8VCHunU3z9yiZoAExkKgMsYrG1w0VpTyr29biy8c51CXf6aXJYQQQkwLfySO02bBZNLUHd5UYFwhgbEQRSWZ1Nnb6WXjIjW/vbrMBozUWwkhhBDz0dEePz/b2Qmov3lZ46CHTqlbd9MMrGzmyOY7UfSO9wUIROJsaFKBsbHxwNihK4QQQsxH//VyOz94pR2LWSMQjue2anPUQIlj5hY4AyQwFkXP2Hi3qXl0YCwZYyGEEPOXkQD61M/3saDcTlVZxiCPoY6i23gHUkohBHs6h3DZLCypcQJq44GmScZYCCHE/BaIxGl027FbzZzsD47qYXyq6Fq1gQTGQrC7Y4j1i9zpDQcmk4bTZkmPxxRCCCHmo0AkTlOlg3tu3QhkTL3TdfB2Ft3GO5BSClHkwrEEh7r83LVtSdb9LptFSimEEELMa4FInDqXnStX1PLt925mUVWqnjjYD/HhoswYS2Asitr+M17iSZ0NqY4UBpfdKqUUQggh5rVAOE5rjQoFb1zXMPKAN9WRQmqMhSguuzu8AGzKCYwlYyyEEGJ+C6R6F+cYKs4exiCBsShyu04N0uC2U1duz7rfZbfgj0jGWAghxPwViMSzN9wZjOEeRVhKIYGxKFq6rvPKCQ8Xt1blPKZKKSRjLIQQYn6KJZKEY8nCGWNbOZRW5D42z0lgLIrWkZ4A/YEIW5fW5DwmpRRCCCHms2BE/Y0ryxcYezuKMlsMEhjPOsmkTjiWmOllFIUXj/UDcNmy6pzHjM13+vNfhW9dBkn5NxFCCDF/GMkfV96M8ami3HgHEhjPKoPBKLd88wVue+CVmV5KUXjp+ACLqx00VeaOu3TZLZgSEXjpXujdD52vzsAKhRBCiKkRjKrA2JmvxnhIMsZihg0EItz2wCu8ftrHrlNDDAQiM72keS2eSLL9xACXLc3NFgOU2y281fwi2vCguuPgL6dxdUIIIcTUCoQLlFKEvRDxSsZYzBxPMMp7HtjOyf4gf3ntcgBebRtMP+4djvHZx14nEJGa18my77QXfyTOZXnqi0FdWrrd/ASR6tWw7Do4+As1CUgIIYSYB/ypmCJn891Q8XakAAmMJ8Vju0/zmUdfP6fnxhJJPvLQTtoGgnzn9ov48FVLKbGYeLXNk3X+77/czo6M+8T5een4AEDBjHGzbyerTB30rr4dVt+i6q26903jCoUQQoipY2y+y2nX5i3eHsYggfGkeOpQL4/uPn1Oz/3C44d45YSHL7x9HVuX1WCzmNm4qCIrCH7yYC8AwYhsAJssLx7rZ2W9i2qnLe/jLcf/mwHdxamFb4YLbgLNJOUUQggh5g2jlKJgxlgCY3GuhkIxApE4yeTELrXHE0kCkTg/3tHBd148yZ9ubeHtm5vSj1/cUsXrZ3wEI3ECkTivpLKbQSmlmBThWIId7YMFyygYbKey80keTlyNL2aCshpYvFUCYyGEEPNGoFC7Nu8psNihrHYGVjXz8mxFFGdraDiGrkMolsjfKDvDJ3+6hx/v6Ex/fElrFZ++aVXWMRe1VvGNp4+x69QQ/nCMaCIJjNQDifPzWvsg0XiSrXnatAGw/xE0PcnD8av5uNHLeNXN8OtPQv9RqFk+fYsVQgghpoC/YMb4FLibQNNmYFUzTwLjSeANRQF1WWK8wHjXqSFW1rt4x+YmnHYLb1rfgNWcnbjf3FyBSYM/tHk4PThMud2CLxxPX/YQ5+e5o/1YTFreiXcAHPwl8fqNnG6rxRdOjYVe+SYVGB/8BVzxN9O3WCGEEGIKBCNxHCVmzKZRAXARt2oDKaWYFEPDKnjyG0HUGAZDUTY1V3LntiXcdnEz5XZrzjEuu5VVDeVsPzHA04d7uXplHXarKd1zUJyf5470sXlxJa48X3t8Z+D0DkyrbgZG3lHjboK61XBKekwLIYSY+wKReOGpd0Xaqg0kMD5viaSO1wiMxyl10HWdoVCMSkeegGyUi1qq2H7SgycY5drVC3DaZETxZOjzRzjQ5ePKFQVqpw79CgDT6ltyv+Y1y2Hg+DSsUgghhJha/kg8d+pdbBiCfeAuzo13IIHxefOHY+n2tuOVOvgjceJJnUpHybjnNS7zW0wa21bU4rRZZPPdOdB1PWtT5PNH+wDYtrxAYHzwF1BzAdSuSAXGGVcBqpbCUDsk5N9BCCHE3BaMxHOn3nlTe6AkYyzO1VBoJHAaL6M7GFS1yJVl4wfGW1oqAXjDkmrK7VbKbBYZ8HEO7vyvnXz0h6+lP37uSB/VZSWsaSzPPTjkgbYXYdWbAdXbMevftHopJOMqOBZCCCHmsLz7ooZOqdsirjGWzXfnyagvBghExq4xHkwF0RMppahz2bn7yqVcsVy1FHPaLLL57ixF40meP9pHJJ7kDyc9bFlcyfNH+7l8eQ2m0ZsNAA7/GvSE6kBBKjCOjMoYA3hOqCBZCCGEmKMCkTiLyhzZd6aHexRvYCwZ4/M0lOpIARPIGKeOrZhAKQXA39+4kq3LVGDsskvG+Gwd6vYRiatWd//2m0Mc6PIxEIyOUUbxS/UuuWEjoDZB5mSMQeqMhRBCzHn+cJ4a46EO0MzgapyZRc0CEhifp3MppaiaQCnFaOlSiu59cOz3Z/38YrS7YwiAD1+1lFfbBvn8rw4CcMWKPIM9EnE48TRccGO6d2NOKUVZLZS4wCOBsRBCiLktGM1TYzx0CsoXgrl4CwqK95VPksyM8XgZ3bMppQBg+/0Q8cLCLSxLDnLT8ANw30tqPPHfHAFncU6lmahdp4aoc9n4q2tX8Ku9Xbx8YoBVDeXUuey5Bw+2QTyczhaDkTHOKKXQNKheIhljIYQQc5qu6/lrjIu8VRtIxvi8GTXGNU7buH2Mh0JRTBp5exfnCHng138LT/0r/OCt/PmRP+WK5E7Y/H7Qk3BIxhOPZ9epQTY1V1BiMfHX160AYFu+bDFA/2F1W7syfZcxWCVL1VLJGAshhJjTIvEk8aSe28e4yId7gATG520oFMNlt1DhsI6bMfYEo1Q4SvJv/BqtY7u6/eOH4X0/55mlf8eVkXuI3vg1qF4G+x+dhNXPX4PBKG0DITY1q+4et2xo5B/ftIrbL2vJ/4S+Q+q2dkX6LpfdQjSeJBJPjBxXvVRdaopHEUIIURx2tHl44LkT9PkjM72USWHEK67MUopEDPxnJGM80wuY67zDMSoc1gkN4BgKqWMnpP1FMJfA0qth2TWcXHIbfVQQjCZg9Vuh7XkI9k/CK5ifjPrijYsqADCZNO64YgkN7tL8T+g7rOqqbK70XcZkvKx/16olKmMvLduEEKJofOuZ43z+8YNc9sXf8xcP76LbG57pJZ0Xo8tVVimF74z6+yYZY3E+BkNRKkpLcjdqFTh2IsM9AGh/GRZeCFZVD2tc7ghE4rDmreqb96CUUxSy69QgJg3WN7kn9oS+Q1B7QdZdxjvp7MBYOlMIIUSxGQhGWbfQzXsvWcwT+7v5ym8Pz/SSzouRMc4qpZBWbYAExufNyAJPpJ2aJzjBwDgahK7d0Hxp+i5XZmC8YK0K0A5IOUUhuzqGWFlfjqNkAvtLk0noP5pVXwyZGeOM2nGjZZvUGQshRNEYDEZZWlvGP92yhutWLeC5o33ouj7+E2cpI+GT1a5tKBUYF/E4aJhgYKxp2g2aph3WNO2Ypml/n+fxZk3TntY0bZemaXs1Tbtp8pc6O6lSipIJDeAYCsUm1pGi81U1YW3xZem7jJYqgUhcdUdY81Y4+TwEB85r/fNRMqmzu2OITc0VE3uCtwNioYlljB3VYHOrIR9CCCGKwmAwmp5au21FDT2+CEd6AjO8qnMXTCXystq1GRljd9MMrGj2GDcw1jTNDHwTuBFYDdymadrqUYf9I/BjXdc3AX8MfGuyFzpbDYWiVJRac1t7jaLruiqlmEgP4/aXVUu2RRen70qXUhhB2uq3qilt0p0ix4n+AP5wPF1fPK6+1CWxmkKB8eS0bOvwhNjZ7jnr5wkhhJg50XgSfyROlcMIjFWr1OeO9M3kss6LcYU7q8Z4qB2cC9IlnMVqIhnji4Fjuq6f0HU9CvwIeMuoY3SgPPX/buDM5C1x9kom9azNd8FogkQy/6WV4ViCSDw5sVKK9hdVuYR9pD42q5QCoH4dVCyGo78779cxl53sD+INZb8h2dE2CJDuSDGudEeK7MC4PN/mOzjnlm1ff+ooH/rBzrN+nhBCiJljzCswElsN7lKW1zl57ujcDYz9eQNjadUGEwuMFwIdGR93pu7L9E/A+zRN6wQeB/58UlY3yV4/7eXd971M52BoUs7nD8dJ6uAutaazi4XqjCc83CMehc4dWWUUMGrzHajMZf06GDh2Hq9gbvMEo7z53ud527dfTE8V7PIO8+XfHmFpbRlLasomdqL+w1BWB46qrLvzllKAqjP2dkL87Nr2eIdj9AeieIfH7ncthBBi9vCEcqfWbltRy/aTHoajiUJPm9XSXSkySyl8p4u+jAImFhjna7o7Oi16G/A9XdebgJuAH2ialnNuTdPu0jRth6ZpO/r6pv+dlrvUyh/aPDy2u0BCO5mE138GYe+Ezjc0rH5YKhwl4wfGwZFjx9S1G+LDOYGx8c0bzDx/9VJV65qcmz+Y5+uB508QiiXo9Axz1w924AvHuPu/X2M4Gue+9104sX7RoEopRmWLYeSddN6MsZ6EwTZ0Xc+afjiWUOoX6KmByXljJoQQYup5Un+/M6/4bltRSzSeZPvJubnPJxiJY9Kg1GoeuXN4KCdBVIwmEhh3Apm59SZySyU+CPwYQNf1lwE7kDNiTNf1+3Vd36Lr+pba2ukfZ7yoysFFLZU8sut0/t2kOx6En/4Z/Dpnf2FeQ6kscEWpFadNZYILbcAbzPOOM6/2l9RtRkcKgLKSPEFa9TJIREcK5ouIJxjl+y+1cfP6Rr7y7g282jbI1V9+lj0dQ3zl3RtZvsA1/kkAdL1gYGwxmyi1mnNrx43OFAPH+M/nT3LZF58iFB174yWMvGlqGwhObG1CCCFm3GBQ/Q3I/Pt9SWsVNouJ547MzXkCgUicMpsFTctIIEV8Wb38i9VEAuNXgeWaprVqmlaC2lz3i1Fercs/AAAgAElEQVTHnAKuAdA0bRUqMJ6VxTdv29TEsd4A+8/4sh8Y6oAn/wlKnLDnh3B6/FpQYxy00a4NKLgBb9xSimQCXvoGPPNFVSLhrMt62GzScJSYszPS1cvUbX/xlVP85/MnGI4l+ItrlnHzhkY+fdNK+gMRPvbGZdywtn7iJ/J3qV8Go1q1GfL2p65R0/Hi3fv5zxdOEIom6JpAs/dQRGWM2yUwFkKIOcOTrjEe+fttt5q5uLVqztYZ+8Px7FZt8YhKtNnKCz+pSIwbGOu6Hgc+BvwGOIjqPrFf07TPaZp2S+qwvwHu1DRtD/AwcLs+Sxv8vWldAyVmE4/sOj1yp67Dr/5a3X7wt6re9IlPqY/HYFxCr3CUpEsd/OdSShHohQevg9/+Ayy5Ct7z47zncNoso0opUoFxkdUZD6ayxW9a18CyOvXu9q5tS3n2b6/ib65fMc6zUW+CfvMPasqP0ZEiT8YYUoFxZNSbHXs5VLbSc+RVenyqzngiY0JHMsZSSiGEEHPFYJ5SCoArV9RyrDfAmaHhmVjWeQlG4tn1xeFUslAC44n1MdZ1/XFd11four5U1/XPp+77P7qu/yL1/wd0Xd+q6/oGXdc36rr+26lc9PlwO6y8cWUtj+0+QzyRVHfu+ykc/S1c8xlYsEbddmxX9cZj8GZmjEe3UxtlMB1E58kYv/qfcGYXvONBuO1hKG/Mew6nzZIdeJfVqp66RRYYG7XFf3HN8qz7F1eXZV8WKuTFr8HL34Bvb1XlMzBGxtiad6KhXr8Orfv19L977wQCY6PcIjNjHI0n+Y9nj0+oFEMIIcT08wSjuOwWrObskGndQtU56njf3OtnHIjEsztSRFKBsV0C46KcfPe2TU30ByK8eDxVNP/iv6vyhYvvUh9vfC/Ur4fffRYShTsIGHVH7lQfY8izUStlKBTL+4MFwKHHYdElsO6dqttEAU77qIyxpql61yIKjHv9Yb77YhtvXt/IionWEWeKR9UbnpYr1O7bg78Ee4V6k5GHy27Bl+ff9Ix9GY3JM3xs6wJgYhnjYGrzXWbG+PmjfXzh14d4+tDcvBwnhBDznScYzbs/yLgCPBc7DflTNcZpEb+6lRrj4gyM37iyFneplZ+/1qnu8J+BpovAlNqdaTLDxXeCr1O15SpgaDiK06aC3ZHJdCM/IPs6velNfgXHQQ+2Q88+WPmmcdedd7pe9bKiCoy/+dQxookkf33dGCUTQx2w/X6VhR/dsePY72B4EC77c7jjSbjib9T/F3hDUp4a3KLrOh2eEIe7/fT6wjzaVQ3AB5YGKTGbxg2MY4kk0XiSshIzff5I+g3OrlNDgGozJ4QQYvYZDOX/++0uVQmxuRgYB8Kx9N4oYCRjLKUUWMY/ZP6xWczcsqGRH7zSzql+Pz8PeYiWVGLLPMgoZwj0QFVr3vN4Q7H0D4bDakbTRjLGh7p93PyNF/j6bZu4eUNj4al3hx9XtxeMP0W7zGbBExxVn1q9DPb9GGLDYC0d9xxzWYcnxA//cIp3b1lEa6EexboOj34Y2p5XH9vcsPXPYdvfqo/3/Ehlh5deDWYrXPN/xvycLruFzsFhrvjS03QOjgSv9ZTzUTvYBw5Q61pKr3/szXfGxrtVDeXsaB+kbSDImkY3uzrUMJLuCWzeE0IIMf08wSgLynOnwc3lwDgYSYwqpZCMsaEoA2OAT920ksXVDn77h/1o6HztZQ+V9uO8/9IW7FazGosI4O8ueI6h1NQ7AJNJUzXAqcD4aGqG+jOH+7h5QyNDoRjVzjyB8aFfqfpWowXYGFw2S26fZON5nhOqPnoeu+fJI5g0jY+Pqi3OcuQJFRRf/Y9Q0aLeNDz1r6qTROs29fiWD6qgeALWNbn57YEeVjeUc9e2JVSX2RgMRQlFYiRfqcLUvZca1+pxM8bBVA3x6kYVGLcPhFhZX85uI2Psk8BYCCFmo8FglJX1uZlUu9VEidmEb3ju7RFRNcYZfwfTm+8kMC7awNhRYuGOK5bwwQui8C0or6rn/z5+iO+80MZP7r6URc5Uy69Ab8FzDI26vJIZuJ7yqMzui8f60XUdTzDKsjpn9glCHtW3eOvHJ7TmsnyBcU0qSBw4Nq8D4+N9AR7ZdZo7r1hCvbvAHPdEDH77jyoI3vqXKvhd/Rb47o3w2MfgwttVO5oNt0748773ksW895LF+R9sWwfd+6h1fmDcaYpG6cTqBvXLtW0gyNFef7ruWDLGQggxO3lC0byJLU3TKC+1zLmMcTKppwLjjOEeRsbY7p6ZRc0iRVljnEkLqQ14H77pEr57+0V0+8I8e6QPHNWgmSEwRsY4FMOd0WXClapHhZHOA92+MMf7gjlBNKA6YegJWPnmCa3V2HyX1QmvamTYxHz2+mkvug7vunCMcZU7vqO+Dtf9y0hG2FIC7/qeqht/6V6VnW/YODmLql8HPQeod5knkDFWAXBduY0ap432/lC6vvjCxZUSGAshxCw0HE0QjiXz7xECykut+OZYYByKqb9HWe3aIqmJv5IxlsCYUGpqTVkNly5VG6q8wzEwmdSQDX9PwacODceoKB0JjJ32kYxu+0CIxlRm8+lDvQSjidzhHod+Bc56aNw0oaU6bRZiCZ1IPDlyp80JroZ5P+TDmDKYt04b1GWgZ74ArVfCij/KfqxiEbztP9T/b3rfmJ0/zkr9ekhEWGHuxhOKEkskCx5qZIwdJRZaqh20DQTZdWqQSoeVS1qr6PGFSSRnZetvIYQoWp701Nr85XfuUuucyxgbm/izSikifjDbwGIr8KziIYFxMBUYO2qwW82UWEz4jOl1zgVq810eyaTOUCia1Zc4s2vEKU+IS5fW0Fzl4H/3qgnaFZlBXTwCx34PF9yogvAJMArlc+uM539nCuMXj7u0QG1w+0uq28S2T+QPfFf8Efzl63DpxyZvUfXrAFiSOImuqw0ahRiBsdNmYXF1Ge0DIV47NcSm5koaKkqJJ3UGAuO3fBNCCDF9Cg33MMzJwDjVPatsdCmFZIsBCYwhVUqBQ2WL3aXWkUJ6V33BUopANE5Sh4rSjBrj1PjgcEyNCF5c7WDrshr2dKpLFFWZP1h9hyEWhJbLJ7xUIzAO5tuAVwSBcVmJOX8faICu3YAGjZsLn6Ri0eRli0HVd5ttNIWPAtDrKxzYhlKlFI4SM601Drp9YY71BtjcXEFDarfzRMZKCyGEmD5GwiNfH2OYm4Gx0STANXrynQz3ACQwVhljm1vVogLldktGxrhwKYU3dWk/u8ZYTabrSG28W1zt4PJlNenHs0opeg+q27PYMGc0484ZIlK9HIY9ajPfPOUdjhXOFgN07VGBqs1Z+JjJZrZC3SqqAkcA6AsUDmyNLH9ZKmNs2NRcmd5MKIGxEELMLsbU2kJlfHMxMA6m2ofmlFJIxhiQwFjVGJdVpz/MKqR31qvHRw+JIOOHJSMLbJRStKcmmzVXObh0aXU6SVmRmTHu3Q8mqyqDmCDj3V1uxjh1jnmcNfYOxygfKzA+s3vyNtWdjfp1lA0eAPQxN+AZI5/LbBZaUoGxpsH6JjcNqcC4W4Z8CCHErDIQSGWMxyil8IVjJOfQHhGjlCJnJLQM9wAkMFYZY8dIVrfcnhEYuxaAnoRg7rheYzNYxaiuFMOxBCf6VQ/jxdVlVJWVsKZRfbNlXYrpPajaik2wny6MVWOc0ct4nhozYxzoVdMLGzZM76IAFl2CedjDu83PjFlKYbxDd1jNNFc7AFhR58Jlt1JVVkKJ2SS9jIUQYpYZDEUxaRRMzLhLrei6GrE8V/jDI3te0iJ+CYxTJDAOedL1xZDKGBulCmMM+TjRp4LfpsqRaXPGN9n+Mz5cNku6dOLKFbWUmE1ZQTS9B2HB6rNaalmhwNhZp27zBPDzReaUwRxde9Rt4wxkjDe+B1qv5HPW72Hu3VfwsGAkjqPEjMmk4S61srCiNN0FRdM06t12uoYkMBZCiNnEE4xS4SjBbMq/P8UImOdSyzYjhnCOrjGWUgpAAuOcUgp3qSW7lALyDvnY2+ml1mWjPmNMpPFNtv+Mj+ZqB1qqhuKjb1zGzz9ymZqoBxD2grcD6lad1VKNUoqcwNhWrsoyjA4b89CYGeOu3eo21SViWpnM8I4H8WvlvOv4p2F4KO9hwWgCR8nIL6FHPnoZn7zhgvTH9W679DIWQohZZjAUzW21mmEujoUOpve8ZHalkM13huIOjHU9fylFOKaGaLhSGeM8nSn2dA6xocmdDn7Vc1Xgc7wvkK4jBdW7du3CjGkyvYfUbd3ZTapLZ4xHb77TNJX1Ds3vwLii0C+nM7vVoJOZmtjjrOUb1f9AZbwXfnYHxHPbtgUj8axfQnUue1ag3Oi20+WTGmMhhJhNPMFowY4U6DqLvDt5r/lJKl78F3jlvuld3DnyR+KUmE3YLKm/Sboum+8yFHdgHPFBMgZlGYFxqZVYQmc4loCyVInCqM4U/nCME/1B1jdVZN1v7PDUddJ1pHn1HlC3Z5kxdljNaFqezXegXsM87UoRjScZjiXGyBjvnZn64gxDNZv5asmH4Njv4Gd/psZTZwhF45SVFJ7AXu8upccbmVMbOIQQYjaLJZKEY7mb58/GYDBWsIcxbS+w+rfv4fPW79B04AF44u8gMPtLGgPheHYZRSykpvBKjTFQ7IFxxnAPQ7ndqBeKg9UO9oqcIR+vn/ah67CuKTtDmdkTcHHVOIFxiRMqms9quSaThrPEkr/I31E9b0spxhzuEfKA99SMB8a1ThvfGd6G/kdfgIO/hEc+lNXNJBhJZF+2GqXBbSeaSKanLAkhhDg38USSH+/o4MovPc3mf/kdX//90XMOkD2hMTLGferq742RL/Cbyx5W9x1/6pw+z3QKRuK5G+9AMsYpxR0YG8M9MjLGRvCVPf0uu5Rib6eqI90wOmOcERiPnTE+qLLF5zBsoixjul72AzXztpTCCIzz7go26otnYuNdhrpyG+FYksCmO+G6z8HrP4Md30k/HozGs0onRqtPt2yTOmMhhDhXvf4wN/7783zyp3upddm4fFkNX/ndEa7+8jO8dmrwrM6l6zqDwWjBHsZ4TqJbHRzUmzlZslwl2Y49OQmvYmoFRgfGYZ+6nalyxFmmuAPjdMY4syuF+mbJatk2qpRi72kvTZWlOe8iXRnfaJlDHDj8BPzwVoiGVJ1Fz/6zLqMwOO0WgtF8GeMaCA6c0zlnO++wyqLmzRgbHSnq10/jinLVutR8+T5/BLZ+HMoXQuer6cdz3qGP0iBDPoQQ4rw9eaCXo70B7rl1A49+dCv3v38LP7rrDUQTSe575vhZncsfiRNP6lQXDIxPQGULFpMJbzgBy66B47+HZHISXsnU8YclYzyW4g6M82SM06UU4YzOFKNKKfZ2DrG+KfedlSv13BKzaaRbRWwYfvXXcOQJePFrqsPFsOesN94ZnDZL7uQ7UMF9xJtT2zofjFlKcWY3VCwGR9U0rypbrVP9e/caQz7qVqs3QCmhaAJHSeFSinoZ8iGEEOetfSBIidnELRsWpjfHv2FJNVcsr2VPZ/6uQYUMBnMHeWXxnECrWjIy/W7ZdSqu6Np1Xq9hqgUio2qMI151KzXGQNEHxnlqjEe3XnHWqcBYV5uiBoNROjzDORvvAOxWE2aTxqKq0pGeh394AHynVSuxF74GR36t7j/XjLHNUmDzXSrrHZp/WWPj36Ii3y+n7r3QMLPZYlClFMDI9LsFa6DvcPqNSiAST3cVyaemzIbFpEnGWAghzsPJ/iDN1Y6cvsMbmtz0+CJnVa7mSQXGeWuMk0kYbIOq1pHAeOnVgAZHZ3c5hdQYj624A+NgP1gdUDJSD2y0XPMNp4JPVz3Ew6qDBaqMAsibMdY0DafNMlJGMTwEz38Fll4Dt/2P6nn7xKfUYwvOPWOc08cYRoL7ebgBzxsqkDFOJmGo46zGak+VWufowHit6njSfxRd1wlFx958ZzJpLCjP6GXcf1S9NiGEEBPWPhCiJc8enw2LVDJrd8fE64wHU5uh89YY+89AIgJVS9RgsOGYSlAt3Dzr64xzMsZGjbEExkCxB8ahgaz6YsgzxcYY8pGqM97boS7FZPUlznDj2npuWJN6zkv3QngIrv0suBfCFX+t2qKU1WaVb5yNMTffwbzcgOdNvUkpt4/KuIYGVPDpapiBVWVzl1qxmrWRUgpjqmHPfiLxJImkPubmO1B1xl3eMJx4Fu67An71N1O8aiGEmD+SSZ22gWDWHAHD6sZyrGaN3R3ekTuf/RJ8+/KCNcEDAaOUIk8Zn+eEus0spQBYdi2c3jGr26cWrDGWAR9AsQfGwf6cwNhqNuEoMWfUGKd6Gac6U+w97WVJbVm6Fnm0L75jPe++cCHs+ym88m1Y+86RVmKX/jlUtkLj5nNesss+Rrs2mLelFE6bBYt51Lerv0vdzoLA2GTSqHHaRjLG1cvVNMKe19OlL2NtvgNVZ9zkeRl++G6ID8PAsalethBCzBvdvjCReJKWmtzA2GYxs7qhfCRjvP0/4OnPQ88+GDyZ93xGosPYXJ3Fk3pOZeuowPg60JNw4unzfj1TIZZIEokn8wfGJZIxhmIPjEP9eTO35XZrdikFpMdC7+0cymnTlqXjVXjgjfCzD0LVErjun0ces9rhjt/D2//jnJfcWGHHH44zEIhkP5AupZh/gfHQcDT/xrtZFBgD1Lls9PpTpRCWEqi9AHoPEIqq/pljbb4DuNh0iH8d/jx69VLY+D41NnyW724WQojZom0gCJA3YwywcVEF+zq9JPf+FH79d6rkDaD3IP5wLGf/Tp8/gstmyX+1z3NCJT/cTdmB8cLNav7BiWcm62VNqryJmogPrGVgHjt5UyyKOzAODmRtvDOUl1oyNt+lxkL7uxkIROjxRVjTWOByg67Dj25TQfRb74MPPQfupuxjyqqhtPKcl7xuoQrK9532Zj/gqAK0eVlK4RuO5e9hbATG5bMjMF6+wMXeTi/xRCqYTXWmCEwwY3xtz4P0U47v3T+HhZsgEc07jlwIIUSutv4QAC01+ecIbFhUwQWxg2iP3g2LL4P3/0I90HuAD//3a3zq5/uyju/xhdMbq3OkWrVhMuNO1Rgnk7raS1SzHAbbJ+tlTSqjq1VOYCz1xWnFHRgXyBi7S60jpRR2N5htEOjmaG8AgBULCnwDeU5AsA+u+jvYeJv6AZlkaxeWo2mwr3NUYGwyq4B7Pm6+G45RkS8w9nUB2siblxl27ao6vMMxdrSnLtUtWAO+00T8KovvGCsw7j1I4+AOfhC/jjNRB1S0qPtn6S9XIYSYbdoHgpRYTDS6S/M+vqlW596SbxC0LYA//qFKVFW2QO8BjvcFONLjzzq+1x+hzmXP/8kGT0JVK6BihqQOgWjGlWb/7ExqpBM1ozffSX1xWvEGxtGQ2gg3qsYYUqUURmCsaWrIR6A3HRgvX+DMf87TO9Xtwi1TsWJA9UpeUlPGntGBMajXMk9rjAuWUpTVgjl/vfd0u2J5LSVmE08eSPW9Tl+mOwBA2VilFK8+SNJcwv8krlKdKYxx4UOnpnDFQggxf5zsD9Jc5cBkyjNVVtdpeeGTLNAG+X7TZ6E0VRJZtwa95wD9gUhOu8weX5gF+TLGuq5qjKuWACMdk4wOSrgaZu3VvvylFH7JGGco3sA4z3APg2q9klFr5FTv/o72+HHZLCPDO0br3KHqdM6xR/FErW+qYN/pPI3Ky2qKLzA2asBngTKbhUuXVvPkwR50XU93prD2HUg/nlfED3t+RHjFWxikXP1yTgfGkjEWQoiJKNSRAoDt/4F2+HF+XHEHv+rPKL+rWwUDx9ASUbzDMUKprK+u6ypjnO/vfbAPooF0YJwz/8BVD2GvSsDNMv58GeOIT4Z7ZCjiwDh3uIeh3J5RYwypyyJdHO0JsGyBMz1NJ8fpHdC4cUpKKDKtW6galff4RjUqd1TP21IKd752Of4uKG+c/gWN4dpVdbQNhDjeF1RZg9JKSgcPAVBWqF3bnh9B1E/JpXdh0lLT76x29YZMSimEEGJcyaRO+0CI1gL1xTz3b7DkKrpX/RmHe/wMpzZFs2A1mp5gqXYGIJ019g3HicaT1OXtSJFq1VY5UkqhnjOqzesszBoH8tYYS8Y4U/EGxsGxM8b+cKqQHtQGOu9pjvb4WF5XoIwiHoHufbDwwila8AhjuMje0eUUZTUzvvlO13U++tBr/Gb/5PxCCMcShGPJ/Blj3+zKGANcs0rVO//+YI8qw1mwFqf3CACOfAM+dB1efRAaNmJZdBF1LvvI5byKZskYCyHEBBit2hbnyxhH/Opv45Kr2LCokkRSZ/+Z1N/POnVl7wJNDVQyhiz1pDoM5c0YG63aRpdSZGaMYVbWGRcupZCMsaF4A+N0xji3xtgopA8ahfTlCyEWJBYcLLzxrnuf6iLQNHX1xYY1jW5MGuwbPffdUa2ais9gi6/XTg3yq31dvHx8cko6jHfgOV0p4lH1b+iaXRnjxopSVjeU8+TBVJ1x3Woq/UfRSObvStG1B/oOwkUfBE2j3m2n27gSULlYAmMhhJiAtn7Vqq01Tw/j9BTRiub0HqGTqeOpXkZSs3CBSR1zZmgYgF6faom6oFDGWDOlS96MK5ojgXGqVMPonDSLyOa78RVvYBwsHBgbwzt8xoS5VMu1Rm2AZYUyxtOw8c5QWmJmxQJXejx1mqMG9ISatjdDHtutLkcZdVrny/hFk9OVwrhENcsyxgDXrl7AzvZBPMEoLFiDNTnMYq0PmyXPj5vxfdN6JZAx/Q6gYjF4T0Nicr6WQggxX7UNGK3a8gTG3lRg7G6m3q0ywOnfs2Yrg46W3Iyxb6yM8QkVF1jUqOi5lDE22rWlS/uSSYhKKUWmIg6M+1RzbnvuaOfyUvUNk64XSgXGDdpA4Yxx5w71LtG9cEqWO9q6hW72dXrVJi9Deiz0zGzAiyeS/GqveoccNOq3zpPxiyanlML4hTPLaoxB1RkndXj6UK8a8gGstvXkr03v3quawacyDw3u0vQvZiqa1Rsd3+npWroQQsxJbalWbQ35Almju0/FImwWMzVOWzozDNBlW8IFpk6qyko4k/r9a0y9y1tjPDjSkQJUxyGzSRsJjEsrVZvXcTLG4ViCP7rnOX69b/oyy4FIHEdqvYAKikFKKTIUb2A81A4Vi1Qd6ChGxjj9TV6ugt0WyyAN7gIdKU7vmJb6YsP6JjcDwSinM36409nvGdqA9+LxAQaCUTQNQvnGVp+DgoGxT2WmZ2PGeG2jG5fNwp7OITUaGlhu7sl/cNceNTI89X3Y4LYTiMTxh2OqlAKknEIIIcbR1h9kcaFWbUOnwFwCZXUALKywpwNggDbzYhZq/Sx1JdTmZ1TG2Gmz5O8m5DmR3ngHoGla9vQ7TUtt2i/wez9l16khDvf4ee7o9P3NDkbi+cdBS8Y4rXgD48G2rG/sTOU5O0zriGNmdZkvf9Yv5FE/KNMaGKcm4GVuwDMC4xnKGD+2+zQuu4VNiyqmIWNsjIOefRljk0ljRb2LQ91+cFQRNLlYasqTEUjEoGe/CoxTjMt8qpexERhLL2MhhBhL20AwfxkFqFIKdxOYVMjT4C7NyhgfSqqrwheWdqdLLPr8kfzZ4kAfDA9CzYqsu3O7WTWMmzF++bgKiI+nZiRMB38knltfDFJjnKF4A2PPyNSa0dKtV4waY5OZHqpZUlKgdteoE52GjXeGlQ0urGYtu844XUox/RnjcCzBb17v5sa19VQ6SkZqjI0funM0FBojMDaXpEZhzz4X1Ls41OVDB7otC1lMnl+QfYfUhs2MwNi4InHGG1a/yDWTtGwTQogxGK3aWqoLtGob6gD3ovSHjRWldA0Np0sR90RVgmWVuTMdGBccB92n2m8aZXKGrIwxqMFg49QYv5TapH6k159dFjmFAmHJGI+nOAPj4UG1Qa2yJe/D6c13qW/yoVCUzmQV9VqBTOzpnYAGjZumYLH52SxmltY6OdydMcLS6Mk8A6UUvz/YSzCa4C0bF+KwWQhFEtC1F/7fYuh+/ZzP6y3UlcJo1Vaop/QMW1nvwheO0+0L02lqoimRp064a4+6bdiYvmskYzysJvqVL5RSCiGEGIM/EicST7Kg0PAtb8fI0CSgscJOMJpID/J6PeAmYiplSbI9PeSj4DhoIzAeNcirvNQ6kkyDVMa4cGAcjMTZ3TFEhcPKUCjGQDA6sRd7ngIFSyly91sVq+IMjI0ehAVKKYzLDMZY6KO9Abr0KipjvfnP170PapZP+zuu5ioHHZ6MyTpWO5Q4Z6SU4ncHuqlxlvCGJdWUlZgJRRMq8NOT6ZHI58I7HMNls4xsFDD4u0Za4sxCK+vVZalD3X7aaKA62Q/RYPZBXXvUv1fGJo46lx1NI7szhZRSCCFEQb5CJXcAsTAEekYFxqUAnB4aJhpPMjgcp9+5kqagSuJ0ecOFx0H3HlQb1Ub9/XGXWkfKL0ElbqL+kcBzlD+0eYgndW7dojLZx6apnCK3xjh11VkyxmnFGRgPtqnbAqUUZpOGyzZSL3Skx0+XXo19uCd/j+DeA1M+BjqfRVUOOgeHsy/BOKpmJDDuGBxmeZ0Ls0nDUWJRPaCNTKe385zP6xtr6t0sDowvSHUvOdzt54Se2iA4cDz7oK49UL8+XfcGUGIxUeO0ZXemkFIKIYQoqOCVRRj5+zOqlAKgyztMf0B1n+hr2Eal9wAL8HCk208kniyQMT4MtStzrlbmllIYvYzVBrx4Ipk1rfbl4wOUmE3cepFa19FpCoz9hUoppMY4rUgDYyNj3FLwkPJSa/oyy9GeAP2mWrRkDIKjssbRkMpAp6bnTKdFlaUMxxLZl2AcNTNSStHtDafLABypjLFuvAE5j3Zj3uFY/iyAv3tWB8Zuh5UGt51DXT6OJozA+NjIAcmEutKQUV9syOplXLlYvQmIR6Zh1UIIMfcYVwSFXAEAACAASURBVHeNMsgs3pFWbYZGYy/H0DB9qbZswy3XA3CNeRe7U8Oz8tcYH8ypL4aRwDidqEr3Mlb7S368o5OtX3yKHW0eAF463s/mxRW01pThtFk41pM/szzZAoU230nGOK04A2PPSdW2paTADlaMeiH1Tf6Hkx5MlakfKu+oIK//CKDPSMa4qVJtNMgqp5iBsdDJpE6PLyMwtplJJHV0o2Rl9NfsLOQNjMM+iAagfPYGxpDagNft51C0Vt2RmTEeOAaxEDSsz3lefbk9I2O8GNDPK+suhBDz2ZilFMbUu4yMcY3ThtWsccYbTgfGjoVrSFa0cK1pJ3s6UoHx6IxxsF9dkc3z995daiWR1Ec6MhmJm4DKGLcPBIkndT7+o920DwTZf8bHZUtr0DSNpXVOzvR0w7EnYQo34em6XqBdmwbWwvFQsSnOwHiwrWAZhaHcbsE3HGNH+yAHunxsWrtGPWBM0DH0HlS3tTNTSgGqjCHNUQPB6S2lGAhGiSd16lMbH9ITdYwSAN+5B3VD+QJjY0PDLM4YgwqMj/cF8EQt+EoWwMDRkQfTG+8KZYxT/6ZGXZyRfRdCCJHFuLprDOfK4u1Q3X0yhkGZTBr1brvKGKdKKWrL7ZhW3sRW836Od6pgNqfGOP33fmXOpyk8/U5ljHv9EZw2Cz2+MO95YDu6DpctrYZ4hA+afsWXz3wA/vsdcODRc/oaTEQkniSe1LMzxhGfqpk2FWc4mE9xfiU8JwtuvDOUpy6LfO/FNsrtFq66eLN6YHRZQO8B1TYsYwPVdGmqVHVSWRnjGagxNrKbmaUUpYQxhfrUAZOdMfYbwz1md2C8qr6cWEK9+/eVLc4upejaAxY71ORekqt3l+ILxwlG4jLkQwghxlGw3z2ojLGrUXX5ydDoLqVraCRjXO0sgQtuxEaMzfHdQJ5x0OlWbWMExqkWo9jKwVKaTuT0+SMsX+DkkzdcwOmhYRwlZtY3OuGBq7ml55vsSbSSqGyFZ7+Ufy/TJDDGQWdljIcHobRiSj7fXFV8gXE8ooLbcTPGVk4PDvPE/m5uu7gZR3kNWB25QV7fIRXcmPO8U51iZTYLVWUldGZmjMtqID6c2wFhCnWnNhSkM8Y2C4u0VFBctwaGPaoW+xzkD4znTsbYEHS2qMDYuEzWtQcWrMn7fWP0Mu72hdVrNFmlM4UQQhTgC8cwaRlXKzMNncrqSGForCjldKrGuMJhxWYxQ/OlBE1OrjG9hqPEnB1Agvp7byvPyj4bcjLG6el3RsY4TJ3Lxh2XL+FN6xq4ZUMjJf4O6HmdY+s/wftjn+LUur9QybZDvzy/L0gBgUiewDjkmbXzAGZK8QXGQ6cAfdyMsbvUij8SR9d1/uTSxeqbvHxhbllA70Goy333OF0WVZbSOZgRdBqT4IyRydPAGKHZkJExXqSlNikuvuyc1+MNxYjGk+qdfKZZPA4609JaJ5ZUm7mIewmEvapGLTigel83bs77vKzpdyazGvQhnSmEECIv73AMl92afxy0tyNr452hscJOjy9Mty9MrTNVMmG2crz8Uq4276LBlSf73HtIbbzL0z+/fHRgDFm9jPv8EWpdNkwmjW++dzNffMf69FVE54orAHi17CqoWjplWeNgvsB42AOllZP+ueay4guMPeN3pICRWqXrV9enN7nhXpi9CSrsUz90M7DxztA0upex8QtgGjOM3b4wZpNGdeqXS5nNQrMRGLdsVbfnUGd8oEvtljV6Aqf5u9S7dpvznNc8HUosJpbUqg0N8YpUqc3AMXj5GxAbhovuyPs84w1GVmcKyRgLIURevkLdixJxlUhx5wbGDe5S4kmdA2d81GaMfu5ueCM1mo/L7Cdzz9d3KG8ZBWRMzB3dy9jfpXolh2LUOkeVZvSrfSe1LeuwWUwc6QvDtr+Fntfh8OPjvOqzly6lsI8upZCMcabiC4yNVm3jlFJUOlSW8vatLSN3upuySyn6DqvbGWjVZlhU6eD00DCJZOoSvXv6A+Mur7pEZAzhKLWaadZ6iVscqk8vnFOdsREYr2oYFRh7T6vs/RxgBPV69TJ1R+cf4A/3w5q3FrzSYExv6k5vwFssNcZCCFGALxzPv/HOfwb0RN6M8cKMIR+ZgXGk9WrCupXrE89lPyHYrzo+FQqMHYUzxv1+leTIaf82cBRKKzE7q1la6+RYXwDWvUvtWXrhnvFe9lmTUoqJKb7A2HNStSUpqx3zsLduXMi337uZS1ozvmHKm1TrlXiqb7Ax0a3AD8p0aKosJZbQ6U394KmaVEtu94wplNmqDVTGuEnrI+hYNBLAnkMv4/1nvNS5bFm/tAAV9Bub0mY5o87YVNmsaoWf+7Kq/972yYLPsVvNVJWVZEy/a4Zg37TWjQshxFxRsN99nlZtBmPIBzBSSgHU1tTxy8SlXOz73UiPX8gYBZ3/772zxIJJGx0Y10MsxIBnIOfzAKqFZ/VyAJbVOTnaE1D7Tta+E868pq4sTqKcUopkQpX4SSlFluILjI1WbXlqhDK5HVZuXNeAlnmceyGgj3RF6DukNuRVzFyQlm7Z5kn9AJktamPA0PQFxt3ecHrjHUBZicoY+0oXqjHVjppz6sN74IyP1Y15pvEU2EwxG21bXkuD205zTbnKAkR8sPotsGDsqwwNbvtIGz6j7Gca/02FEGKu8A3HCgz3SP3OzPP3oqFi5G9WZvKlwW3nB4nrsCVDsPd/Rp4wTmtWk0lLd7NKS20Q9/WpdeRkjPuPQo0KjJfXOTk9NKyC1/p1oCeh50Dez3Wu/JFRpRRhL6BLKcUoRRgYnxy3vrggI/tplAX0HlDZ4hns/7coX8u2iumtSc2cegfG5rs+hkpSXSPcC886YxyJJzjWG2D16DKK4SE1232OBMbrmty8/KlrVP21UU5xZeFscfp5C93s6RgimdRHXquUUwghRA5vocDY+Dvobsp5qNxuxZXKnGYGxv+fvfcOk+Qsz/Xv6jjdPdPTk/PsbM5Bu8oBJCSQhIkCDLKNwSb4gH3AhmNs87P5+WBjDsc5EIyNAINNMmDAAoGEECivVqvNaWZ3J+eZzjnU+eOr6lg9OezMfPd1cTXqrq7+Zran+6n3e97n7ax1ct+9rybRdBBe+EIuSWj0dNlECp3SsdBNAMSmh0peh1gAQqNQtxWAzVo/yoA3IoQxwOip8j/0AggVx7VFxBQ+aaUoZGMJ40xGVIwXKoz17Rhd5I2fX9XGO8htBw3kJ1NUd6yYlSIYSxJOpAsqxo7ENE4lzqRV+wBxt8/bY9w9FiKVUUsrxvoH3RoRxgXc8tvw6r8SMW2zcHhTDf5okiuTodyOhEymkEgkkhICsWTW41uAf0DYJq2O0sfIVY3zJ9wpisL779yG7eb3ivHPfc/A8a/A8X+DbXfPuNtcKozFd2DKK76P6/OtFNPaJFTNSuFxiL6mQDQlNIrdLcT4EhKKi1g7h9Us7ohqwlhaKQrYWMI4NAqp2KyNd2WpbgMUePbTcPIbwm+8ysK4wmqmyW0vzDL2dIhOXN0LvYwUD/cAMPuFgBu3LLxirDfe7W2tLnwgWwEo9Yxd83TdBje+Z06HHtkkPqhe7PNCZaMYBiIrxhKJRFJAPJUmlszgrjBovguMzFjh1QtLJX0sAHsfgAoPfP93xP+23gWv/8yMaykRxp4OQMEa6KfWZcNqzpNck9rAJ81KUaWtPxBNCvHdvH/JhXE4nqbSbslZRKNecSutFAVsLGGsj9WdJcO4LDYXvPbvRSPUd98r7ltlYQwimaLQStEJqAtqeJsvxcM9gOzveURpFP/tbhPe2vxGhlk4NxzAaTOzSfNQZ8lWjNdG891C2VLvosZpFcJYUcS/qRTGEolEUoA+Dtqw+S44ksv2N6ClegZhbHPCdb8G01dg56vhwa+L+2bA7bAWxrVZ7FDdjjPcT2Pxa0x1A0pWj+jCOBjXnt+8X8S2ZdIzvuZ8CMZSVOVbTrJWClkxzmflx7WtJg274K1fhdbrFn6OI++AQ78KFx+G/udg021Lt74F0l7j4IVeb+4OvZrqH1h4dXyO6BVj/QMGyG75j6AJY93fFRiCCoNmOgPODQfY3eIuDWz39YtUkXXuiVIUhSObaoQwBnEhIK0UEolEUkAgJoSk20gYB4ah48ayz71+Uw1Hr07hMXouiEzhhp1w8MGSkdJGlFSMAWq68AwO09BSLIx7RMHDKopKumDVs4ZpPgDJiBDmWlV5sYTiSVx2c+4OaaUwZGNVjJ21sPu1ixdVZotIFrjvk2W9SytJR62TEX+UZFqblLOCQz50YVzQbevtZVKpxZfS/gCLmxZnIZNROTcSKG28A22KUeesqSLrgcObarg8EcYbTsghHxKJRGKALkRLmu9ScSH8tGQII950pJ2ffvhO44l5AA4PHP71OYliyAljVW/YA6jdTGNquLQqnZdIAXkV46wwXvoGvFA8VTT1zguKCezV5Z+0AdlYwnid0lHjJKPCiE/LvXW3A8qKxHuNBmLUumxUWPOuQr29TFiaiSS0LaBqPct4bpFtg94ooXiqTFRb39psvFsARzrFVfzxfq/4mWM+LV5HIpFIJJCbNFdSMQ6OiNsZhPFSU+2wksqoue8+QK3ZTC1+2pyp3IGqqmUYb8veVWE1YzObshVwkXhlXVKfcSieprLYSuGoWdVkrWsR+dtYB7TXFiVTWGziw2CFKsZN7qIxl74+pqyt2TBxqlrEVekcK8bnRoT4M6wYr6EM48VyoN2DxaQIO4VMppBIJJISAjHdY1zkDA2Oilv3ygpjKBzyEXGJ76vNpom8tY1AMlwgjAHcDkuuYmyxiWEiI0tYMY4lqSy2UkgbRQlSGK8DttRXAuT8qCDE4wpEto0GYjTn2yhSCfAP4rW35q6azVaobJ5zM+DZ4QAmJTc1LktUq5huEGHssJnZ21Yt/l31SX/STiGRSCRZ/OUqxgFtENcKV4zz1wQwZRPNfx2M5Q6c7Ba3Rd7hqoqi5r3mA0tcMTawUshEihKkMF4HNFdX8LIdDXz1uT4SqTyf8QqIKDEOOs9n7R8AVIIVbYQTeVtH1W1znn53fiTIlobKQntG9txsGGEMwk5xctBHskr3jcuKsUQikegEynmMV8lKAYXCeMQkXr8xNZI7cEoTxkUV46qKvIoxCJ9xeByCYywFIq6tyEqxzhvZF4IUxuuE37yti/FgnIdPa1fJ1R2iQruEUS/FxFNpJkMJw6i2sKudSDzvtd1zzzKeDMVpqa4ofWAtD/dYIEc21RBLZjjvM4OtSlaMJRKJJI9ANInNYiotpARHwGxfUauAoTCO25hWK/HE8wpDU5fB6iyJkhPCOL9irDfgLb5qPOqPEYqnaM0bhS0qxtJKUYwUxuuEl+9oYFtjJV946qroiPV0QiaVu2peBsYDcYBCEasJ42hlR1HFuF1UjDOZWc/rjybxOG2lD2yQDON8DrSLbuGzI0Fhp5AeY4lEIskSiCWNM4wDI8JfvIIJRkbCeCIYp19twhXOszZOXBCjoIua3qrs1tKKMcDoyUWv7clu4XG+bVt97k5ppTBECuN1gqIo/MZtXZwZCohM4xWIbNOHezQVC2OznYyriVgyQzqjxdbUbhFTB4PDs57XH02WNlLAhskwzkf3zUUSaTnkQyKRSIrwR5PGU++CozMO91gO9M/rfJ/weDDGIE2Yfb3ijlRczEDouKnk+SVWiopq8bk/dnbRa3uye5L6Sju79N6dVAISITncwwApjNcRD1zXjsdp5aGnrkK1ZjdYRGSbN5zgM0/08K4vvcB1H/8Jr/jrJ/jCU1fxR5I8e3mKzz0hZr0XWCm0ODWXXVR8o0nNTqF7qaZ6ZnxNVVVFxdhRpmK8QTKMdewW8ScaT6VFpdzXL6J+JBKJREIgmioz9W4YqppXdC1VdguKUloxnrS1ofgHIZ2EvmfE4I5tryx5vtthLbRSADTshvELi1pXJqPydM8kd2yvzxsHLYd7lEMK43WEw2bmwRs7+cm5USbM2tQ5/8Irxl95ro//+8hFrk6FuWd3Ex6HlT/773Mc+rOf8OC/PMfRq9P8+i2b2NZYmXuStxdqunBqkTARPbJtjsI4FE+RzqjGH3QbKMNYx2YWf6KJVEZYKRKh3BhPiUQi2eAEYsnSRApV1awUK1sxNpkU3BWF0+/Gg3FCzg5Q06Kw0fMYmG2w+Y6S51dVWAgn0qTSeZbDxl2iWS+dKjl+rpwbCTAVTnB7sY0CpJXCgI01EnoDcP++Zj77xGWe7gvzBlfDoqwU48EYHqeVxz98Z/a+M0N+fnBqmN3Nbu7d24zDVtTw4O2F9htx2cRbK6xHtlW1iGaDqSszvqYvIj5Qqp1GwrgfOm5e6I+zJjGZFKxmhXgqk5sgGBgEV93qLkwikUiuAfzRJF11rsI7Y35IRVc0kUKneCz0RDBOrLITAoD3KnQ/CptuA5ur5Ln6WOhQPJXrs2nYDemEGA3dsGNBa3qqZxKAO7bnCWO9wLKBrIlzRQrjdcbe1mo8TitPdk/yBk/nooTxdDhBravQ0rCvrZp9bWXGR0a94gOpZhNOTTBnh3yYTFC7ddaKsf6BUlIxjvk3VIZxPjazSVSM9epHYARaDq7uoiQSieQaIBA1aL7LRrWtrJUCxJCO4opxpqMLhoGrv4DJi3DkHYbPzR8LnRXGjbu0E51bsDB+snuCnU1VNObbHqWVoizSSrHOMJsUbttaz9M9k6gN2tScOSRBGDEVSlDnMvD6lkNPTKjpwqWFiOePxqRu7sLYU/xB59t4GcY6dqu5UBjPoYFRIpFI1juqqhKIpXCXTL3ThPEKWymgsGIcT6XxR5M4atrA4oDjXxEHGfiLgWwTYSDfZ1y/E1BEksUCiCbSvNDrLawWg7RSzIAUxuuQ27fXMxqIMV5zWFwVTl5a0HmMKsYzokW1UdOVtVgURLbVbRPHpJMlT9XRrRQlcW3ZqLaOua9nnWAzm0TznatRjNYOLF8En0QikawVwom0cU9KYOWHe+jkC2M90rTBXQE1XeL72NNZMvFOR7dSFCRT2JziuePnF7Seo73TJFIZbi8WxtJKURYpjNchusH+yYT2x9f/zILOI4SxffYDdXRh7NmU9RgXDPmo2yoaEGbI4i1rpdCHg7jb576edYLdqlkpzBaobMqNOpVIJJINTPmpd/o46JW3UlQ7cmOdz40EANjeVAm1m8UB2+4pm6yUb6UooHH3givGT16awGY2cdPmor6U6LRoArQ6F3Te9YwUxuuQjlonXXVOfjToEEKq79l5nyOTUfFG5mml8PWJbZkKd9ZjHCmuGANMXy5/imgCAE9x811wBEwWcDXMfT3rBJvZRELvUq5qkVYKiUQiIVdIKUmlCI4K76zVseJrcmsVY1VVebHPi81sEn05NbowNrZRQE7g5+cgA9CwS9gQU4l5r+eFPi+HOjyljfL6cI8NFH86V6QwXqfctq2e565Ok+m4ReQmzhN/NElGZWYrRSpRKLq1qDagjMd49sg2f7nxnoERqGwumRS0EbBZTMSTmjB2t0orhUQikZATkIZWilWwUehrSaZVosk0x3qn2d9ejd1ihq7bxKCrzS8r+9xcxbhIGDfuFpNsZ+nRKSaRynB+JMDBDoOG+ci0tFGUYeOpjA3CHdvrCSfSDLgPiniveaZTTIXFlWld5QzC+Im/gC/elxPH3l6RtQu5VIr8irGzVlzFzySMI8nSxjsQVgr36nzQrTZ2S17F2N0qK8YSiURCXsW4xEqxusIYREzbmaEA12/SUh92/RJ84CWwV5Z9rqHHGETFGGBifj7jS2NBEqkMB9o9pQ9GvTKRogxSGK9Tbtlaj0mBX8Q0n/E87RTTmjCuKW6C0wkMw3OfFf//+c9BJi2SI7SKsd1iwmxSCj3GIKrGs1SMjacYrd4H3WpTUDGuahGxdYnw6i5KIpFIVpmAJiAN49pWqZCir+XpnikS6QyHN81dfNosJuwWE8F4kTCu3yEar+c5Ae/koA+Ag0bCODIthXEZpDBep1Q7rOxv9/DwWA3Y3fNuwJsOi27aslaKn/0FqBnY+0Y4/wMYfAEyyawwVhQFp81cWDEGTRjP4DGOJEv9xbAqU4yuFWwWM/H8ijFIO4VEItnw5DzGeXFt6RSExla9Yvz4hTEAjsxDGIOoGpdYKawVwoYxz4rx6UE/HqeVjloDr3XUK60UZZDCeB3T7nEwEU5Bx03zrhjPaKUYvwAn/h1ueA/c878BFR79/8Vjnk3Zw5w2s0HFeKuwRSQihq/riyapdhS9ZjwIieCGFcZ2i5ZKATLLWCKRSDR0j3FVvpUiPCGKNqssjJ/qmWRzvYv6ynkkOyGyjAPFVgoQdop5V4z97G+rRilusFNVkUohK8aGSGG8jhETeFKw6VYxbSc8NefnToeEMDasGD/2p2CrhDs+LDzFO+6HgefEY1rFGMBls5RWjGu3ai9gPBracIpRNpNyYwpjm0XLMYbc70BWjCUSyQYnEEtSZbdgNuUJP71osEqFFP37K5bMcLhz/sKzymEt9RiDaMCbvgzJ2JzOE02kuTQWNLZRJMJizLQc7mGIFMbrGLeWp6h23iLu6J971XgqnKDSbhHdtPn4h+DSj+CW3wGXlot402+JW8UM1bmcYafdXJhKAbMmU/giiVIrRTbDeGN6jAsrxtrvQP+dSCQSyQbFH02WRrUFVm8cNBT6na/vmr8wdldYSuPaQFSM1QxMdc/pPOdGAqQzKgfaDRIp9Kl30kphiBTG65hqh5VEOkOs4aDIAB4+PufneiNlpt7p59h2d+6+zS+Dht1iKp0596HgtFkKc4xB+KTAUBgn0xnCifQMc++lMMbmAnt17ncikUgkG5RANFUqjP2D4rZ6daak5ts65usvFs+3lHqMQTTgwYw9Ovmc0hrvjBMptKl30kphiGX2QyRrFV1gBlImHDVdMDm3K02YYRz08EtCZDftzd2nKPDmh0RaQh4umznrVc5irxR2AANhrDdSlFaMV3drbLURI6EzuTvcrXL6nUQi2fB4Iwlqir8v/ANgcYCzzvhJy4zZpFBVYUEBtjWUj2YrR5W9jJVC342d427hqUE/jVV2mqsrSh8MT4pbaaUwZE4VY0VR7lMU5aKiKD2KovxhmWN+WVGUc4qinFUU5T+WdpmShaBnO/qjSajbPucrTYCpUJmpd8MvCa9T8UShpj2w6ZaCu5x2C+Hi2BkQc+InL5XcXXYcdHBk1aYYXQvYreZcxRiEnUJWjCUSyQZnLBCjyV0k/Hz9YvdyFSe61Vfaub6rFpNp/msQFWOD701HjRD8cyyKnBr0GVeLAca1dIuGnfNe30ZgVmGsKIoZ+DRwP7AHeFBRlD1Fx2wH/gi4TVXVvcDvLsNaJfNEF5hCGG8Vxv1MZpZnCQwrxqoqhHHr4Tmdw2Uz8BiD8EpNXBLny8MXmWmK0casFkPRSGgQvwtZMZZIJBsYVVUZD8RpdBelPvgHVs1GofP3bzvE/37d3tkPNKCqwko0mSaZLvquVhSobstZRWYgGEtyZTJs7C8GGD0lvkdc9Qta43pnLhXjG4EeVVWvqKqaAL4OvL7omPcAn1ZV1Qugqur40i5TshCyVopoUjS9pWJiCt4sqKoqhHFxVJuvT5j2W6+b0+s7bWUqxg07RPxakbjzR4XtwlM8VCQ4vGEb70CkUqQzKql0XgNeaEzkdUokEskGxBdJkkhnaKoqrhgPiIrxKnKg3UNHrXNBz9XHQoeMqsbu1jlZKU4P+VFVygvjkVPQvH9B69sIzEUYtwEDef89qN2Xzw5gh6IoTyuK8pyiKPct1QIlC6egYlyvTcCbw6z1UDxFIp0ptVIMaY13cxbGomKsFlWGc+MtCzMZy1opAsMbtvEORPMdUDgWWs1AWF5/SiTrnXgqza8/dJQX+6ZXeynXFGNBEVtWUDFORCAyueoV48WgNxMGjBrw3O1z2i08NxwAYH+bgTBORoWVseXAota5npmLMDYyyRQpHSzAduBO4EHgXxVFKTG3KIryXkVRjimKcmxiYmK+a5XME3eBlUKPSZvdZ1x2HPTwS2C2QeMeg2eV4rJbSGXUQhsA5IRxkc9Yt1J48oVxOgmh8Q3beAeiYgzkjYWWWcYSyUbh7HCAX1ya4LkrUhjnMxYQ01kLPMa6zcDTuQorWhr0irFxA16b6C+ZZbfw/EiQxio7dUbDRcbPgZqWFeMZmIswHgTyL7/ageJLlkHge6qqJlVVvQpcRAjlAlRV/byqqterqnp9Q0PDQtcsmSNu7Q/MH01CZZMYypGXTDHij2YjXfIpO/Vu+CVo2geWMmOii3DaRAZytNhn7KoX3bBlKsYF8TuhMUDd4BVj8XtMpGWW8Uoy5Ivy1z+5aGwHkkhWiDNDIu3HW5zws0751rEB3vK5Z+ifMp6OqjMeEBXjAiuFv1/cruGKsS6MjSvG2m5haGzGc1wYDbCrxW384MgpcdssK8blmIswfgHYrijKZkVRbMDbgO8XHfNfwF0AiqLUI6wVxqPNJCuGxWyi0m4hEE0J437dtgIrxd8/1s07HjpaYnXQP4BrXXlXm5kMjJycs40CxOQ7gLBmpyhoJmjYBRMXC473RZJUVRRNMdKrou5i987GQa8YZ5Mp9IqxTKZYVh4+Ncw/Pt7D27/wfPaiTSJZaU4PasI4sv7fg6qq8pknLvNCr5cHPvs0JwZKCzc640FRMS6wUvg01+cqe4wXg54mZVgxds8e2ZZKZ+geC7G7ucr4gNHTYHcXTKmVFDKrMFZVNQX8DvBj4DzwTVVVzyqK8nFFUV6nHfZjYEpRlHPAz4DfV1V17vOHJcuGu8KS+1IvEsZDvijeSLIkazhbMc73GE9fgXhgXsLYaReVzp9fnOD1n36a2/7P4wx6tSpAww5RMc4T5YbjoLPjPTduxThrpdDHQjvrhKVFJlMsK8O+GDazidNDfh78/HNMheKrvSTJepQ/dAAAIABJREFUBuS0VjH2RdZ/xfh4v5erk2F++66tOGxm3vb5Z3m6R8vcnb5a8H0xFohR7bBSYc2bzuofEBNYK1dn6t1SMKuVAmZMprg6GSaRzrCrpZww1hrvVjHO7lpnTjnGqqr+UFXVHaqqblVV9RPafR9TVfX72v9XVVX9kKqqe1RV3a+q6teXc9GSueN2WAuFsa8/O2t9XPNoXZkIFzxnOlsxzhPGwy+J2wVUjD/63dOMB+JEk2ne/eVjYmu6YZdIuNCDxgFfNFl+uMcGjmuzZ4WxVjE2mcS4U1kxXlaGfFG2NLj4l1+/nssTId7yuWdLt3e9vauyNsnGIJZM0z0eAsQwi7WKqqrEkgbRnUX854tDOKxm3nfnNr7zvtuocdr4wlNXofcp+IdDcPzL2WNFhnGRh9Y3IHYXzWt3dllVtmIsvrefvzLFkC8qHtR7bWYoipwfDQKws8nASpFJw9hZaaOYBTkSep1T7bDm5q7XbwdU8F4FYFzr6r0yESp4znQ4gd1iynqEASGMLRW5xrk5sKO5ii0NLn73nu08/r9ezj/9ymEujQX50DdPkKnTgsUnc3YKXySBx1HkXw4Mg9m+oWe6l1gpQGYZrwBD3iitHgd37mzkq+++ialwggc++zQn9e3dnsfg7w/CwAuru1DJuuX8SIB0RsVpM2ebk9ciT1ya4LqPP8qY5gs2IpZM89+nhrl/XzOVdgsNVXb2tVUzNBWER/5IHHTsi9njxwJxGouj2vyrH9W2WLIe42iKqVCct3/hKH/1Y+17ssIDVteMVooLIwEsJoWtja7SB6cuQzIiEylmQQrjdU61w5oz8ddtFbeT3SRSmaxn7cpkYcVYn3qn5G+1DB8XV5nzuBJv8zh4/MN38rv37MBps/DyHQ189NW7+fHZMb52VftAy2vA8xtaKUZEdXQDb/vYzUUVY9AqxqOrtKKNwbA/SqtHvE9v6KrlO++/FYfNzFs//ywv9E5D96PiwIs/XMVVStYzeuPdLVvq1nTF+PJ4iGgyzfNXyydrPHpujGAsxZuOtGfv66hxcr3/x2L7f/PLYOSE6HVBNN+VDPfwrf5wj8ViNZtwWM0EY0m+c3yIRDqT81rrQz5mEsajQbY2VGabtgsY1RvvZCLFTEhhvM4psFLUasJ4qoeJPL9kacU4XjjcI5MWH0Ztc5t4NxPvun0zu1vcPNJvAltVQQOeP5qkusRKMbKhG+8A7FaDirGrHiLSxr9chOMpfJEkbZ5cSP/Whkq++/7bqLCa+daxAbjyc/FAz2OrtErJeuf0kJ9al409rW780SSZTHFS6tpAr3Yf7/OWPebbxwdpra7gli112fs2uzN8UPk6yZYj8JYvi93D418hk1GZCMULo9rSSdGTssYrxiCqxoFYkq8dFSkbVyfDOY+5uxX8M1eMy/qLR06K/pR6OQp6JqQwXudU5wvjCrdoSpi6nN3SctnMhh7jgkSKyUti+2Ue/uJyKIrC5nonQ76YmNOuCWNVVctUjDf21DsAm1lc+RdUjJ11wqOdmd23J5k/w5qnT68Y69RX2jnU4WGgvxcmzou/p9FTImtbIlliTg8F2NdWjcdpI6OWifBaA+jV7pf6jYXxiD/KLy5N8MbDbZjyUoluH/0qjYqPy0f+P2Gn2/N6OPVNvH4/ybRKU1Xe91RgWESZrfGKMQhh/PNLE1yZDPPAYVEYOqWlk4ghH8bC2B9NMuyPsau5TFTb6Glhh5xj5OpGRQrjdU61w0okkTd3vW4bTHVnG++u76qlfzpSEKU2FU4UJlIsoPFuJto8DoZ8UdSGHVlhLNaoFg73UNUNP/UOyniMnfWAChEZ+r8c6M0ubR5HyWMH2qppmj4q/uPOPxS3lx9fqaVJNgixZJrusSD729zUaDtpazWyzacVZ84OB0qa8FRV5aPfOY3FbOKt1+cN5kin6LzyH/wwfSMXLVpvy+Ffh7if2Kn/AoqHe6z9qDadqgorY4E47goLf3i/+NmzvQ3uVmGjS5e+Fy5qjXeGFeNMRlzES3/xrEhhvM7RK7DZBry6rcJKoTXe3byljlRGZWA6123vDSdKEylslbnpeYuk1eMgnsoQcW+D0ChEfcbjoMOTkIpBdXuZM20MciOh875QXNp2o7RTLAtZYVxTKoz3tVVzM2dI2dxw3dvFRYq0U0iWmAujQVIZlf1t1dkppGvVZ+yLJFAUSGXUbPyczlee6+NnFyf46P276KzLWZcYeA5z3M/307cy6NVSGbpuh9otVJ76InuVXlqtoVyEmx5hVr12p97p6A14Dxxup7Gqgq0NLk7qw7iq2wDVsMfkwqgYBb3bqGLc/4z4vtj88uVa9rpBCuN1jtuRN/0ORDJFZIrA9DgmBW7oqgFykW2xZJpwIl0qjFsOgsnAzL8A9CrcmL1L3DF5KTcOOt9jrKVnULN5SV53rVIyEhqElQIgMmnwDMliGfZFMZuU0q534EC7h9tMZxnyXC+aUbfdLSrGmYzBmSSShaELSGGlEJ+LazXL2BdJcrDdAxT6jC+NBfnEw+e5a2cD77i1q/BJlx4Bk5VzjiO5wo2iwJF3Uj11goftH+Xg16+Hf3+L+NvTh3usg0KKPuTjwRuFyD/Y4eHEgF8M48oO+ShNJTo/EqTaYS2NsQM49Q2RaLHrl5Zt3esFKYzXOXoFNpdlrE3qnrpEfaWd7Y1iy+XKpGjAK8kwTieFL2mJbBSQq8L1mbQtr/HzeRXj/KEimjCu3bJkr70WyVWMi60UFORAS5aOYV+MZndF4RRGjab0CB2mCY6ZtC3JbfeISszIiRVepWQ9c2bQT43TSpvHkasYh9eolSKSZGtDJZvqnBzXfMapdIYPfv0ElXYL//fNBwtTkAAuPgJdt1NbW8eANy8//Jbf4ZuHvsRvJX6X1E3vg55H4aWviHHQrkawll7MrjVeuaeJX79lEzu16XWHOjxMhuIM+2N5WcalQz4ujAbY1VxV+rtMxuDs92D3a8FmEOMmKUAK43VOiTBu3A2Ay3eJRredaqeVOpctWzHWbxv1pobx88LOsJTCWKsYX07WgtUJExfwRxMF6wW0irECNZuW7LXXIoYeY5cmjKWVYlkY8kYNbRQAylWRRvFwcIe4Y8td4rbnpyuxNMkG4DvHB/mvE0Pc0FWLoihr3krhjSTwOK0c7qzhxT4fqqry9RcGOD8S4M/fsI+GqqIK59RlmOqGnffTUetkYDqae8xk5hTbOFpxG5b7PgmbboNH/wSGT6wLfzHAG65r4+Ov35f9b73afnLAlzf9rrABL5NRuTgaZHeLgY3i0iMQ98PBty7bmtcTUhivc/QtmYA+XtLTCbYq6sI92W3iLQ2urCD++gv9uCss3LpVE15L3HgHQvy6bGYGfXHRITt+zthKMX1VRLVZDLaFNhC24sl3AA5t4IkUxsvCkC9q2HgHwJWfE7LV87PpajHFsbIBWg5Jn7Fk0STTGf70+2f50DdPcl2nh08+IPJmqyosmBTW5JCPeCpNJJGmxmnl8KYaJkNxzo8E+dtHL3Hj5lru22cwvvnSI+J2+6voqHEw7IuSzuSPg9ai2hQFXvN3kIyKxrJ1kEhhxK6WKmxmk/AZV1SLqNMiK8V4ME4kkWZrY2XpCU59UyToSH/xnJDCeJ1TUjFWFGjaS1v8StaHtKW+kiuTIcaDMR45M8qbj3Tg0KfeDb8E9uol9fkqikJbjUimoHE3jJ/PejoLvM3eq1C7sf3FADajAR8Wm/h3kVaKJSedURkNxIyFcSYDvU8SarkVVVU4OyyaXdh6FwwdE1/QEskC+fIzvXzpmV7edftmvvqum6irFJ/RJpOCx2lbkxVjf7boYeNwp6h8fvDrLzEVTvDHv7S7dNsfhDBu2AW1m+modZLKqIz4c39bYriHZplo2AG3f0j8/3VSMS7GbjGzu9VdmExRZKWY1GYTNFQWFZIi09D9E9j/5iXrE1rvSGG8znEXp1IAmcbdbFX7sn9AWxpcTIYS/OuTV0llVH715ryu3uGXoPUQmJb2rdLqEVUAGndDaIy+wQG2NriosOb94U5fhZquJX3dtYiiKNgspkIrBYhkClkxXnLGAjHSGZVWI2E8egrCEzj3vAqAU3qneMdNkEnldlgkkgVwYsBHR62DP3nNHizmws9cj9N6TVWMJ4Jx7v3bX3BOvzgsgx7V5nFa2dlUhdNmpns8xBuva+OAZhEoIOaHvmdgx32AmH4HFNgpxgLxwgzjOz4EB94Gu167yJ/q2uVQezWnB/2icl7dVlIx1vuD6iqLMorPfgcySTggbRRzRQrjdU6F1YzdYioQxsHqXVQrEbqs4kt9S4PYevnS073ctq2Ordp/k4rD2NkltVHo6FnGuuc5MXKOPfneqHgIwuOyYqxhN5uIp4qGeTjrZCrFMlBuuAeQHQPt3nsfze6K7Mhe2m8QtwNHV2KJknXKpbEgO5uMp5bVXGMV49NDPi6OBfn35/tmPM6rCbYapw2L2cShDg92i4nfv7fM9LWen4qLTF0Y14oLVL0BL2009c5ihwf+GTpvWuRPde1ysMNDOJHm8kRIWAyLPMb6e0P3o2e59GPRdC/HQM8ZKYw3AAVjoYEJpxgNvTnTC4iKMYjUg7ffnNfoNnZWXGkuhzCuceCLJIl4RANTXeQKe1rzhLFXrG2jR7Xp2K0GFWOnHAu9HOgZxu1GzXc9j0LrYahsYH97Nad0YeyqF+kpgy+s4Eol64lEKsOViXA2iaCYGqf1mhrw0T8lhOrDp0dKP5vy8Bb1j3zstXv44m/cYLwjE/XCzz4h/LAdNwJid9GkkI1smw4nSGdUGo0iydYx+vfjhdGg8FKHxkTahMZUSKsYu4qE8cRFEbdqZFmRGCKF8QagukgYD1iE2GyOXgags9bJh6zf5q2VL3HP7qbcEweeF7fLVDEGGEp5SNnc7FQG2NNSnTtAzzCWFWNA+IzjRlaKsBTGc+EvfnieR8+NzelYXRi3VBd9cUemhfDd/kpATMC7MhEmqI/pbb9RVIxVFYlkvlyZDJHKqOwoUzH2OG3XVI5xv2Zt8EWSPNUzUfY4PXHIo1UydzW7c83d+aRT8K13grcP3vLFrB/WajbRUu3ICuOxgBCDRhnj65mcpSQiBnWhwvSV7OPT4QQmpSjZKRkFXz/U71jh1a5tpDDeABQL4+G4lUG1Hk/wEgDW4CAfMH+bT6j/hMUrxDKBEfj5p0R1zLP0k4R0YTzojzHp2MIO0yC788dYTsvhHvnYrWaDirFmpZBCbEYujgb5/C+u8LHvnSm1oxgw7IvicVpx2S2FD1x+HNQMbBPCWK/gXBoTGeB03CDsP76Zt5ZXkq8828s/Pd692suQzAF9nO/MFeNrSRhH2NLgwuO08r0TpcMmdPSKcU1+4pARP/4juPIEvOZvYdOtBQ911DoY0KbfjWtTWw2HWKxjXHYLdS4bg95ITuhOXso+Ph1JUOO0YcrPXp/qAVTRoCiZM1IYbwCqHVYCsZwwHg/EuZjpoGL6grjj9LcAsFht8O13CW/x994vtmke+PyybMHoGbHDvihXlE52mQYLt4Cmr4hIModBc8YGxGYuY6VIJyARWp1FrRH+80UxEWvEH+Obx0pD8YsZ8paJaut5TLwn2w4DUK81r2areO1i65eBa8dO8ZXn+vjWi7P/zJLV5+JoEItJYUu9QdwWouIaS2aIJWe/uFsJ+qfDbG2o5NX7W/jJ2TEiiZThcd5IApvZhMM6QyLCya/D0c/DLb8Dh99e8nBHjTNbMdajRQs8xhuEdj3TuW6buGMyd9E7HUoUpjqBsFGArBjPEymMNwDuCktBxXg8GKfP0oUy1Q2phMg47LwFXv8ZGDkJX3ilqI7d+wkxQnoZaKyqwGJSGPJGOR5rpppQ4ex3GdVWgM1i0HznktPvZiOZzvDdl4Z51Z4mDnd6+OzPematGg/7YqX+x0xGCONtd2e3eHXPZNb32bhHjFwdvDYa8KKJND3jIcYDcTFKVnJNc2ksyJYGVza3vJhraciHqqr0T0forHXy+oOtRJPpslYlfySJx2k1jmUDUQR5+MPQeSu88uOGh3TUOhkPxnmxz8vfPHqJgx0emjegMO6ocYgmRJtT+Iyn8oRx2EAYT3aDYoLarSu80rWNFMYbgGqHNZslCSIDcty5TXT+nvk2TFyA/W+B3a+BI+8U4nj7vXD9by7bmswmhebqCq5MhHkmqPmaJ87nDpi+Km0UedgtpsKR0CCsFCAb8GbgF5cmmAzFecv1HfzuPTsY9sf4T62COuiN5HJB8xg2Gu4xcgLCE1kbBeQ8k9mKsdkiqsnXSDLFhdEAGRWiyTShuHE1T3LtcGE0WNZfDMKKsE0ZxPXdd0D/8yu4slImQnFiyQydtU5u6KqlpbqC7+t2ikSkoCnMq23xG5JOwrffIy42H/h82ZxdPZninQ8dxeOw8i9vP1JoGdggdNQ6c8NO6rcXWCmmwvHSqLbJi+DZtC7GZK8kUhhvAKodVoLxFBltctB4ME6gStta+dknwGSBvW8U/33vX8Cr/hze8Nll72Jt8zh4qmeSC2ltxOW4JozTSfAPyopxHoY5xk45Fno2vnVskPpKG3fubOCO7fVc1+nhH3/aw6/+63Pc/qmf8YbPPM0jZ0ayx1+ZCBGMp0qFcc9jgCIqxhruCgtmk1JYweu4EcbOCHGwypzNy5cdD8ZXcSWS2QjFUwx6o+wq4y8GcSH2XvPDuHt/DA/dC//9IZH5uwrotobOWicmk8Kr97fw80sTJH3D8JmbxK6jJo59kSTV5fzFT/wfMRjnNX8343AOvfEso6r86ztuyA332GB01DhJpsUAIuq2i4qwthvkjSRLL0Amu6WNYgFIYbwBcDusqCoEtarReDBGpm4rmG3gH4DtrwKnNmLY5oJb/6dIPFhm2jwOQvEU07hJO+ph/Jx4wNcPalpWjPMQVgqDVAqQVooyTIcT/PTCGG841IbVbEJRFD70yh2MBmL0T0f4vXt2cF2Hhw9+/QQv9k3TPRbkbZ9/Do/Tyj178tJZYgE49kXovDlnX0EMXvE4ioYutN94zQz6KBDGASmMr2W6x0Tj3UwV41pbilebn2eo/dVw8/vhxS/CF+4tqM6uFP2aMO6oFYJ1S4MLWyYK//HLEBoXg3Ae+1NACGPDxrvgKDz9d3DwQdj3wIyvt6vFzZFNNXz6Vw8XxnpuMLKZztMRUTFOCAtiOqPijSQK+3QyaSGMZePdvLHMfohkrZM//a7SbmEylKDeXQkNO2H0tLBRrAJ6A16l3YKpaU+uYiyj2kqwG1aMdSuFFMZGfP/EEMm0ypuOtGfvu2N7A8/+0StoqqrAZFL4tZs7edNnn+EDX3oSq5ImY3LzjffewuZ6V+5Ej/8ZBEfgrV8teY3q4mlk+qCPwaPQddty/Whz4uywn8YqO+PBeLaTX3JtMlsiBUDz8KNUKjGeaX0zbfe9CTbfAV97Gzz5V/CKP16ppQLQP1WY9d3ksvBp699jmTgLD35D7LA8/1nY+gq8ERPXOQ2aqI//m7iIfNnvz/p6lXYL337frbMet97Jj2y7OS+ZwmeqRVUp9Bj7+iEdlxXjBSArxhsAPdfQH00yFY7nwtFbDoK9Gnbevyrr0rerd7dUoTTtgfELojono9pKsFkM4tpslWC2SytFGY71eemodbC7pbDC1FLtyPoT6yrtfOkdh/k39aM8kfkNnnN8gJ1P/A8xfQtEwsTRf4Eb3wvtR0peo2QamatODPoYenHZfq65kExnuDAa5K6djYAY3yu5drk4FsRhNWeFjxFVF/+TgUwDl+z7xB077xdjkJ/6Wxg9s0IrFfRPR2h2V1ChJU3sGvwmd5lPcuHIn8KOV4kmuqZ9qP/1PizRiVIrRToFL34JttylZfJK5kKrx4GiIKLr9Mb4yUu5qXf5wlj3H9eXmTAoKYsUxhuAfGGsb6k2VlXAPR+Hdz8GVoNoqhVA7/zf0+IWTU3JCPzT9SI+zuKAquZVWde1iN3ISqEoYmtfDvkwxB9NUueaPeu0a/D7bGWQxHW/gWXTzTB0HL76AHzlAfj+/wR3K9z9J4bPNZxG1rx/xYVKMZcnQiRSGW7eWovdYpIe42ucS2NBdjRVlm8oCwxjuvpzfqC8DG80L1Xlvk9ChUe8TzMrF+M2MB2hsy4n4mu9pxhU6znRqPWqWCvgTV9AiUzyRvXxUu9r908gMAQ3vGvF1rwesFlMtLgrGJyOQFWLKI5M9eRNvcv7vMsK4+VJllrPSGG8AXBX5ITxT7RInSa3XVS3VtF/tLnehaLAdZ01sP0eeM9PhQgZeB5quuQIyzwMPcYgvOHSSmFIIJosnAJlRDImGoDajmB73d/Cmx+CD54QTahDL4qklFf/JdjLTyPzF8dnNe0XdqB4cIl+kvlzdkj4i/e1VtNQZWc8IK0U1zIXZ0mk4NQ3Qc3whP1uvOG895uzFu7/FAwfh+NfXv6FauhRbToVvkt0Z9oKdyYad5Gs3cER0yU8xX+Hx74ghN2O1dmtXMu01zpFZJuiZJMpprX3RG1xxdjVkOsfkswZKYw3APo21l/++CL/8NNu7t/XzIH21R+c0VHr5EcfvIPXHWwVd7QdgXf/FN74zyJDWZJFjIQ2qAg566WVogz+uQjjF78IgUG4+2O5CzGLHW75bfjAS/DOh2HXL5V9usdhVDHWtrrHz5c+YYU4M+ynwmpiS0Nl1mcsuTaZDMWZDCXK+4tVFU5+DTpuIlzZmd02D8aSwju+703gbluxCLdYMs1oIJYTxpk0psluBsydJV72UONhDpu68Tjy2pmmrwqr0uF3iIhDybzo1Id8QDaZYspIGE9ckv7iBSKF8QZAFwdXJ8P8zl3b+PSvHMZ8jWRA7mp2F24fmsxw8G0FsVgSsFsNmu9As1LIirERvtmEcTwEv/gr2Pwy2HJn6ePOWui6fcbXqHHZiCbThdPImjRhPHp63mteKs4OB9jV7MZsUmisqpDC+Brm8riYXLm9XMV48pLImj/wy5qnPYmqqvzGF1/gXV86Ji7oarfkmpaXmUFtNHNWGHt7IR1n3LG5xMs+WXMdHiVMS3Igd+fxL4uhE0fesSLrXW901DgZC8ZEoaR+B/gHCAbEDlGNK+/zblIK44UihfEGwGUz8+CNHfzDg9fxv+7duSGD0dc6drMY8FEywcxZJyvGBmQy6uxWiuNfFjaUV3xswa+jT78rSKaoboeKapFnvApkMirnhwPsaxNNh41uAytFLGDwTMlq0Dclos8217mMD+h5TNxuvxeP04ovkuDh0yMc6/My7NMqhzWbhEBdAQaKotr0nRF/1daSC7Chyv0ANPlPijtUFU5/WxQ+3K0rst71RketA1UVo+upF6OhlekequwW7BZtQEp4EqLTUhgvECmMNwCKovDJBw7kLAuSNYfNYkJVIZkuFsb1EA+I0d6SLKFEiozKzML4yhOiY7vjhgW/jt5U5Ivm/f4VRVSNV6kBr386QjCeYm9rNQCNVXYCsZSoag8egy+/Dj7VJSZcSladq1NhLCaFVk+ZoRXdj0LDLvB0UOO0MRVK8KlHLgBiV0RVVdGTERpbkcEy/XnDPYDsxNJEzY6SivGgqQ2vWkn15HFxx/BL4O+HPW9Y9nWuV/QLEpFMIYRvhf+ycSKFzDBeEFIYSyRrAL0SUDIW2iXHQhuhj0AvK4wzGTG6ufOmRb2O3lTkDecqxt86NsBlUxfq2FnxOitAIpXhfV99kbd87hl+6ysiKm6vNgihsaoCUEl/533wr3fD2FlhWTrxtRVZm2Rm+qbCdNQ6sZgNvo4TYeh7GrbdA4gUlGA8xcB0lLt2NpDOqARiqVy0pa9v2dfbPx3BYTVTr48fHr8A1Z1UV9cwHowX7Gr5oklezGzHPnpM3HH++2LS6ipFhK4H8rOMqd0KKLjDvYX+4t6nxW3DrpVf4DpACmOJZA1gs4g/VTnkY274o0KoussJ48lLEPNBxyKFsV4xzkum+POHz/PPl5woyTDBke5FnX+uDHgj/OjMqIioq7TxhkOt2fzmBredJry4zn8DDv0afPAk7LgXznx7RSO+JMb0TkboqiuTX9z7NKQT2Z4L/f12184GXnNA7AD6IomcMJ7O+YwngnGOXp1e8vXqiRSK3qw6cREadtJYZSeRygihruGLJDmt7MQ01Q2RaTj3PeHpl0kJC6axyo7NYhLJFNYK8HTSGr2Ym3oXD4nhKtteKWxdknkjhbFEsgbQhXFJMoVTG1EsK8YFBKKzVIwHtA7+jpsX9Tp6s4ueTBGMJfFHk6Tr9wLwyS9+i7EViErTLwT+6P7d/Md7bubv3nYdVq0C2VhlZ59JE0yH3w72SjHtMjwOV3+x7GuTlEdVVfqmwmyayV9sdUKnmPq2s7mKqgoLH3317sL3Xk2XOD7PZ/zJH53nN7/0wpKud8gX5cJoIOcvzqTFRWbjLhqqRIbuRF4yhTeS5LJd/C3w4hdh+grsef2SrmmjYTIptHscDOrJFPvexM3Jo9yoas2+xx4S3wcv/8jqLXKNI4WxRLIGsJerGLs0YSyTKQrQhaKneOKWzsBRUW1f5NStYo/xkNYM9YqXvxxVMdEU6+HZy8t/0aL/vCUTxhBWin1KLyqKGD4CsP1VYKuCM/+57GuTlGciFCecSJevGPc8Cl13iMogcNu2ek587FVsb6rKVo+9kYSowNqqssI4lc7w+IVxQvEU6YxqfO550D0W5N1fPsYdn3qcIW+U+/Zpw5emr4qxww27aagUwji/Ac8XSTBcuRsUMzz5tyKNYtdrFr2ejU42yxhQX/b7XFWb+eXRvxTDnp75R5Gy03Hjqq5xLSOFsUSyBshVjMtZKWTFOB//rBXj54SNYpFDZCqsZuwWUzaVYkiLsmqpryFds409Sj+RxPLbFWbyVNe5bOw3X2XKsQlsWmXS6oDdr4VzP4CUjHJbLfREik31BhXjqcuiwqo8uwD/AAAgAElEQVT5i3X0qE3d3+6LJMT7uKYrK4yP9/uy78lIIsVi+dzPr/Bk9wTvu3MrT/7BK3jzEW2LXmu8o3EXjW69YpwnjKNJHK4qcUGWCMKm23IX85IF01HjyDZBhlUbH0m8l5r4MHzhHrET9PI/WOUVrm2kMJZI1gDZ5rtiYeyoARRZMS5iRmEcnoKpniWrqNQ4bdlpZHrFuN3jQG3ayy6lf0mESSyZ5q9/cpFw3Phc2Qq5wc9rMikcMPXSbysaDbv/TRD3i9QDyarQOxkGykS1XX5c3JbJdNd3K7KNn7Vd2Szjx86PZY9biguz8WCMXc1V/P69u2jzOHIPTIh0DOp30lApqtr5wtgbSYjKtu7llzaKJWFXixtfJEnPeIjpUIIX1F30bHqbuJDadDtsunW1l7imkcJYIlkDlK0Ym8zakI+JVVjVtYs/msRiUnDazKUPDh4Vt4v0F+t4nLnpd0PeKDazifpKO6aW/XSYJkhF/It+jZ9fmuAfH+/hyW7jC6AZmw1D4zQyzQWlyDay+U7hUT/9rUWvT7Iw+qYimE0KbTWO0gd7HhNNdWXsPm6HFUXJa/ys6QJvH2QyPHZuDD2ufimE8WQoQb1mlShAS6TAXonbYcFmMRUIY38kKS7Wdr1ajIDe/bpFr0UCd+9qBODRc2NMhcXve/DIR+DQr8J9n1zNpa0LpDCWSNYANnOZ5juAyiYIja/wiq5t9HHQipFVov85MFmh9dCSvFaN04Zf8xgP+qK0eiowmRTMLQcAqPSdW/RrnBsWAzmKR+7q+CJJXDZztuGuAC2v+ERqU+H9ZouwU/Q8tmKxcpJCeqfCtNc4Sv/dVFU0iM4wedFsUqjOH0le0wXpOL19l7kyGeaWrcJmVW6XYT5MhuLGwnjiAjSKSDBFUWiozI0fV1UVXzQpKttb7oQPX4CqpkWvRQKtHgf726p59NxodkR4tacW3vAZ0D53JAtHCmOJZA1gt5ZpvgOobBTh/pIs/pmm3g0chZaDwme7BBRXjLPVv/brCeHgyNB/LPo1zo0IYVwu4cIfTWabsUoYOQHA81GDAT/tN0AiBNOXF71GyfzpLZdIMX0Fol5ov37G54sR0XkVY+DUafHv/Votzi2aXFzFOJNRmQ4nqK8qen+lUyKRIi8rt9Ftz1aM/dEk6YxavgFWsiheuaeJlwZ8XBwVI8XrXAYXLpIFIYWxRLIG0CvGxsJYVoyL8UeTxraCVAKGj0Pn0tgoQGTL6tvZQ75ozoPpqOHfLG9md+CpnF90gegV47GAcaOcP5oon9k8chJvRSf9ESup4gExLQezx0hWFlVV6ZuMsNkokWJQG4jRPvNURjEiWq8Yiyzjgcvn2dVcxfamSmDxFWNvJEE6o5ZWjL1XRcZy4+7sXaJiLC7eXuzzArBHy9OWLC2v2tuEqoqBQpCLjpQsHimMJZI1gL2cxxhyFWN18bFM64WyFePR05CKzSo45kONJk5iyTQTwThtnpzQ+W/HG5iwtMAjfyQqbAvAH0lmm/pmrBiXE8bDJ/F79qCqwitaQMNOMNuzVWXJyjEdThCMp4wrxoMvgK1y1sllBRXj6g5UxUR66gr37G7CabMAEF2kx1h/z+g5xVn6nxO3rYezdzVU5SrGT3ZPUmE1caSrZlGvLzFmZ1MVHbUOrkyGsZlNVNotq72kdYMUxhLJGqBsKgWIinE6DrHFN3mtF8oKY10Ath0ufWyB1DhtpDIq3WNiSzO/kcpa4eDfPb8lvJjHHlrQ+XUbRaXdMqMwNvx5I9Pg7yfRsA8w8CibrdC0B0ZOLWhtkoXTq0W1ddUbVIyHjkHrdaK5dgYKKsYWGzFHCx3KOLdvr882ni62+W4yJIRuScW47xkRF9mwM3tXY1UF3kiSRCrDUz2T3Li5LvvZJVlaFEXhlbtFnnSty2bcTyFZEFIYSyRrgOxI6OKtcBDCGKSdIo/ywvgkVHigumPJXksfqnF2WFyY5MdZuWxmnjbfKMbgPvEXkE7O+/znNWF8x/b6slYKX2SGnxcwtV8HwLjR81sOiuPkjsOKoke1lVSMkzEYPQNtR2Y9R0HFGPBXtNKpjLOpzpmtGC82LrC8MH5KxILlCTK9qnx6yE/PeIg7tsnM4uXklXvEZ3+Nq0x/gWRBSGEskawBslYKo0aaShHdIxvwBJmMSqCsleKUEIJLWF3R82TPaMK4Pa9i7LSZCScycPBXRDOVt2/e5z83EqC+0s7eVjf+qLBsFCOa78pXyF2bRIU8fypZlpaDEPOBr3/ea5MsnL6pMCYFOmqKKsajpyCTnLXxDoSNJ5JIZ9Nqxs0tdCrjNFZVLFnFWLdGNOQLY9+AeL9sKkzNaNSE8fdODAFiUp9k+bihqwaP00p9pRTGS4kUxhLJGmBuFeP1JYzf8dBR/vy/5x91FkqkyKgGwz3SSRg7t+RxRjWaID0zFMCkQHN1RfYxp80iUgFqt4g7pq/M+/znhgPsaXXT5BbnDT/7EPzTDcImgRj+EU9ljJvvhl4ETyd19c1YzQrfPDbAgDYxK4tswFsVeqcitNU4sn/bWfTGu7bZhbGeRKJPPuxXG2lQ/JiTYRxWIYzDS+AxtplNuB15Hta+p8Vt120Fx+oV4x+cHKa+0sau5qpFvbZkZixmE3/zywf5wN3bZz9YMmekMJZI1gDZAR/JMs13sK6sFN5wgp9fmuChp69mrQRzJTseubiCOnFReLGbDy7VMoGcODk/EqDZXVGQSeu0mUUqwAKFcSKVoXs8yJ6WnDA2df9YxGT96CNA3tS74p83FoDux2DbPdgsJv7qLQfpGQ9x/98/yTdfGMgd17gXFLMUxitM31SYLqPGu6Fj4G4Dd8us58hOv9Pe891JrULr7cVkUnBYzUSXwEpRV1nkYe19SliSGvcWHKuPhfZGkty2rR6TSfpel5tX7Grihq7a1V7GukIKY4lkDWAxKZiUMhXjCg+YbeuqYnxMi3pSFIW/+OF51Hn4X8uOgx7VGsxalloYi9eJpzIlE8ycNovYynbVg61q3sK4ZzxEMq0WVIwrJs+IxILT34Jz3y//8577HqSiwsYBvP5QGz/64B3sa3PzkW+f4vkrU+I4a4WI3JLCeMXIZFQuT4TZXF8mkWIO/mLI7VboPuOT0QbxwOQlAFx28xJUjA2Ge/Q9LfzFpkIJkZ+le7u0UUjWKFIYSyRrAEVRsFlMxqkUirLusoxf6J3GZjbx4Vft4MnuSZ64NPeR14FyQnHkJFidZUfsLpT8mLT8xjsQwiSSSKEC1G6etzDWEyn2tFTR5LZTSwBHdATu+DC0HIL//j1C06OAwc978mtQt63Aq9pR6+Shd95AhdXED04N545tPpC7cJAsO/3TEULxVGnGb2hCeHfn4C+G3G6FL5Iglc7wfKieDGYYOwuAw2Zegri2eKGHNTAi3sebbis51mYxZcX67dulMJasTaQwlkjWCDazyTjHGNbd9LsXeqc50F7Nu2/fQledk088fL50OEUZylZQR05B8/5ZI7Dmi8VsoqpC+C+LK8YOm5mMquVP122dvzAeDlBhNbG5vpJqh5XrrFrzXvv18MbPQTxA49FPAeBx5IkXb6+o6h18W0mjodNm4e5dTTxyZpR0RqvEtxwU75/g6LzWJ1kYZ7WBLXtbqwsfGJq7vxhyuxXeSJKxYJxoxkqgcjOMnQHAZbMsesDHZDBRWDEu4y/WaayqYGuDi5bqpZksKZGsNFIYSyRrBLvVPIMwXj8V42gizelBPzdsrsVmMfGH9++iZzzEY+fn9vMZCuNMRlREm5e28U5HFyj5wz1ACBMg5zP29c066OOlfi9/8+glvvvSIMf6ptnZ7MZsUlAUhRsrNG9w8wFhf9j9WuqGnwDUwp/35DfE7YG3Gb7Gq/e3MBlK8PxVzU4hG/BWlLPDfiwmhR3NlYUPDBwVfu/WQ3M6T85jnGBYGwITr9st4t7QKsaLGAmtqipT4Tj1+cM9ep8StqAyf0sfuW8nf/q6vYaPSSRrASmMJZI1gs1cxkoB66pi/NKAl1RG5QZtYtadOxsxKcy5Cc9QGHuvQiK05IkUOrpAKfUY50Vm1W6BTAr8M8eifeLh8/zDT7v5vW+c5NSgn/1tue32A6ZeRs0t4PCIO7ruwBGfYIsykms2VFVho+i6AzzGec137Wqgwmrih6dHxB3N+wBFCuMV4uxwgG2NlaXDL/qfFaLYZuA9NsBhM2O3mPBFkgx5hTA2t+yHwCBEphddMfZHkyTTReOg+58VI9XL7LzcvbuJO7Y3LPg1JZLVRgpjiWSNYLeasnmlJVQ2QWQSMovzE14LvHDVi6LAkU2i07rCaqaz1knPeGhOz/dFk1hMSlaUArmJd0vceKejez2LPca5IQtzi2zzhhMc7/fyP16+lcc+9DK+8I7r+dArc5PFtmWucEHZkntC1x0A3GI6R5U+EnbgeXEhcOhXyr5OiZ3CXiU80NoWvGR5OTscKLVRJGMiXq/zlnmdq8ZpwxtOZMeGV27Sqs3j53DYzIvKMc4N99BsOqoK01fFtESJZJ0ihbFEskaYtWKsZiA8ubKLWgZe6J1mZ1NVQcV3W2MV3ePBOT1fn3pXEC81cgpMVmjYvdTLBXLpACXC2K5nyeZHtl0te55fdE+QUeFVe5vY1ljF3bubqNWnWkW9NCSHOZ7ozKV01G0lYK3nDuuFXDTWif8QTYa7XzfjmkvsFHXbYWr+OcuS+TEejDEZirO3tajxbuhFSCcMm9pmwuO04o0kGfZFqXFaqWjXLv5Gz+BapDCeCIq0i+xwj6hXRB5WzR4lJ5GsVaQwlkjWCHbLTM1362PIRyqd4Xi/tySXc1tjJVcnwyTn0IBnOA569BQ07gLL8kyI2t5YyfbGShy2wu1lpzZkIZpIi38jq2vGivHPLoxT67JxsN1T+uCISI14KbWJkL49rihcchziBuWcqOYlo3D2u0IU2ytLz5FHiZ2ibhtMX5ajoZeZXONdkTDue0bcdt48r/PVOG34IqJi3FbjEO8zZx2MncahxwUukGzFWPcYB7QkEymMJesYKYwlkjWC3WKeoWKsC+O13YB3biRAJJHmhs2Fwnh7YyXJtErfZFiIvxkIRJOlU+BGTy/5YI983n/nNh7+wB0l97vsec13iiKqxmWEcTqj8vNLE9y5owGz0WAEzf97JtPFWCCWvfuU5QB1qk8MMLn4Q4gH4NCDs67ZabNw185GHtebGuu2QDICwZFZnytZOOc0Yby7WBj3PwONe8A5v2ENNS5rtvmutdoh3mdN+2DsrFYxXrjHOGel0ISx/t5wty74nBLJtY4UxhLJGsFmMWUHfEQT6VzVEPKm363tivHRq2LM8Y1FFePtTaL6GT36JfjL7TB1uew5SirG8RCEJ4TwWyZMJqV0tC+55rtsMkDt5rJrPzHgxRtJcteuRuMXGTlB3NWKFzdjgXj27ufREgB6n4QTXwN3O3S9bE7r7qx1MhkW2+XUbRO3Uz1zeq5kYZwd9tNZ68RdkfceTadEIsWmW+d9Po/Tlm2+yzZ/Nu+H8fO4rCrRZBr1B78HR/9l3ueeDMUxm5RcVrcujKua530uiWStIIWxRLJGsFlyzXd/+J1T/OaXXsg96FofwvjyRJg6l43m6oqC+7c2CGFs7X8aEkH4wQfLbvmXCGO/FnHm2bQsa54JZzauTRfGW0TGsEGT5OMXxjGbFF62o0xH/8hJUo0iVSO/Ytwdr2Pa0ghnvg2XfwoHfrlkIlk5qiosJFIZ8b6SwnhZGPRG+K2vHMvGqYnGu6Jq8egpkZqyAGFc47QyFU4QTqRzHvemfZCK0ZIe5jblNMqLD8Fzn533uSeDCepctpx/PaAJ40opjCXrFymMJZI1gl2bfJfJqDxxcYLeyXDuQZsT7O41b6UIRJPZTOB8XHYLbR4HHv9ZqKgW1dGXvmJ4jhJh7NOFcedyLHlG9Oa77HZ27RbIJME/WHLs4xcmOLKpptQfDRALwFQP1o7rAAoqxv5Yit6qwyJGS83AwdltFDpVWtUyGEtBVStYHDNW4yXz55Ezo/z47Bjv//fjTIXi9E1FZvAXL0QY53zzrVlhLHYRWmM9/IHla+K+6cviomweTBSPgw6OgLN+2bz6Esm1gBTGEskaQR8JfX40gD+axBtJ5NIJQMsyXtuTy3zRRDb6rJj9DSYaEwNw8/th0+3w4z8umdSWyail4tqnTYurNs70XU705rtsA1SZyLYRf5TzIwFeUc5G0f8sALaOI1TZLdmKsaqq+KJJRmtvEMe1HYGGHXNenz6xLxhLiSpz7RYpjJeY4/1eHFYzJwZ8vOffxGS7kqi2/mehZjO459/Ulv/3kq0YN+wEk4WDV/6F/aZe/Nd/QNx/+WfzOvdkqGi4R3BkQWuUSNYSUhhLJGsEfST081eEDzeZVot8xmt/+p0vYpAooXGraxgTKunmQ/C6fxCxUY9+rOCYUCJFRi0a7uHrB7Mt16C4gljMJmwWk4hrAzEWGkqE8Qu9XgBu31ZvfKIXvwSuBtj8chrd9qwwDifSpDMq3qZbxc945J3zWl+uYpzMrU9aKZaU430+7tnTxHtftoXj/T6gKJEikxEV43nGtOnU5F0EZivGFjvU76Q6dJnzmU5GDn9IeM8v/3Re554MxnMZxiBSKWQihWSdI4WxRLJGsFtFxfi5K1PZ+7zhZO6AdTD9zh9N5hp9ithv6gVgxLlDCLhDvwLnfyAGI+jPj4jfh7vYY1zdMWff7VLjspmJ6B7jymZhVygSxuOa0O2ocRY/XVhBLj0C170dLDaa3BVZYaxP+bPWdMDvnRPHzIOCijEIn7H36qxjqyVzY9gXZTQQ40inh4/cu5ObNtfSXuOg0Z3noe9/FqLTsGl+gz109IqxzWIqFLHN+wD4VOqtRFLAtlfAlV/M+d9WVVUmQ4lchjGIHRopjCXrHCmMJZI1gs1sJpZMc7R3mgZte3M6ksgdsA4qxv5IMjfauIjOeDdjqocLIW1c7s5fEvFivU/mnm80DtrXvyr+Yh1nfpasySSSKYqE8VQ4gcWk4HZYSk9w/Mui0VCrBje7K7IeY5/27+92WKGyQUR1zYOcMM6rGGdSOfuJZFEc7xc7AYc31WAxm/i3d93If/12XmU4lYCHtWruntcv6DXyh8sUDLW54d0MHvo9nsgcEhdmW18BcT8MH5/TeQOxFIl0JucxTidFuouMapOsc6QwlkjWCHariXAijS+S5L69oit8OpxrwqKyUWTYJiKrtMLFkUpnCMZTZa0UHv9ZTmc2062Phu66XQzM+H/s3Xl83Fd97//XmX1G+2p5keU4duItzuYsJBAIa0KAULaSQn9dob2FW27bu9C79PbS3t/tLeVy28elvUChUGhZ2kJLaYCwh5DVSZzFsR3b8SJZtrVrJI1m03zvH2e+o1ltWZI1mtH7+XjkMdasx8lEes9Hn/M5R76Vu0+0YjBe+f5iV6R4lmzndjtzOM/odIKOxkBhsAEbRp76a9j+emizUzXWt9qK8UwiXf6DwCVwR4ZF8yvGcMFDSGThnjo1QcjvYed62zoR9HkLN7M99HEYPgxv+l/2WO5FcCvGG1oLJ7nQezMTN/0WYOz774pXAgaO/2BBzzt/uEe2Cj19HnA0qk3qnoKxSI0IeOf/d737GjcY57dSZHtoZ2qzauyGs7KtFMkZvKNHOenfPn80tD8EV94JL34nN7ptPFYUFJMxW+WqZsU46GMm//Sxrp02eOYdVDIynSwMTK7D37SB5KZfyV11x/Yu0hmHHx4ZyrWOlJvksRBlWylAfcbL5MnT4+zd2IrfW+ZH7dBhePCjsOcdcNUbFv0a9vjz0uPIYX6Odiw5Zw8O2XhD2WD8/99/iN/92nMF141MFR3u4Y5qa1LFWOqbgrFIjXAPkNjUFuaajXZX+/hMUSsFwFRt9hm7bQFlWynOPQ9Ohmj7bo65FWOAq++G6IA92Q44fC6K12PY0pFtt3DHolVhhrEr4vcym18x7t4JODDyYu4qWzEuE4z3fxZaNsO21+au2relnc7GAN96/tySK8aNwaJWikiHHYenYLxk8dQcLwxOcn1fmeO9wbZQBBvhrj9a0ut4PYZfeNkW7tlbGljdkxdzrTxXvhoG9sPsRMH9njg5xsPHRwquG85WjN22Labc46BVMZb6pmAsUiOC2WB869YOGoM+/F5T2GPsboqp0SN93ZDXGi4zru3sAQCc9ddxbGiaTCY7pm77GwBjN6cBzwxMsr27kXC2UsbEaXtZxYpxQ9A7f8AHZIMxMHQod9XIdJLOhqK/98RpOPEg3PD/gcebu9rrMbx+dw8/PDyU6zVebMXY5/UQCXjnK8bGQLsmUyyH589MkppzuGFzW+mNA0/CqZ/CKz9se8OX6PffsptXljkYJhwomqN95avBmYOTDxXcbyKW4nw0XjD+8dyk3eDZ424UdEcjqsdY6pyCsUiNyA/GxhjaIoHCirH7Ays6WIXVLd2EW/0sF/IGD0BDN9uv3E4sOccj7mSOxi7YtA+O3I/jODw7MMG1m/IqdFWcYeyKBHzzR0KDnRXsDeSCseM4jM4UzYsFeO7v7eXed5Y85917eogl5/jnZwfxew1hv7fkPgvVFPLNV4zBtlNolvGS5TbelQvGj38KAk1w/Xsu6xpK5mhvuB6MJ/cbFtdELEk8lZnvNceerhj0eeZ/GxEdBI8fwoXHtYvUGwVjkRqxrjlEwOfhtis7AGhvCDCaH4zDbXYUWPRMlVa4NJPF/cH5zh6ADdfx+t09tEX8/M1jeVMTrroLBp/mzOmXmIil2Nubd3jCxGn7w7yKv/6NBLzM5M+b9vqhY3suGM8k54inMnQUV4yf+zvYdDO0bSl5zlu3dtAS9nNsaDrbY3pp0yjyNYX88xVjsMF4cqCgB1ou3VOnJtjcHplvRXDNjMDBr8F19y16w91ClczR9oft+2l4/rcVmYyT+21N/lHj56MJelpC8+8td1RblcYeiqwUvcNFasRrd67jkQ+/OjfEv6RibIytGtdoxXi+laIoGCdjduf++usI+b2848ZNPHDwfG72L1ffDcDo0/8EUFgxnuyHlk0FrQgrrWBcm6t7Zy4Yj2Z7OQt6jM8fhKEXYO+7yj6n3+vh9btsT/li+4tdtmKcH4yvBBwYO7Gk513LHMfhydPj3LC5TH/xU5+HuSTc9L4VWUtDwMts8ebPocO5L6cS9lAcKAzG56Jx1jXlTbqYGlR/sawJCsYiNcLjMQXhqb0hUNhjDDUdjCcqVYyHD4GTgfV7Abjv5s2kMw5f3d9vb+/eBd276H7xywR8hqt78qpwVZ5hDPPj2gqO7+7eAZOnITHFyLT9b9iRfzjDs18F44XdP1Pxed3JJEsPxv6iVors6Xx5mwPl0kzOphieSpQe/TyXhic+a0enXcLR3UsRCfiKetx3wNhxO0OZ+U2vQK5n3f45zrqWvGAc1XHQsjYoGIvUqPaGoooxQPPGmg3Gk7MpGoM+fMWjrdxNat27ANja1cjt2zr40uP9zGUcWynf98usjx3hrV3nCkdjVXmGMUAk6CXjQCKdmb8y+3dh+EhuXmzuhLFMBp7/B9j2GmiocEQ0cPu2TpqCvtwc28UqqRh37bShvKgPVRauf8y2ofS2F51k+OK37BSVm9+/YmuJBLzMpor++2bSuQ2W7gdSmK8YO47Duck4Pc3Fp95p453UPwVjkRrV1hBgYjZlw6GreYP9lWcmU/mBq9TEbLJ89XPoEPhCBb2277mljzMTszz44jAAc9e8i5gT5D7z3fnHpeJ2BnAVR7UBNATsyKyCPuOuHfZy6BCjxRXj/kdtC8g1pZvu8gV9Xj72rmv5jVdduaT1NYd8BZuu8Idsq8fZZ5b0vGvZwLg9ZGdTW9Fs4YP/aMcqXnXXiq3F9rgXVYwh12fsbnoFCo4aT6QzrHMnUiSmIDmlVgpZExSMRWpUe8SP48z35gI2GGfS9lCLGjMZS5UPxsOHofOqgj7h1+1aR1dTkE//5CUcx+HYpIevzb2cvRPfh9hY9gndGcbVbaUIB4omA4AN+b5wNhjbinG7u/nu+X8AfwSufuNFn/v1u3vYt2VpUwJKWikA1l9rNzzmt3/Igg2MV6gYDz4Nm24Cb5mjvy+TSMBX2GPcsd1Opsj2GbutFAGfJxeMz2Uve1o0qk3WHgVjkRrVlg1SBcdCN2+0lzU4mWJyNlV+Hu/QofnZv1l+r4cP3rmNh4+P8pUn+nlmYIIvzr0ObyYBB/7W3skd1VblYOxWjAuCsccLXVfD0AuMziRpCvkI+rLB/8SDsOUV9vCHFdAU9JFIZ0jmt3qsv9Z+uHIDkVyS/vEYTSFf4Qe9eNT29q6/bkXXEgl456dSgP2NQPvW+YpxtpVie3cj57I9xiUzjKM63EPWDgVjkRrVngvGRRVjqMk+44lywTg+aUO+23qQ5+dv7eNlWzv4w385xHeeP8eZwFacTbfY0+IS0/OHe1RxhjHMH8tbEE7Ahv3hwwxPJ+b7i6eH7aa3vttWbH3zx0LnvY/WX2sv1U6xKAPjs2xqK6oWn3vWXrr/bldIJFhUMQb7/1OuYmz/u1+1rik36cWtHOdaKaZ0HLSsHQrGIjWqLeIG4/xDPtyKce0F48nZMq0Uw0fsZVHFGOyUjj9+x14cx+H7h4fYs7EFc9sHbFXuYzvgkU+Axzd/ImCVuMG4JJx074Sps8SjI/P9xacftpcrGoztv/OCDXjr9gBGwXiR+sdi9Bb3F7v/LjescMXY7y3/oWzsJUjFmZhN0hT0saE1xNBUgkzG4dykrRyXBmNVjKX+KRiL1Cg3TI3nj2yLdNhT1WqslcJxnGyPcdGEhdxEitJgDLaH8z/dYyc87O1tgV33wi8/ADvfbHuMu3asaD9nOQ3BMpvvwE4HAJqix+loyFaMTz1ie49X8Nft8xXjvPUFG6Fzu4LxIjiOU75iPHjAVlwbuxNbb70AACAASURBVFd0PZGgt3SOdtcOezT06FEmYilaG/z0NIeYyziMzCQ4F43T0RAgkD1tk+hZCDavWHuPSDVV9yeGiCxa2Yqxx2MrpDVWMZ5NzZGcy5S2UgwfthvRWir3Cd93cy8ODq/ekQ0cm2+x/9z9P+384ypzN98VHAsNubC/YfYIk40vt9ed+in03gS+pY1guxTzFeMyG/BOPbJi66gXozNJZlNz9LaXqRivcBsFuHO053AcZ/4UO/eD5tBhJmJ9tIYDdGerw0PRhJ1h3Jw3w3johfn51iJ1ThVjkRoV8nuJBLx1McvYnaxR0kox9ILdpHaBY2iNMbznlj7WtxQFkVAzhMucPLbC5se1FQXjlk043bt489z36GwI2H7qc89B3+0ruj63Ylwwsg1siIsO2COMZcHciRQFFePEtO0dX+E2CrBTKeYyDsm5vA+JHdvsrOrhQ7nefjcIn4/G7QxjdyJFJmND/YYbVnztItWgYCxSw9oigcKKMWRPv6utVgp3A1DJcdBDh3MtB7UqEnTHtRUFT2OYuu597PT0syd5AE4/Bjgr2l8M0HyhijGoneIS9Y/ZGcYFFePzzwNO1SrGALH8D2a+oK0ADx1mIjsm0Z1AcS4aL6wYjx6DRBQ2KhjL2qBgLFLDKh0L7UQHOXouWp1FLULZivHsOEyfmz+QoEZF/GXmGGcN9r6JEaeZvQN/a9soPH7YuG9F11e2xxigxx7BrWB8adyK8cbWvGA8eMBervCoNsgbF1jcytO1w1aMY0naIgE6GwMYY0/tG51Jzo9qG3zaXqpiLGvEgoKxMeYuY8wRY8wxY8yHL3C/dxhjHGPMyn5nF1mj2iocC23mEvz6p75b/kGrkFsxbsnvMc6Ok8odn1yjfF4PAZ+ndDIAMBw3/M3ca1l37kdw8Guw4XoIREqf5DJqrBSMw632IBIF40syMB6jNeLP9W4D9rCUhu6qTHXI9biXTKbYhTN2guTsFK0RPz6vh87GIM+fmQSgpyW7IXTwKdvn33nVSi5bpGouGoyNMV7gE8DdwC7gPmNMyU8qY0wT8JvAY8u9SBEpr6NCxRggOHuu8NCGVWxy1v4dWiN5m86GXrCXZWYY15pIwFv4q+ys0ekkX0i/DscTsHOXV7iNAuxhKWG/t7SVArIn4CkYX4r+8Vl6iydSnH3G9he7m99WUEO2laekx733JgwO+8yR3G9qeppDPDMwAeSNaht82r4PqjzdRWSlLKRifDNwzHGclxzHSQJfBu4tc78/AP4YiC/j+kTkAtoiAcZnCgPNqLcTgB4zVnhc9CpWtpVi+DAEmqBlU5VWtXwaAr6yrRQj0wlGaCG16+32ihXeeOdqCvlKK8ZgA9H4CZidWPlF1aiB8Rib8mcYJ2P2vVyF/mKAsL/MyYsAfbeT8Ya4w/NsbsLNuuZg7n3Q0xKCuTScfdb+JkNkjVhIMN4I9Od9PZC9LscYcz3Q6zjON5dxbSJyEe0NfqYTaRLp+R96+8fsD+X1ZoyJ4mryKjURS+HzGBqyv/YF7AzjrqurUmVbbnZkVmnwHJlO4vMY/K/+D3DDL8AVr6jC6rLBOFHmQ5TbV+r2mcoFZTJ2hnFve17F+PxBOzawCv3FMF8xLnn/+cNM99zCHZ5nc2MSu/NGtPU0h2ygT8+qv1jWlIUE43I/lZzcjcZ4gI8Dv3PRJzLm/caY/caY/cPDwwtfpYiU1ZY9Fjq/avzgWUPa8dBjxpiokYqxOzIqN2fVcexO/nW13V/sigS8zJSpGI9OJ+hoDGDar4C3/Bn4w2Ueffk1hfzlK8ZupfDMkyu7oBo1Mp0gmc4UVoxHj9rLCofUXG65qRRl3n9D625nu+cMXZkhgNyGu6DPY397M/iUvaMmUsgaspBgPAD05n29CcgfktoE7AF+ZIw5CdwKfKPcBjzHcT7lOM4+x3H2dXV1LX7VIgJAe5lDPh49McGIaWe9GSvdmLdKTc6maM5voxh7yU6lWOEJDZdLJOAr3fyEPQyiszFYhRUVagr5SucYg92A17Edzjy18ouqQf3jdlRbQTCeyP7CtXljmUdcfhF3KkWZ99/p1lsB6Bm2R5Gva7bvxZ6WkP2QeuYpCLZA2xUrtFqR6ltIMH4C2G6MucIYEwDeDXzDvdFxnEnHcTodx9niOM4W4FHgLY7j7L8sKxaRnFzFONsyMTyV4PjwDMlIDz2M1kzFeDKWKpxhPPCEvdx0U3UWtMwagt7SzU+4FePqB+PmkL9g893JkRkcJ/uLwY03wpn9toovF+SOaivYfDfZbydS+EMVHnV5Xahi3O/dzBmng5YzDwLzrRTrmvI23m247oIH7IjUm4u+2x3HSQMfBL4DHAK+6jjOQWPMR4wxb7ncCxSRyjoaCivGj58YAyDc2VtTPcaTs6nCjXf9j9uNd11XV29Ryygc8JUeCY3tMe5sWLnjnyvJ33x35NwUd37sR/zoxWy728YbYfp8zZ2mWA25Gcb5FePJfmjtrfCIy2++Ylz6/puYTfPg3F4Cpx+EuTQ9TUFe43mS2/2H7Gl95w9q452sOQuav+I4zv3A/UXX/V6F+75q6csSkYUorhg/dmKUSMBLe981tJ/6Ns1nHwaurOIKF2ZiNsm27sb5KwaesH2NHm/lB9WQhoCXmUThr7Idx2FkOkFnU/UrxjYY24rx4ydGcRxbNeZqbDAG22fcUp12gFrRPxajszGQC6OAbaXouaZqawr4PPg8pmwrxcRsklPe67kv8UM4+RO27v9rPhP4mt1u/9H/CJmU+otlzdHvR0RqWGvYjzHwvUNDjEwneOylMW7sa8P78t/kpNnIm178z/M9jquYeywtAMkZW6mqkzYKsIcsFFfsxmMpEukMXauglaIp5CeeypCay/D0aTua7Xw0YW/s2WNP5NMGvIs6OTrDpvw2CseByYGqjxyMBMq38kzEUhyK3ADGC1+6j+Chr/Hdnl/l2Ks/CXvfBX0vhy3VmZQiUi0KxiI1zOf18FuvvYqHj41w50d/xJHzU9y6tQOCTXyk4XfxOkn46s9DavWOF5/LOEzF0/PBePAAOHN1FYztHOP0fN8utjILcP3m1motKyf/WOin+20wHopm3zO+oK14KhhfkOM4vDAYZdeG5vkrZ4ZhLgGtm6u3MNzNn+WCcRJfpM0eLGM88LNf5HW//jG23fFuOyXll/4FIu1VWLFI9SgYi9S433zNdr79b+7gpiva8Rh45VV24stM41b+vOXf2Q00D/znKq+ysmh2g6A7S3V+4119TKQAe+xyxpk/+hrgkeO27WXvptUQjO2/+9NjMU6MzABwfirvw9TGG+0HlkxpuBJrYHyWaDzN7vxg7P62pqV6PcZg338Ts6X7Ddwxibzjr+Bf74edb67C6kRWFwVjkTqwrbuRz/7iTTzzX1/Pno0tgA2a3+MmuOVfwROfhtOr87T2yXLBuO0KaOis4qqW181X2Krbj14cyl338PFR9m1pJ+Cr/rdht2L8k+yGu87GwHwrBdhgnJyCkaPVWF5NeP7MJAB7NrTMXznpBuPqtlLs6GniuYHJkutzLUyNXbmj5EXWuup/RxaRZeNW/gBaIwE7leLV/9lWrP75Q5BefVMqJvKPg3YcG4zrqI0C4LpNraxrDvLt588Bdqze0aFpXra1o8ors9xg/ODRYbwew51Xd3M+WlQxBrVTXMDzg5N4PYare5rmr3SDcRWnUgDc2NfG4GScwYnZgusnYsnccdAiYikYi9Sp1rDf/uo+2Ahv/BMYPgQP/+mKr8NxnJKJDPm3/f2TNjysaw7ZjUrT56H35pVc4mXn8Rhev6uHH784zGxyjkdesv3Ft125OoJxc/YD1VOnJ9jR08SWzgam4un5vtSObRBsVjC+gIODUbZ3NxLy501Smei3YwdD1W2XubGvDYCnTo/nrstkHCbdVgoRyVEwFqlTbQ0BZlNzxFNzcPVdsOut8OOP2lPlVtADL5znhj/4LkfPT5Xc9icPHOGLj57mfa+4gl3rm+uyv9j1ht09xFMZHjw6zCPHR2kK+gr7UavIrRjPZRyu39xqP6QAQ26fsccD66+FsweqtcRV7/kzUXbnt1HA/EQK96jzKtm5vpmw38uTp+aD8VQiTcahcH64iCgYi9Qr9wee28PLXX9k55Ie+NsVXcfp0RiJdIaPPfBiwfWf/PFxPvHD49x3cy//8Y077RG0L34bfGFYt2dF17gSbtnaTkvYz3cOnuOR4yPcsrUdn3d1fAvOb8G5vreN7uxs5YI+43W7YegwZDIrvbxVbygaZ2Q6UfpBZ/J01dsoAPxeD9f2tvBUXjB2D/9RK4VIodXxXVlElp37A889/IPm9dB3Oxz65oquI5o9OOLbB8/xTHYU2LefP8f/+NZh3rR3PX/41mtsKD7xE3j2K3DL+8Fbf1Usv9fDa3Z2863nznFyNGbH6q0SbsUYKKgYF/QZd++C1AxMnFzh1a1+zw9mN95tLKoYT/RXfSKF68a+Ng4ORnPtMe6EFLVSiBRSMBapU+4PvPwRYex4k+01Hj2+YuuIzqbsaXwNAf7kgSMcPT/F73z1ANf2tvIn77wWr8fYOcvf/DfQ2gev/PCKrW2lvWF3T+5o6NuuXD1TN/xeDyG/h5awnys6G1jX7FaM84Lxut328vwLVVjh6nbwTBSAnevzNt4lpiA+UfWJFK4b+9pIZxyeHbAfTieKp8GICKBgLFK3ygfjN9rLwytXNY7G03Q0BviNV13JT46OcN+nHyMc8PJ/33vD/Ealn3wMRo/Bmz4OgciFn7CG3bG9i7DfS1vEz4786QWrQHPIz/WbWzHG0BL2E/B5GJ7Ka6Xo2mEvhxSMiz0/OMkVnQ0FLSlMDtjLKh/u4bq+127A259tp3BbKVrCaqUQyee7+F1EpBa1Zlsp3B+A9srNdhPVoW/C7R9akXVEZ1M0h/y899Y+PvvQCYamEvzt+25lfUvY3mHsBDz0cdj7s7DtNSuypmoJB7z86iuuwOsxeDzV3ZBV7CP37mFTm/1vYoxhXXOwsGIcbIS2LQrGZRwcjHJdb9HkiVVyuIerrSHAlV0NPHVqHMdx+MnREQA6GhSMRfIpGIvUqTa3YjybKrxhx5vhh38IU+egqeeyr2MqnqYp5CPk9/KZX7yJydlU7sALAE4/ajcFvvy3L/taVoPfef3V1V5CWXftKXwvrGsKFW6+A+jerVaKIhOxJAPjs7znlr7CG1bJ4R75buxr44EXzvPR7xzh758c4Nfu2EqbgrFIAbVSiNSpsN9LwOuZ33zn2nGPvTxy/4qsIxpP5ebk7lzfXLrpbPQYGC+0b12R9cjCdDcHC4+FBli3y/73SifKP2gNOjho+4v3bCyeSNEPHt+KfPhcqH197UzEUvz5j+w0mA/fvaPaSxJZdRSMReqUMYbWiJ/JWFHFuHunDaErNJ0iOpui+UKzUseOQ1sf+FS5Wk26m0IMlVSMd4IzB8NHqrOoVejQWXfjXXEwHoDmjeDxlnlUddx8RTtejymcBiMiBdRKIVLHWiP+0oqxMXY6xaN/AbExiLSXf/AyicbTuYpxWaPHoP3Ky7oGuXTrmkNMJ9LMJNI0BLM/KrqzkymGXoD1e6u3uFXk1GiM5pCvtFd3FY1qc23pbODH/+5VrG8J22kwIlJCFWOROtYaCRROpXDt/Vnb1/vMly/r689lHKYTaZrDFT6DOw6MvmSPHJZVxR3ZNpQ/maLjSvAG4PzBKq1q9Tk5OsOWzobS6utk/6o43KPYpraIQrHIBSgYi9Sx1rC/fDDu2QMb98FTn7fh9DKZjqeBwpPVCkyds4dGdKhivNqUPeTD64fOq2HoUJVWtfqcGo3R19FQeGU6CVNnV9XGOxFZGAVjkTrWFgkwMZssf+ONvwDDh6H/8cv2+u6pd82hChXjsexBIwrGq07ZQz7AbsDTyDYAkukMA+MxtnQUzd4eOw5OBjqvqs7CRGTRFIxF6pjtMU7hlKsK734bBBrhyc9dttefzI6Kq7j5bvSYvVQrxarTna0Yl27A2wXRMzA7XoVVrS5nJmbJOJRWjN3NiV2rczSfiFSmYCxSx1oifpLpDPFUpvTGYCNc8044+HWYnbgsrz9fMb5AMPYGoVm/cl5tmoI+Qn5PmYqxuwFP7RQnR2YASivGw0cAAx3bV35RIrIkCsYidawte/pdyWQK142/AOlZ2P8ZMokYf/6jYzx/ZnLZXn8q22NccfPd6Et2dJxH34pWG3v6Xahw8x3YkW2gDXjYjXdgpz0UGD5sT5ms4+PNReqVfhqJ1LHWbAtD2Q14ABuut5vwvv8RzP/YwJt/cBf/8Ok/5LmB5QnH0dkFVIzVX7xq2dPviirGzRvBH4Gxl6qzqFXk1GiMxmCZUW0jL0KXDs8QqUUKxiJ1rDVbMZ6oVDEGeO/f47z9s3wx9HOM+Tr5r3yKZ/7y13lhYOk9pFG3YlwuGGfmYPyEgvEq1t0cLK0YG2Or/ArGnBydoa8jUjiqbS4NI0ehSxvvRGqRgrFIHWuNZCvGsxUqxgDhNr7ruZ3/MnEPx+7+MlPX/Srv5X6m//JNxL//x3Zz3rnnFvX6bsW4sdxUisl+mEtq490qtq7ZVoxLNm8qGAO2YryleOPdxCmYS6hiLFKjFIxF6thFe4wBx3H40+8fpa8jwr03bKbprR/jxZv+gKudlwj95L/DP38IPncPJGOX/PpT8TRNQV/5AwXciRQ69W7V2tLZQCw5xwvZY49z2rfC+Elb9V+j0nMZ+sdi9JXdeIeCsUiNUjAWqWO5inGlHmPge4eGODgY5YN3bsPntd8SIrf9Ktcm/pKvvuEJuO8rEJ+Eg1+75NePxlM0VZphPJqtOKpivGq9Ze8Gwn4vn/vpycIb2rfaav/kQFXWtRoMTsRJZ5zSivHwYXvZqYkUIrVIwVikjoX8XkJ+zwV7jD/38Al628P8zPUbc9etbwnj9xpOTGbgqjfY6tf+z17y60dnUxeeYRxohMbuS35eWRktET9vv3Ej//TMIKPTeb3G7Vvt5Rpup3AnUpStGDdtgFBLFVYlIkulYCxS51rDAcYrVIxTcxmePDXOa3asy1WLAbwew6a2CKfHYnaz1b5fhjNPwuCBS3rtaDxVeSLF2HG78c6UabOQVeMXb9tCMp3hS4+fnr/S3TC5hoPxqUqj2kaO6GAPkRqmYCxS5za0hugfK98ffOhslHgqw74tbSW39bZHOD2afdzenwVf+JKrxtHZ9AVmGB9TG0UN2NbdxCu2d/KFR0+RmsseFNPYY98PazgYnxyNEfJ76G4Kzl+ZycDwiwrGIjVMwVikzm3vbuL48HTZ2548ZUey3dhXGow3t4dtxRgg3ArXvB2e+zvbb7xAU4kKFeN0EiZOa+Ndjfil27dwPprgW8+fs1d4PNB+xZoOxqdGZ9jS0VA4qi06AKkZBWORGqZgLFLntnU3MjKdZHymtM/4yVPjbGgJsb4lXHJbX3sDk7MpJt02jH2/DKkYPPOVBb92dDZdfvPd+ElwMqoY14hXXdXN5vYIX3sqb7PdGh/ZdnK03ESKF+2lJlKI1CwFY5E6t627EYBjZarGT50a54Yy1WKwrRTAfNV44432n0c/YQ8xcB38R/jSz0HRrNtMxmEqXmHznTuqTYd71ASPx7BrfTNnxmfnr2zfCmMnbPvAGjOXcThdboZxbiKFKsYitUrBWKTO5YLxUGEwHpyYZXAyXraNAuZ325/O709++W/bau/Br9uv41G4/9/CkX+B0eMFj59Jpsk4FU69G8ve151uIKteV1OQ4eLJFHMJmBqs3qKq5Mz4LMm5DH3FwXjkCEQ6oaGjOgsTkSVTMBapcxtbw4T8npJg/NRp21+8r6+97OPcivGpsZn5K69+o/018UMftxXin/4pzAzb2/ofK3j8lHscdLnNd6PHINwOkfKvLatPd1OQiViKRDp7qIf7oaboA9FasP/UGADXb24tvGHkqOYXi9Q4BWOROufxGLZ2NpYE4ydPjRP2e9mxvqns4xqDPjoaAoUTLTweePlvwdBBO6Hikf8De94OoVbof7Tg8dG47U0uWzEePa7+4hrTlZ2+MDKd7VVfw7OMHz8xRnPIx9Xriv7fGTuhDaUiNU7BWGQN2NZdGoyfOjXOtb0t+L2Vvw1s7ohwarRo1Nuet0PLZviX37ZV49f+PvTeDP2PF9wtOmsrxk0KxnWhu9kG46Fo3F7RvBG8wTUbjG++oh1P/lHnyRmYPgftW6q2LhFZOgVjkTVgW3cjZyZmiSVtWJ1NznFwMFqxv9i1uT1S2GMM4PXD7b9p/3zrv4LWzTYYDx+G2fHc3aKz2YpxcStFcsb2pXaov7iWdDeFABiayvYZr9GRbcNTCV4ameHmK4ragMZP2su2K1Z8TSKyfBSMRdaA7dkNeC8N237hZwYmSGeciwbjvvYIgxOzJNNFkwdu+AV408fhlf/eft17i73sfyJ3l4qtFG6QUsW4pritFMNTRRvw1lgwfuKk7S++aUtRMB47YS/bFYxFapmCscgaUDyZ4kdHhvEYuGHzhYNxb3uEjGMnWBTwBexc40B2V/7GG8F4CzbgzW++KwrG7qg29WLWlI6GAMbkVYxhTY5se/zEGGG/lz0bWwpvGM8GY1WMRWqagrHIGtDX0YDXYzg2NM1sco4vP3Ga1+/qoTUSuODjNhfPMq4k0AA91xQEY7eVouSAj1GNaqtFPq+HjoYAw1Px+Svbt0J61vbWrhGPnRjjxr620t78sRN2E6omrYjUNAVjkTUg4PPQ1xHh2NA0/3TgDBOxFL94+5aLPs6d03qqKBhPxlL8rweO5NolANtOceZJmLPXReMpwn5vaYAYPQ5NGyDYuKS/k6y8rqZQYStFW5+9nOivzoJW2ORsisPnoqX9xWArxmqjEKl5CsYia8S2rkaODU/zVz89yc71zdxS7od7ke6mIAGfp2BkWyI9x/u+sJ8/+8ExHj42On/n3pvtkdHnnwfsVIqKM4x14l1N6m4KFrZStPTay8m1EYyfPDWG41A+GI+9pDYKkTqgYCyyRrgj246cn+KXbtuCMeaij/F4DJvbI5watZv2MhmHf/t3z/L4CbsBaTyWnL/z5lvtZXZs21QiVfnUOwXjmtTVFCysGDdvtJdrJBg/dmKMgNfDdb1FB3vMpWzVXBVjkZqnYCyyRrgb8NobArzlug0Lftzm9giPnRjjt79ygPd/YT///Mwg/+a19nSvsZm8YNyyyQalUz8F3IpxUTCeHYfYqDbe1ajubDDOZBx7RbARwm0wOVDdha2QJ06MsXdTCyG/t/CGyX5w5lQxFqkDCsYia8RV2VO67ru5t/QH+wW8/YZN9LZFePzkGI+dGOP9d2zlQ6/ZTiTgLQzGANteC8e+D6lZovFUmY13GtVWy7qagqQzTuFvClo2rZlg3D8+m/uAWSA3qk0bSkVqXZkGQBGpR7s3NPMn77yWu/b0XNLj7tm7nnv2ri+5vr0hwHhxMN79M/DU5+HY94jONrIlu3kvxx3VpmBck9xDPoanE3Q02rnGtPTCxOkqrmplzGUcRqcTdGfnORcY1wxjkXqhirHIGmGM4R03bqIxuDyfh9sbAozFioLxlldApAMO/iPReJnNd2PHwXigbcuyrEFW1vyx0Pkb8DatiR7j0ekEGWf+oJMCYyfAF4LGS/vQKSKrj4KxiCxKWyRQ2krh9cHON+Mc+RbJ+Ezp5ruhF2yF0Xfh+cmyOnU1ljn9rmUTxCchHq3SqlaGO42jK1s1LzB2wn7Y8+hHqkit0//FIrIo7Q2lwfhLj5/m/w7vxaRmuN15mqb8YDx1Do58G7a/foVXKsvFrZYOFQdjgOiZKqxo5QzngnGFVgr1F4vUBQVjEVmUcj3Gn/zxcf738W5GnSbu8T7Ghta86trjn4ZMGm79Vyu8UlkuDUEfDQEvQ/mn3+VmGdf3Bjw3GJf0GDsOjJ/URAqROqHNdyKyKO0NAWaSc8RTc4T8XhzH4Xw0wXtfdiXNc2/nTc99FXa22TsnY7D/M7DjHs0wrnHdzaHSVgqo+z5j98NAScV4+rw92EYb70TqgirGIrIobRHbJ+yO7ppKpJlNzbGuOYT/mp/Bk47hefh/24raM1+yM4xf9oFqLlmWQVfx6XeN68DjWxMV4+aQr3TU4Vh2BKEqxiJ1QRVjEVmU9gbbPzw2k2R9S5jzk7aitq4lZKdT7LoXfvw/4ewzMHIUNlwPm19WzSXLMuhqCnJoMG+jnccLzRvqPhgPTSUqT6QAVYxF6oQqxiKyKO0NNiSMz6QAOJ8d4bWuKWjD0js/D3f/MRz/gR3T9rIPwgKOoZbVrbu4Ygy2z7jOg/HwVCI3x7nAZD9g5ltKRKSmqWIsIouSqxhnWynOR7MV4+ZseDAGbvk16L0Zjn7XVpCl5nU3hZhOpIkl00QC2R8hLZvg9CPVXdhlNjSV4Lre1tIbJvttO4mvTDVZRGqOgrGILIrbYzw2bauH54qDsWvD9fYfqQtuO8HwVIK+jrxgHB2EzJz9bUGdcRwnWzEuE34nB1QtFqkjaqUQkUVpjQQwBsZitpViKBqnOeQjHKi/YCTzuivNMs6k7YSGOjSd3Vhatsd4cgBae1d+USJyWSgYi8iieD2G1rA/N8v4XDReWi2WupM75KPgWOj6nmWcm2HcXGaGsSrGInVFwVhEFq2tIZDXY5ygp0XBuN5151op8g/5qO9ZxrnjoBuL3t+xUUjH5z8YiEjNUzAWkUVrjwQYm7bBeCgaL79rX+qKe8z3dCI9f2XzRnu51irGE6ftpSrGInVDwVhEFq29IcB4LEkm4zA0lWBdcXCQuhPwefB7DbHk3PyVoWYItcBEvVeMi97f7gcBBWORuqFgLCKL1t4QYGwmyehMknTGUSvFGhH2ewuDMdT1LOPhqQR+r6E14i+8IReM1UohUi8UjEVk0dqyFWN3hrFaKdaGhqCPWDJdeGXLproNwV6LCQAAH2pJREFUxkNTcboag5jiA2omB8AfgXBbdRYmIstOwVhEFq09EiA153B8eBpArRRrRDjgZaa4YtzQCbGR6izoMhueStBVbuLKZL/9QKATHUXqhoKxiCxae4M95OOFs1EAtVKsEQ0BH7FEUcU41AqzE9VZ0GU2PJUo7S8GjWoTqUMKxiKyaG4wPnx2CmOgs1x4kLoTCZTpMQ63QnoW0onyD6phQ1OJ0okUoGAsUocUjEVk0dqywfjQ2SgdDUH8Xn1LWQvKBuNQq72ss6pxai7D2EyytGKcisPMkDbeidQZ/RQTkUVrj9hgPDSVoKdF1eK1IhL0MVO8+c7dgBavr2A8Ml1hhnH0jL1UxVikrigYi8iitTcGcn9ep4kUa0ZDwMvsGqkY5w73KH5/a4axSF1SMBaRRWsIeAlk2ye6y+3al7oUCfiYKdl812Iv66xiPBTNHu7RpMM9RNYCBWMRWTRjDG0N9tCDHgXjNaPi5juov4qx20pRKRi7x2GLSF1QMBaRJWnL9hlrhvHaEQl4SWcckunM/JVuK0V8sjqLukzcinHJxJXJfmhcBz6970XqiYKxiCxJR7bPeJ1mGK8ZkYAPoPD0O7diXGetFKMzCZpDPgK+oh+XGtUmUpcUjEVkSXIVY22+WzMagl6AwnYKrx/8DXXXSjEeS+XmdRdQMBapSwrGIrIkbmhQK8XaES5XMQZbNa6zivH4TDI3rzvHcbLBWDOMReqNgrGILMmOnmY2toZzlWOpfw0BWzGeSZQZ2VZnFeOxmWRuXndObNSe8qdgLFJ3fNVegIjUtp+7ZTP33dyLMabaS5EVMt9jXGYyRZ1VjCdiSXauby68MjeRYsPKL0hELitVjEVkyRSK15ZIwO0xLp5lXIcV41iS9uxIwpzooL1s0ag2kXqjYCwiIpfE3Xw3U3L6XUtdVYxnk3PEU5nSHmP3OGjNMBapOwsKxsaYu4wxR4wxx4wxHy5z+28bY14wxjxrjPm+MaZv+ZcqIiKrgbv5brbc5rs6qhiPx5IApf3z0UHw+KChqwqrEpHL6aLB2BjjBT4B3A3sAu4zxuwqutvTwD7HcfYCfw/88XIvVEREVocLbr5LzcBcqgqrWn5jMxcIxk3rweOtwqpE5HJaSMX4ZuCY4zgvOY6TBL4M3Jt/B8dxfug4Tiz75aOAhjuKiNSpsgd8QN4hH/Vx+t1EzAb8tkhxj/EZtVGI1KmFBOONQH/e1wPZ6yr5FeBbS1mUiIisXgGfB5/HlE6lcI+FrpN2irFsK0XJAR/RM5pIIVKnFhKMy203d8re0Zj3AvuAj1a4/f3GmP3GmP3Dw8MLX6WIiKwqkYC3/Lg2qJsNeBNuj3F+MHYc20qhYCxSlxYSjAeA/Cnmm4DB4jsZY14L/CfgLY7jJMo9keM4n3IcZ5/jOPu6urRpQUSkVkUCvvLj2qB+KsbZHuPWcF4rxew4pONqpRCpUwsJxk8A240xVxhjAsC7gW/k38EYcz3wSWwoHlr+ZYqIyGoSCXpLx7XVXcU4RXPIh8+b96MyN6pNFWORenTRYOw4Thr4IPAd4BDwVcdxDhpjPmKMeUv2bh8FGoG/M8YcMMZ8o8LTiYhIHWgI+IglKlWMx1d+QZfB2EyyTH+xe7iH9piL1KMFHQntOM79wP1F1/1e3p9fu8zrEhGRVSxcrsc41GIv66RiPB5L0loyqk0VY5F6ppPvRETkkjWUC8b+EPhCddNjPB4rUzGePAPGC43rqrMoEbmsFIxFROSSRYI+Zoo334Ftp6iTOcbjMylaS2YYD0JTjw73EKlTCsYiInLJIn4vs8UVY7Ab8OqolaK9XCuF2ihE6paCsYiIXLKGoI+Z4s13YCvGddBKEU/NEUvOFc4whuwMY41qE6lXCsYiInLJwgEvs6n6rRiPu4d7RMod7qFgLFKvFIxFROSSNQS8pOYckulM4Q2hVpit/R7j8ZkUAO0NeT3G8QlIzaiVQqSOKRiLiMgliwTstM+S0+/qrGJcMK7NnWGsYCxStxSMRUTkkkUCdipD6SzjVkhEIVOmzaKGuMG4YFxbLhirlUKkXikYi4jIJYsEL1Axhpof2TY+U6bH2D3co0XBWKReKRiLiMgla8hWjGcSFU6/q/FjoceyPcYFc4yjg2A8OtxDpI4t6EhoERGRfOELtVJAzVSM5zIOT58e57uHzvPQ0RF+5eVX8LYbNjEeS9IU8uH35tWPomdsKPb6Kz+hiNQ0BWMREblkDRfafAc1swHvv//LIT770xP4PIaQ38vnHj6ZC8Zlj4PWxjuRuqZWChERuWTu5ruZShXjGjnk4+ToDFd2NfDU772OD9y5jWcHJhmcmGU8liqcSJHJwMiL0NJbvcWKyGWnYCwiIpfM3Xw3W+MV46l4iq6mIM0hP2/YbXuHHzh4jvGZJO35/cWnHrKtFDveVKWVishKUDAWEZFLVnnzXW1VjKfiaZpCNgBv7Wpke3cj3z54jrGZZOFEiqf/BoLNsOOeKq1URFaCgrGIiFwyd/NdybHQ/jB4AzVTMZ5OpGkKzm+3uWtPD4+fGGN4KkGb22Mcj8IL/wR73gaBSJVWKiIrQcFYREQuWcDrwecxzCSKWimMgYZumB6qzsIuka0YzwfjN+zuIeNAci4zv/nu4NchPQvXvbdKqxSRlaJgLCIil8wYQzjgLR3XBnZyw+TAZXvtBw6e4xM/PLbk53Ech+lEmsa8YLx7QzMbW8NA3gzjA38DnVfBpn1Lfk0RWd0UjEVEZFEaAr7ScW1gT4Zzj09eZs8OTPDBLz3Nn33/KI7jLOm54qkMcxmHxuD8JjtjDK/PbsJrjwRg5Cj0PwbXvcdWw0WkrikYi4jIokSC3tJxbQDNG+0EhyUG12Ij0wl+/QtPkkxnSKQzDE8nlvR8U3F7ul1+KwXAW6/biM9j2NrVaKvFxgvXvntJryUitUHBWEREFiUS8BIr7jEGG4zTcYiNLdtrpeYyfOBvnmJ0JsnvvO4qAPrHZpf0nFPZtRcH42t7W3n+v72Bq7sj8MyXYdtroalnSa8lIrVBwVhERBYlEvCV7zFu2Wgvo2eW7bUeOjbCYyfG+Mi9u7lrjw2pA+OxJT3nVNwG48Zg6SGwIb8Xjv8Aps7C9e9Z0uuISO1QMBYRkUVpqLj5bpO9XMZgfHYiDsAdV3Wxsc1ujhsYX1rFeDruVoz95e/w9Bch3A5X3b2k1xGR2qFgLCIiixKptPmueYO9XMZgPJLtJ+5oCBIJ+OhoCCw9GCdsj3G5ijGxMThyP1zzTvAFSm8XkbqkYCwiIosSqVQxbuwGjw8mlzcYt4T9BHz2x9amtvCSWymi8fI9xgA8/w8wl1Qbhcgao2AsIiKLEgl4Sw/4APB4oWn9sleMOxvnK7eb2iKcya8YRwfhk3fAwP4FP+f0hYLx01+EddfA+msXvWYRqT0KxiIisiiRoK/0SGhX8/LOMh6ZStLZGMx9vaktzMDELJlMdiTc45+Gs8/At/7DgsfETWdDfUNxK8XQYTh7QNVikTVIwVhERBalIeAlNeeQTGdKb2zZuKyn39mKcWEwTrqzjFNxeOrz0NAFZ/bbI5wXYCqeIuz34vcW/Sh86Yf2cseblmv5IlIjFIxFRGRRwgFbaa24AS86uGyHfAwXt1K0R4DsyLbn/wFio/C2T0H3bvj+f4P0xQ//KD4OOufkQ9DaB629y7J2EakdCsYiIrIoDQEvQOWRbXMJG1iXKJ6aYyqeLqgY97oj28Zi8PgnoWsHbL0TXvcRGD8JT3zmos8bjadpKm6jyGTg1MOw5eVLXreI1B4FYxERWRS3N3e63AY895CPZWinGJ1JAtDZNB+MN7bainHq1OO2t/jm94ExsO01sPVV8OBHYa7MuvJMx9OlG++GD8PsGPTdvuR1i0jtUTAWEZFFaY3YgzEmZ1OlN+ZmGS99A97IlG2LyK8YhwNeOhsDbDv5txBshr3vtjcYA9e8y4bbiVMXfN6yrRSnfmovtygYi6xFCsYiIrIorWHb8zsRKxeMl+/0O/dwj/weY4DNrQF2Tj4I17wDgo3zN3Ruzz7w6AWfdyqeoilYdOrdyYfs2lv7lrxuEak9CsYiIrIoLWEbKidiydIbG7rA41+eVorpbCtFXsUY4GXhfoJOAq64o/ABHduyDzx2weedjhdVjB3HVoy33G4rzyKy5igYi4jIorRcqJXC44Hm9cvSSjGcrRh3NRUG4xvMYQAyvS8rfECkHcLtMHqxinG68DjokaMwM6z+YpE1TMFYREQWpSnow2MqtFKAbUlYplaKxqCPkN9bcP1V8ec4kVnHkNNa+qDO7TBSuWKcyThMJ9M051eMc/3FmkghslYpGIuIyKJ4PIaWsL98xRjsBrxlaKUYmU6W9BeTydAzcYAnMjvsLONiHdsvWDGOpeZwHApbKU79FBrXQfvWJa9ZRGqTgrGIiCxaayTARKVg3LIRps7a2cBLMDKVKOkvZuQI/uQETzhXMzA+W/qgzm0wfR7i0bLPORW3a27M33x36mHbRqH+YpE1S8FYREQWrSXsL7/5DrKHfCQhNrKk1yg+DhqwIRZ4vGLF+MIb8KbjdsZxbo7x9JBt+9h005LWKiK1TcFYREQW7aKtFLDkdoqR6QSdTUWtFKcfgcYekk19fGV/P4+fGCu8vSM7sq1CMJ7KHkqSa6U496y97LlmSWsVkdqmYCwiIovWGvFX3nzXcw0YDxz8+qKfPzWXYTyWoqOhuGL8CPS9jP/97utxHHjXJx/hv/zj86Tmsm0b7VfY164wy3gqWzHObb4791x2zXsWvVYRqX0KxiIismitF2qlaOuD3W+DJz4DM6OLev6xMsdBM3EaogOw+TZu2drBA791Bz9/ax9fePQUPzoybO/jC9pDOipswHNbKXI9xueeg9bNEG5b1DpFpD4oGIuIyKK1RAJMJdLMZZzyd7jj30IqBo/++aKefzh7HHRX/lSKU4/Yyz47vzgS8PEbd14JzJ+SB9g+40qtFO7mu/yKcc/eRa1RROqHgrGIiCxaa9iP48wHzRLdO2HXW+DxT8HsxCU///xx0HkV4xMPQrAFunflraPM8dSd22H0eNmpGNOJvM13yRnbcqH+YpE1z3fxu4iIiJTXGnGPhU7RGgmUv9Md/w5e+Cf43u9DYzcc+x5k0tC1A9bthpveB4FI2YeOFB8HPZeCw9+Eq+8Cz/yBHyG/h4DXU7gRsGObrVZPDULLpoLndXuMGwI+GHwGcBSMRUTBWEREFi8XjCtNpgAbOK9+Izz5V3ZD3MZ9EGmFkw/Bs1+BmRF4/R/M33/sJUgnoXvHfMXY7TF+6ccQn4Bdby14CWMMzcUTMjqzkylGjpYNxo1BH16PgbPPzK9TRNY0BWMREVm0lrBbMa6wAc/15j+Fa++zxy1H2uev/7tfgic/Z6vKoWZIJ+Cv3wo48KFnGZlKEPJ7aAhkq8MHvw7BZrjy1WXW4iNaXDEG22d85Z388MgQ+/raaAr5mU6kaAzm9ReHWqCld3H/EkSkbqjHWEREFq0l29tbcZaxq7Hb9hrnh2KA238TElEbjsH2Ik+cspMnBp/OHe5hjLFV5MPftNVnf6jMWvxMzOYF9Kb1EGiE0WMMTcX5pb96gr/66UkgWzEu3ninE+9E1jwFYxERWTS3leKiwTjPN58dnD+QY8P1sOUV8OhfwNR5ePCjsPk28PjghX9kZDo53198IttGsftnKqwlULgOY2w7xamfcnpkGoCnT48DdvNdU8gHmTk4f1BtFCICKBiLiMgSzLdSLCwY94/F+K2vHOATP8wbo3b7h+wGuc+/GRJTcM/HYOur4IV/YmQqPh+MD37dTqO48s6KaykJ6Df/Gpx7Ds8zXwTgQP8EjuPkeowZPQ7pWQVjEQEUjEVEZAn8Xg+NQd+Cg/HHv/siqTmH89H4/JXbXmtHr40cget/Htbtgl33wvhJOqYP09UUsG0Uh74JO+6xh3eU0RL2M1m8jmvfDX23s/P5/0UbUcZjKU6NxpiKp2zFOHcUtGYYi4iCsYiILFFJb28FL56f4usHzhDwejiXH4yNgTv/I7RtsZcAV9+DY7zcnniIrsYgPPYXkJis2EYB0Bz2E40XHTZiDNzzMQLpaX7X/2XAVo2nE2magn4YeAK8Aei8ajF/dRGpM5pKISIiS9IaKVOpLeNPvnOExoCPd93Uy2ceOkE8NUfIn502sfPN9h9XQwdT62/j7oHHiCZ/AA//Hux8i60uV+C2dUzFi2Yqd+/kmw1v410zf8dZs46XjgXxxsd5z9lPw+i3YfsbwFdhBrOIrCkKxiIisiS2YnzhYHygf4IHXjjP77zuKta12IkSQ9EEmzvswR7DUwm+ffAc771ls51AATzX8kpuH/wJzv7fhSteCW//S/BU/kVna3h+I2DxYSN/ln4bOyPH+FDsK3DwK7zfhAiPpeCOf2+PrRYRQcFYRESWqDXi58Xz0xe8zzefGSTk9/DLL7+CJ0/ZyRDnovFcMP6Hpwb4o28d5vreVvZsbAHgX5I3chM+Ahv2wrv/pmJvsaslXH5CRmouw4mowz/f+UkiMwNMPfkVtpsBnFv+NW979d2L+juLSH1Sj7GIiCxJSzhw0c13ZyfjbGgN0xD00ZOtGOf3GZ8eiwHw4xeHc9f95Cz8j76/hF/8JgSbLr6OCqPjBidmyTjQ2x7hiu27+fP0vfxW6gOkunYv7C8oImuGgrGIiCxJa8TP5GwSx3Eq3ufs5Czrs4F4XbPbSjEfjPuzwfgnR20wHplO0D82y/or90KgYUHrqDQ6rn9sFoDetgjXb27NXd8U8i/oeUVk7VAwFhGRJWkN+0nNOcSScxXvcz6ayAXi5pCPsN/Lucn5YDwwbsPrk6fGmUmkOXB6AoDrN7cteB2VWincanRve5h1zSE2ZAN67khoEZEsBWMREVkS9/S7ShvwMhk7t9itGBtjWNcczLVSzGUczozPsndTC6k5h8dOjPJ0/zg+j2HPhpYFr6NSMO4fj+HzGNa3hAG4Lls1zh0JLSKSpWAsIiJLkgukFfqMR2YSpDMOPdmKMdh2CveQj/PROMm5DG+9biMhv4cHXxzh6dMT7FzfTDjgXfA6Qn4vQZ+HaHEwHouxoTWM12OnXVzfa6vQzQrGIlJE3xVERGRJWsJ2NFqlQz7clomebMXW/jnE09l2Cbe/eFt3I7du7eDHLw4zFI3zths2LWIt/tIe4/FZNrdHcl+/c98mMo7D1s7GS35+EalvqhiLiMiSuK0UlSrGuWCcVzHuaQ5xLhrHcRz6s/3Fve0RXrG9ixMjM8wk5wo2yi1US9hf2koxFqO3fT6Ut0YC/Norr8STrSCLiLgUjEVEZEku1mPs9hK7Y9oAuptDJNMZJmIp+sdiGAMbWkPcsb0zd59L2XiXv5b8YDyTSDM2k2RTW+QCjxIRsRSMRURkSVrdVooLVIz9XkNHw/xpdG71+Fw0Tv9YjJ7mEEGfl23djaxvCdEa8bOl49LDbHHFuH/cnUihYCwiF6ceYxERWZKQ30PA57lgj3F3U6igdaGnxZ5idz4ap388lguuxhg+cOc2puLp3NHQl6I57OfQ2anc1+4M480KxiKyAArGIiKyJMYYWsP+kmkQrrOT8YI2Cpg/5ON8NE7/2Cy3b5tvoXjvrX2LXktxxTg3w7gtXOkhIiI5aqUQEZElKzcNwnU+WhqMu5vs16fHYpyfihdsjlvqOqYTadJzGcBuvIsEvLTntXGIiFSiYCwiIkvWGikfjB3HsRXj5sJgHPB56GgI8OSpcRzHHte8LOvIzlSOxtMADIzH6G2LLKotQ0TWHgVjERFZspZwgPFYaY9xNJ5mNjWXO/Uu37rmEAf67SzjzYvYaFd2HZHC0++ODk1zRWfDsjy3iNQ/BWMREVmy9S0hzozP4jhOwfXuDON1zaXBuKclRDxlWx6Wq2LsnsI3EUsyOZvi1GiMazYt/FhpEVnbFIxFRGTJdm1oZiqRZiB7WIfLnWFcqWIMtq2iuym4LOvIHU89m+LgmUkArtmoYCwiC6NgLCIiS7ZrfTMABwejBdefm7RBuVzFeF2zDcObWsPLdgpdfjB+VsFYRC6RgrGIiCzZ1T1NeAy8cLY4GCeACq0U2es2LeOM4ZbsYSPR2RTPnZlkU1uYNk2kEJEFUjAWEZElC/m9bO1q5IXiinF0ls7GAAFf6Y+bddn2is3LNKoN8nuMUzw3MKlqsYhcEgVjERFZFrvWN3OopGJcOsPY5VaMl2vjHdh+5bDfS/94jNNjMfYoGIvIJVAwFhGRZbFrQzNnJmaZzJtnXG6GsWtrVwNvuXYDr921blnX0RL289NjowDs1UQKEbkECsYiIrIs3A14+X3G58qceucK+rz82X3Xc2VX47KuoyXs58yE3fS3Z4OCsYgsnIKxiIgsi51FwTiemmMilqpYMb5c3EM+etu18U5ELo2CsYiILIuupiDdTcHcBjz3cI+eluXbXLcQ7gY8bbwTkUulYCwiIstm5/rmXMX4R0eGAOhbpuOeF2o+GLeu6OuKSO1bUDA2xtxljDlijDlmjPlwmduDxpivZG9/zBizZbkXKiIiq9+uDc0cG5ripeFp/vg7R3jF9k729bWt6BpUMRaRxbpoMDbGeIFPAHcDu4D7jDG7iu72K8C44zjbgI8D/3O5FyoiIqvfrvXNpOYcfuXz+zHAH719L8Ysz6l2C9XdFMTnMezZ2Lyirysitc+3gPvcDBxzHOclAGPMl4F7gRfy7nMv8PvZP/898H+MMcZxHGcZ1yoiIqvcrg02jJ4YmeEP37qHja0r218M8J5b+7jtyk5aI9p4JyKXZiGtFBuB/ryvB7LXlb2P4zhpYBLoWI4FiohI7djS0UBTyMetW9v5uZs3V2UNjUEf12h+sYgswkIqxuV+B1ZcCV7IfTDGvB94P8DmzdX5hikiIpeP12P4+m/cxrrmEB7PyrZQiIgs1UIqxgNAb97Xm4DBSvcxxviAFmCs+Ikcx/mU4zj7HMfZ19XVtbgVi4jIqratu4mmkL/ayxARuWQLCcZPANuNMVcYYwLAu4FvFN3nG8AvZP/8DuAH6i8WERERkVpy0VYKx3HSxpgPAt8BvMBnHcc5aIz5CLDfcZxvAJ8BvmCMOYatFL/7ci5aRERERGS5LaTHGMdx7gfuL7ru9/L+HAfeubxLExERERFZOTr5TkREREQEBWMREREREUDBWEREREQEUDAWEREREQEUjEVEREREAAVjERERERFAwVhEREREBFAwFhEREREBFIxFRERERAAFYxERERERQMFYRERERARQMBYRERERARSMRUREREQABWMREREREUDBWEREREQEUDAWEREREQEUjEVEREREADCO41TnhY0ZBk5V5cWhExip0mvL6qb3hlSi94ZUoveGXIjeH6tDn+M4XRe7U9WCcTUZY/Y7jrOv2uuQ1UfvDalE7w2pRO8NuRC9P2qLWilERERERFAwFhEREREB1m4w/lS1FyCrlt4bUoneG1KJ3htyIXp/1JA12WMsIiIiIlJsrVaMRUREREQKrKlgbIy5yxhzxBhzzBjz4WqvR6rLGHPSGPOcMeaAMWZ/9rp2Y8x3jTFHs5dt1V6nrAxjzGeNMUPGmOfzriv7fjDWn2W/lzxrjLmheiuXy63Ce+P3jTFnst8/Dhhj3ph32+9m3xtHjDFvqM6qZSUYY3qNMT80xhwyxhw0xnwoe72+d9SoNROMjTFe4BPA3cAu4D5jzK7qrkpWgTsdx7kub5TOh4HvO46zHfh+9mtZGz4H3FV0XaX3w93A9uw/7wf+YoXWKNXxOUrfGwAfz37/uM5xnPsBsj9X3g3szj7mz7M/f6Q+pYHfcRxnJ3Ar8IHse0DfO2rUmgnGwM3AMcdxXnIcJwl8Gbi3ymuS1ede4PPZP38eeGsV1yIryHGcB4GxoqsrvR/uBf7asR4FWo0x61dmpbLSKrw3KrkX+LLjOAnHcU4Ax7A/f6QOOY5z1nGcp7J/ngIOARvR946atZaC8UagP+/rgex1snY5wP9r745dowiDMIw/L0Yt1E5Mo2AQ+2glBMTKws5CsNEgghZJYW1ja6OthWinQkCDFqL+BxoEQaOtSEhIOi2sjGOxGwySs7y9Y59fs3uzW0wxDAPf9+29SfI+ybU2NllVa9A0POBQZ9lpFAyqB/uJAObb5fCH27ZdWRs9leQocAJ4i71jbPVpMM4OMT/J0W8zVXWSZmlrLsnprhPS2LCf6B5wDJgG1oA7bdza6KEk+4GnwI2q+vG/V3eIWR8jpE+D8QpwZNvvw8BqR7loBFTVanvdABZpljvXt5a12utGdxlqBAyqB/tJz1XVelVtVtVv4D5/t0tYGz2TZDfNUPyoqp61YXvHmOrTYLwEHE8ylWQPzeGIFx3npI4k2ZfkwNY9cBb4RFMTs+1rs8DzbjLUiBhUDy+Ay+0J81PA961lU/XDP/tCz9P0D2hq42KSvUmmaA5ZvRt2fhqOJAEeAF+q6u62R/aOMTXRdQLDUlW/kswDr4FdwMOqWu44LXVnElhsehoTwOOqepVkCVhIchX4BlzoMEcNUZInwBngYJIV4BZwm53r4SVwjuZg1U/gytAT1tAMqI0zSaZplsG/AtcBqmo5yQLwmeaLBXNVtdlF3hqKGeAS8DHJhzZ2E3vH2PKf7yRJkiT6tZVCkiRJGsjBWJIkScLBWJIkSQIcjCVJkiTAwViSJEkCHIwlSZIkwMFYkiRJAhyMJUmSJAD+AL8sF8rPETA4AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 864x648 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(12,9))\n",
    "plt.plot(y_test, label='actual')\n",
    "plt.plot(predict, label=\"prediction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x638f409b0>"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEKCAYAAACymEqVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VdW5//HPk4EkDDKKYFDBggOggiKXXq6iYhXhFvRqLTjhUP1ZEa/11hbtr63VX2+19VaL4oAVi7YKXNTKrVZbrwO1RQYpiiBoHEnAMoNMgSTP74+1gzFmOBl29knyfb9e55Vz9l577+ccTR7WOms/y9wdERGRdJCRdAAiIiLllJRERCRtKCmJiEjaUFISEZG0oaQkIiJpQ0lJRETShpKSiIjUi5nNMLP1ZvZ2NfvNzKaaWYGZvWVmx9d2TiUlERGpr98Ao2rYfxbQL3pcBdxf2wmVlEREpF7cfT6wuYYm44BHPXgd6GRmPWs6Z1ZjBpiuMjIyPC8vL+kwRESajV27djmwtMKm6e4+vY6nyQfWVHhdGG1bV90BrSIp5eXlsXPnzqTDEBFpNsxst7sPaehpqthWY207Dd+JiEhcCoFDKrzuBayt6QAlJRERics84JJoFt4wYJu7Vzt0B61k+E5ERBqfmT0BnAJ0M7NC4MdANoC7PwA8B4wGCoBdwGW1nrM1LF3Rrl07r/yd0r59+ygsLGTPnj0JRdW85ebm0qtXL7Kzs5MORURiYGa73L1dU1+31faUCgsL6dChA71798asqu/ipDruzqZNmygsLKRPnz5JhyMiLUir/U5pz549dO3aVQmpHsyMrl27qpcpIo2u1SYlQAmpAfTZiUgcWnVSqpE7rF0Lu3YlHYmISKuhpFSd0lLYuBFWr4bPPmv002/dupX77ruvXseOHj2arVu3ptz+lltu4c4776zXtUREmlKsScnMRpnZ6qhC7JQq9ueY2exo/0Iz611h303R9tVmdma07UgzW1bhsd3Mro8l+KwsOOooyM6Gd9+FOiSBVNSUlEpLS2s89rnnnqNTp06NGo+ISDqILSmZWSYwjVAltj8wwcz6V2p2BbDF3fsCdwF3RMf2B8YDAwgVaO8zs0x3X+3ug9x9EHACYd7703G9B9q0CYmpbVsoKAg9p0YyZcoU3n//fQYNGsSNN97IK6+8wqmnnsoFF1zAMcccA8DZZ5/NCSecwIABA5g+/fOSU71792bjxo189NFHHH300Vx55ZUMGDCAM844g927d9d43WXLljFs2DCOPfZYzjnnHLZs2QLA1KlT6d+/P8ceeyzjx48H4NVXX2XQoEEMGjSIwYMH81kMPUYRkYrinBI+FChw9w8AzGwWoWLsygptxgG3RM/nAvda+AZ9HDDL3YuBD82sIDrfggrHjgTed/ePGxroe+9dz44dy2po4bB3D6wsgZyckKxq0b79IPr1u7va/bfffjtvv/02y5aF677yyissWrSIt99+e/806xkzZtClSxd2797NiSeeyLnnnkvXrl0rxf4eTzzxBA899BDnn38+Tz75JBdddFG1173kkku45557GDFiBD/60Y/4yU9+wt13383tt9/Ohx9+SE5Ozv6hwTvvvJNp06YxfPhwduzYQW5ubq3vW0SkIeIcvquuOmyVbdy9BNgGdE3x2PHAE9Vd3MyuMrMlZrakpKSkXm+gwtkgLw+ys6C4ODxiMHTo0C/c9zN16lSOO+44hg0bxpo1a3jvvfe+dEyfPn0YNGgQACeccAIfffRRtefftm0bW7duZcSIEQBMnDiR+fPnA3Dsscdy4YUX8tvf/pasrPBvleHDh3PDDTcwdepUtm7dun+7iEhc4vwrk0p12Ora1HismbUBxgI3VXfxqMT6dAgVHWoKtKYeTaWTwiefwIYN0LkbHHYYNOLU6HbtPr95+pVXXuHFF19kwYIFtG3bllNOOaXK+4JycnL2P8/MzKx1+K46zz77LPPnz2fevHncdtttrFixgilTpjBmzBiee+45hg0bxosvvshRRx1Vr/OLiKQizp5SKtVh97cxsyygI2HBqNqOPQtY6u7/aOSYa2YGhx4KBx8cvl96/30oK6vXqTp06FDjdzTbtm2jc+fOtG3bllWrVvH666/XN+r9OnbsSOfOnfnLX/4CwGOPPcaIESMoKytjzZo1nHrqqfz85z9n69at7Nixg/fff59jjjmG73//+wwZMoRVq1Y1OAYRkZrE2VNaDPQzsz5AEWG47YJKbeYBEwnfFZ0HvOTubmbzgMfN7JfAwYSldBdVOG4CNQzdxcosJKWsrNBrevdd6Ns3vK6Drl27Mnz4cAYOHMhZZ53FmDFjvrB/1KhRPPDAAxx77LEceeSRDBs2rFHCnzlzJldffTW7du3i8MMP55FHHqG0tJSLLrqIbdu24e585zvfoVOnTvzwhz/k5ZdfJjMzk/79+3PWWWc1SgwiItWJtSCrmY0G7gYygRnu/lMzuxVY4u7zzCwXeAwYTOghja8wMeIHwOVACXC9u/8x2t6W8H3T4e6+LZU4qirI+s4773D00Uc37A1u3gwffgi5uXDEEWH6eCvSKJ+hiKSlpAqyttoq4Y32B3XbtjCMl50dElOF73haOiUlkZYrqaSkig4N1bFjSEalpbBqlcoSiYg0gJJSY2jfHo48MnzfFFNZIhGR1kBJqbHk5YXEFFNZIhGR1kBJqTHl5ITElJfX6GWJRERaAyWlxpadHRJThw7w0Ufw6adJRyQi0mwoKcUhMxP69YPOnaGwMDwaYZZj+/bt67RdRKS5UVKKS0YGHH44HHhg6C19/HGjJCYRkZZMSSlO5WWJevb8Ulmi73//+19YT+mWW27hv/7rv9ixYwcjR47k+OOP55hjjuGZZ55J+XLuzo033sjAgQM55phjmD17NgDr1q3j5JNPZtCgQQwcOJC//OUvlJaWcumll+5ve9dddzXuexcRqQeVfQa4/npYVtPSFfUwaBDcfXdITPn5oQzRmjXw3nvQty/jx4/n+uuv55prrgFgzpw5PP/88+Tm5vL0009zwAEHsHHjRoYNG8bYsWOxFAq/PvXUUyxbtow333yTjRs3cuKJJ3LyySfz+OOPc+aZZ/KDH/yA0tJSdu3axbJlyygqKuLtt98GqNNKtiIicVFSaioHHRQS00cfwerVDB44kPXr17N27Vo2bNhA586dOfTQQ9m3bx8333wz8+fPJyMjg6KiIv7xj3/Qo0ePWi/x2muvMWHCBDIzMznooIMYMWIEixcv5sQTT+Tyyy9n3759nH322QwaNIjDDz+cDz74gMmTJzNmzBjOOOOM+D8DEZFaKClB6NE0ha5dQ2J6/31YtYrzzj6buXPn8umnn+5f7fV3v/sdGzZs4I033iA7O5vevXtXuWRFVaorGXXyySczf/58nn32WS6++GJuvPFGLrnkEt58801eeOEFpk2bxpw5c5gxY0ajvVURkfrQd0pNrbwsUUkJ44cMYdbjjzN37lzOO+88ICxZ0b17d7Kzs3n55Zf5+OPUF9Y9+eSTmT17NqWlpWzYsIH58+czdOhQPv74Y7p3786VV17JFVdcwdKlS9m4cSNlZWWce+653HbbbSxdujSudywikjL1lJLQvj0cdRQDMjL4bNMm8nv2pGfPngBceOGFfP3rX2fIkCEMGjSoTovqnXPOOSxYsIDjjjsOM+PnP/85PXr0YObMmfziF78gOzub9u3b8+ijj1JUVMRll11GWTTx4mc/+1ksb1VEpC5UJTxJxcWhJNG+fWH6eKdOycZTR2nxGYpILFQlvDXKyYGjjgrrMRUUwKZNSUckIpIoJaWkVSxL9OGH8I+mXeFdRCSdtOqklDZDl+VliTp1CvcyFRWlffWHtPnsRKRFabVJKTc3l02bNqXPH9eMDPjKV6BbN1i3Dj75JG0Tk7uzadMmcnNzkw5FRFqYVjvRYd++fRQWFqZ8D1CT2ro1LLPetm1IUilUc2hqubm59OrVi+zs7KRDEZEYJDXRodUmpbR3993wne/AaafB738fvnMSEWkiLXL2nZmNMrPVZlZgZlOq2J9jZrOj/QvNrHeFfTdF21eb2ZkVtncys7lmtsrM3jGzr8b5HhJz/fXw6KPw6qtw6qmwfn3SEYmIxC62pGRmmcA04CygPzDBzPpXanYFsMXd+wJ3AXdEx/YHxgMDgFHAfdH5AH4FPO/uRwHHAe/E9R4Sd/HF8MwzsHIlnHRSWP5CRCRNpNDxONTMXjazv5vZW2Y2urZzxtlTGgoUuPsH7r4XmAWMq9RmHDAzej4XGGmhHPY4YJa7F7v7h0ABMNTMDgBOBh4GcPe97t6yy1uPGQN//nPoKf3zP8OKFUlHJCKSasfj/wJz3H0woaNxH7WIMynlA2sqvC6MtlXZxt1LgG1A1xqOPRzYADwSZd5fm1mVY55mdpWZLTGzJSUlJY3xfpIzfDjMnx9m4510EixYkHREIiKpdDwcOCB63hFYW9tJ40xKVU0Zqzyroro21W3PAo4H7o8y707gS11GAHef7u5D3H1IVlYLKPF3zDHw17+GSuOnnw7PP590RCLSsmWV/8M+elxVaX8qHY9bgIvMrBB4Dphc20XjTEqFwCEVXvfiy1lyfxszyyJk0s01HFsIFLr7wmj7XEKSah369IHXXgsVIL7+dXj88aQjEpGWq6T8H/bRY3ql/al0PCYAv3H3XsBo4DEzqzHvxJmUFgP9zKyPmbUhjCfOq9RmHjAxen4e8JKHOerzgPHR7Lw+QD9gkbt/CqwxsyOjY0YCK2N8D+nnoIPg5ZfDkN6FF8I99yQdkYi0Tql0PK4A5gC4+wIgF+hW00ljS0rRd0TXAi8QZsjNcfcVZnarmY2Nmj0MdDWzAuAGoqE4d19BeCMrgeeBSe5eGh0zGfidmb0FDAL+M673kLY6dgzDd2efDdddBz/6UdpWfxCRFiuVjscnhM4DZnY0ISltqOmkunm2OSspgauvhocfDj/vvTfU0RMRaaBUbp6NpnjfDWQCM9z9p2Z2K7DE3edFs/EeAtoThva+5+5/qvGcSkrNnDvcdBPccQd84xvw2GNhSQwRkQZIqqJDC5iW1sqZwe23w4EHwne/C1u2wFNPqSyRiDRLrbZKeIvzH/8Bv/lNmAQxciRs3Jh0RCIidaak1JJMnAhPPw3Ll8O//EtY/kJEpBlRUmppvv51+NOf4NNPw7Txd1puaUARaXmUlFqik04K1cVLSkKPaeHC2o8REUkDSkot1XHHhbJEnTqF75j+VOMsTBGRtKCk1JIdfnhITH37wr/+K8yenXREIiI1UlJq6Xr0gFdegWHDYMIEuK/WyvEiIolRUmoNOnWCF14IkyAmTYJbblFZIhFJS0pKrUVeHjz5JFx6KfzkJzB5MpSVJR2ViMgXqKJDa5KVBTNmQLducOed4QbbRx+FNm2SjkxEBFBSan3M4Be/gO7d4XvfC2WJnnwS2rdPOjIREQ3ftVo33hh6TS++qLJEIpI2lJRas8suC8Vb33wz3HC7Zk3tx4iIxEhJqbUbNy7MzFu7NpQlWrUq6YhEpBVTUhIYMSLcy1RcHMoSLVqUdEQi0kopKUkweHCo/nDAAXDaafDnPycdkYi0QkpK8rm+fUNiOvxwGDMG5sxJOiIRaWWUlOSLevYMFcaHDoXx4+H++5OOSERakViTkpmNMrPVZlZgZlOq2J9jZrOj/QvNrHeFfTdF21eb2ZkVtn9kZsvNbJmZLYkz/larc+dQVXz0aLjmGrj1VpUlEpEmEVtSMrNMYBpwFtAfmGBm/Ss1uwLY4u59gbuAO6Jj+wPjgQHAKOC+6HzlTnX3Qe4+JK74W722bcMqtpdcAj/+MVx3ncoSiUjs4uwpDQUK3P0Dd98LzALGVWozDpgZPZ8LjDQzi7bPcvdid/8QKIjOJ00pOxseeQRuuAHuvRcuugj27k06KhFpweJMSvlAxbsxC6NtVbZx9xJgG9C1lmMd+JOZvWFmV1V3cTO7ysyWmNmSkpKSBr2RVi0jI9TJ+9nP4IknYOxY2Lkz6ahEpIWKMylZFdsqfzFRXZuajh3u7scThgUnmdnJVV3c3ae7+xB3H5KVpRJ/DWIGU6bAQw+FqeKnnw6bNycdlYi0QHEmpULgkAqvewFrq2tjZllAR2BzTce6e/nP9cDTaFiv6XzrW/Df/w1Ll4ayRIWFSUckIi1MnElpMdDPzPqYWRvCxIV5ldrMAyZGz88DXnJ3j7aPj2bn9QH6AYvMrJ2ZdQAws3bAGcDbMb4Hqezf/g2efz7UyRs+HFavTjoiEWlBYktK0XdE1wIvAO8Ac9x9hZndamZjo2YPA13NrAC4AZgSHbsCmAOsBJ4HJrl7KXAQ8JqZvQksAp519+fjeg9SjVNPDWWJdu8OZYmWaGa+iDQO81Zw/0m7du18p76cb3zvvgtnnAGbNsHvfx+WwBCRFsHMdrl7u6a+rio6SP0dcUQoS3TYYeFG27lzk45IRJo5JSVpmPx8mD8fhgyB88+Hm28Oy2CIiNSDkpI0XJcuYar4+eeH+5kOOyzUzXvtNZUnEpE6UVKSxtG2LcyaBe+9B5Mnh4UDTzopLInx61/Drl1JRygizYAmOkg8du6Exx+He+6B5cuhUye44gr49rfhK19JOjoRqUVSEx2UlCRe7mEY79574amnoLQ0TIqYNAnOPDOUMRKRtKPZd9IymYVhvNmz4aOP4Ic/DPc1jR4NRx4Jd90FW7cmHaWI1ENtyxNFbc43s5VmtsLMHq/1nOopSZPbuzf0mu69N0wpb9s2VCCfNAmOPTbp6ESE2ntK0XJC7wJfI5SGWwxMcPeVFdr0IxRCOM3dt5hZ96hEXLXUU5Km16bN57Pzli6FCRPg0UfhuONgxIhQX2/fvqSjFJGapbI80ZXANHffAvtrltZISUmSVT47r6gIfvGLUFPv/POhd2+47Tb49NOkIxRprbLKl/+JHpWXCkpleaIjgCPM7K9m9rqZjartokpKkh66dIHvfjdMKf/DH8Iw3o9+BIceChdcAH/7m+55EmlaJeXL/0SP6ZX2p7I8URahoPYpwATg12bWqaaLKilJesnMhDFj4I9/DBXIJ02CZ58NFclPOAFmzAiFYEUkaakuT/SMu++LVhFfTUhS1VJSkvR1xBFhdl5RETzwQPie6YoroFcv+N734MMPk45QpDVLZXmi3wOnAphZN8Jw3gc1nVRJSdJf+/bwf/4PvPVWWDLjtNPgl78MN+GOHQt/+hOUlSUdpUirkuLyRC8Am8xsJfAycKO7b6rpvJoSLs1TYSE8+CBMnw7r10O/fmGo79JLoWPHpKMTafZU0SFGSkotWHExPPlkuOdpwQJo1w4uvjgkqIEDk45OpNlSUoqRklIr8cYbMG1aqLlXXAynnALXXgvjxkFWVtLRiTQrSkoxUlJqZTZtgocfhvvug48/DhMjrr4arrwSundPOjqRZkFJKUZKSq1UaWmYTj5tWpgM0aYNfOMboff0T/8U6vKJSJWUlGKkpCSsXh16To88Ap99Fu55uvZa+OY3IS8v6ehE0k6LrBJeWwVZM8sxs9nR/oVm1rvCvpui7avN7MxKx2Wa2d/N7A9xxi8tyJFHwq9+Fe55uu++cAPuZZfBIYfAlCmhgrmIJC62pBRVkJ0GnAX0ByaYWf9Kza4Atrh7X+Au4I7o2P6EG7EGAKOA+6Lzlft3wrx4kbrp0CEsNPj22/Dyy2EyxJ13hnuezj4bXnxR5YxEEhRnTymVCrLjgJnR87nASDOzaPssdy+OSlMUROfDzHoBY4Bfxxi7tHRmISHNnRsqQ9x0U6iv97WvwdFHhynm27cnHaVIqxNnUkqlguz+NtHdwduArrUcezfwPaDGW/jN7Kry6rYlJSX1fQ/SGhxyCPy//xcqlD/2WFi6ffJkyM8P9zutXFn7OUSkUcSZlFKpIFtdmyq3m9m/Auvd/Y3aLu7u08ur22bpHhVJRU5OWGzw9ddh0SI499wwtXzAABg5Ep5+GvQPHJFYpZSUzOzfzewACx42s6VmdkYth6VaQfaQ6BpZQEdgcw3HDgfGmtlHhOHA08zst6m8B5E6OfFE+M1vQu/pZz+DggL4t3+Dww8PrzdsSDpCkRYp1Z7S5e6+HTgDOBC4DLi9lmNSqSA7D5gYPT8PeMnDHPV5wPhodl4fQqnzRe5+k7v3cvfe0flecveLUnwPInV34IFhdt4HH8Dvfx9m8d18c7ghd+LE0KMSkUaTalIqH04bDTzi7m9S9RDbfilWkH0Y6GpmBcANwJTo2BWEdd1XAs8Dk9y9NPW3JdLIMjNDuaI//zl8x3TVVfDUU+Em3KFDw3Lue/YkHaVIs5fSzbNm9ghhokEf4DggE3jF3U+IN7zGoZtnJRbbt4eJEffeC6tWQbduoZTR1VeHFXNFmrG0ruhgZhnAIOADd99qZl2AXu7+VtwBNgYlJYmVO7z0Uihn9MwzYdu4caFixKmnqpyRNEvpnpSGA8vcfaeZXQQcD/zK3T+OO8DGoKQkTeaTT8IquQ89BBs3hnuerr02LKfRoUPS0YmkLN3LDN0P7DKz4wj3CH0MPBpbVCLN1aGHwn/+Z5i1N3NmWDV30qRwz9PkyWGYT0SqlWpSKolmxY0j9JB+BeiffSLVyc2FSy4Js/MWLoRzzgmr5B59dKga8cwzoYq5iHxBqsN3rxJmwV0OnARsIAznHRNveI1Dw3eSFtavDzfj3n9/6EkddhiMHh3WeOrePUw/r/izSxfIiLVmski10v07pR7ABcBid/+LmR0KnOLuzWIIT0lJ0kpJCfzP/4Rq5X//e1iUsCoZGWFGX+VkVfln+fNOnZTEpNGkdVICMLODgBOjl4vcfX1sUTUyJSVJayUlITGtXx8eGzbU/HPr1qrPk5UVklhNCaziz44dNTNQqpXWScnMzgd+AbxCuGn2JOBGd58ba3SNRElJWpS9e8PMvtqSV/nz6qqdZ2en3gvr3j1M2lASazXSPSm9CXytvHdkZgcCL7r7cTHH1yiUlKRVKy6uPYFV/LljR9XnyclJvRfWvTu0a/K/Z82Xe/jvtGdPeOze3TjP27ULN3jXQ1JJKdXy2RmVhus2EfOqtSLSSHJyQq2+Xr1Sa797d/W9roo/33kn/Ny9u+rz5OXVLYklvSy9O+zb1/iJobrnlV83REZG+Pxycz//mZsLPXs2zmfThFJNSs+b2QvAE9HrbwLPxROSiCQqLy/cb5VqqaSdO2vvfX36KSxfHl4XF1d9nvbtU0tccSaJshqXaUvts6ucGCpu69Lly9tTfV7TvuzshsWdRuoy0eFcwtIRBsx396fjDKwxafhOJE24w2ef1W04cd++ul0jJ6f+f/gb8rxNmxb1nVtaf6fU3CkpiTRT7rBt2+dJavfumnsjOTmaFt9I0jIpmdlnfHm1WAi9JXf3A+IKrDEpKYmI1E1aTnRwd5USEhGRJqN+roiIpA0lJRERSRtKSiIikjaUlEREJG0oKYmISNqINSmZ2SgzW21mBWY2pYr9OWY2O9q/0Mx6V9h3U7R9tZmdGW3LNbNFZvamma0ws5/EGb+IiDSt2JKSmWUC04CzgP7ABDPrX6nZFcAWd+8L3AXcER3bHxgPDABGAfdF5ysGTosKwQ4CRpnZsLjeg4iIVK+2jkeFdueZmZvZkNrOGWdPaShQ4O4fuPteYBZhOfWKxgEzo+dzgZFmZtH2We5e7O4fAgXAUA/KSxhnR4+WX5JCRCTNpNjxwMw6ANcBC1M5b5xJKR9YU+F1YbStyjbuXgJsA7rWdKyZZZrZMmA98Gd3r/KNmtlVZrbEzJaUlJQ0wtsREZEKUul4ANwG/BxIqRR6nEmpqsqElXs11bWp9lh3L3X3QUAvYKiZDazq4u4+3d2HuPuQrKxUi6GLiEgkq/wf9tHjqkr7a+14mNlg4BB3/0PKF613uLUrBA6p8LoXsLaaNoVmlgV0BDancqy7bzWzVwjfOb3dqJGLiEiJu9f0HVCNHQ8zyyDMFbi0LheNs6e0GOhnZn3MrA1h4sK8Sm3mAROj5+cBL3moEDsPGB/NzusD9AMWmdmBZtYJwMzygNOBVTG+BxERqVptnYcOwEDgFTP7CBgGzKttskNsPSV3LzGza4EXgExghruvMLNbgSXuPg94GHjMzAoIPaTx0bErzGwOsBIoASa5e6mZ9QRmRl+wZQBz6tItFBGRRrO/4wEUEf5+X1C+0923Ad3KX0cjW9919yU1nVTrKYmIyJeksnSFmY0G7ubzjsdPK3U8KrZ9BSWlQElJRKRuklpPSWWGREQkbSgpiYhI2lBSEhGRtKGkJCIiaUNJSURE0oaSkoiIpA0lJRERSRtKSiIikjaUlEREJG0oKYmISNpQUhIRkbShpCQiImlDSUlERNKGkpKIiKQNJSUREUkbSkoiIpI2lJRERCRtKCmJiEjaUFISEZG0EWtSMrNRZrbazArMbEoV+3PMbHa0f6GZ9a6w76Zo+2ozOzPadoiZvWxm75jZCjP79zjjFxGRphVbUjKzTGAacBbQH5hgZv0rNbsC2OLufYG7gDuiY/sD44EBwCjgvuh8JcB/uPvRwDBgUhXnFBGRZirOntJQoMDdP3D3vcAsYFylNuOAmdHzucBIM7No+yx3L3b3D4ECYKi7r3P3pQDu/hnwDpAf43sQEZEmFGdSygfWVHhdyJcTyP427l4CbAO6pnJsNNQ3GFhY1cXN7CozW2JmS0pKSur9JkREpOnEmZSsim2eYpsajzWz9sCTwPXuvr2qi7v7dHcf4u5DsrKyUgxZRESSFGdSKgQOqfC6F7C2ujZmlgV0BDbXdKyZZRMS0u/c/alYIhcRkUTEmZQWA/3MrI+ZtSFMXJhXqc08YGL0/DzgJXf3aPv4aHZeH6AfsCj6vulh4B13/2WMsYuISAJiG9dy9xIzuxZ4AcgEZrj7CjO7FVji7vMICeYxMysg9JDGR8euMLM5wErCjLtJ7l5qZv8CXAwsN7Nl0aVudvfn4nofIiLSdCx0TFq2du3a+c6dO5MOQ0Sk2TCzXe7erqmvq4oOIiKSNpSUREQkbSgpiYhI2lBSqkFr+L5NRCSdKClVw91ZunQY7703mV27VicdjogwPhTWAAAPlUlEQVRIq6CkVI3S0h20bXsUa9dOZ9Gio3jrrbPYtOk53MuSDk1EpMXSlPBa7N37D9aunc7atfezd+868vL6kZ9/LT16XEpW1gGNHKmISHpIZUq4mY0CfkW4F/XX7n57pf03AN8i3G+6Abjc3T+u8ZxKSqkpK9vLhg1PUVQ0le3bF5CZ2Z4ePS4jP/9a2rY9opEiFRFJD7UlpWg5oXeBrxFKwy0GJrj7ygptTgUWuvsuM/s2cIq7f7PG6yop1d327YspKrqH9etn4b6PLl3OIj9/Ml26nImZRkRFpPlLISl9FbjF3csXYb0JwN1/Vk37wcC97j68puvqL2g9HHDAiRx99KMMG/YJvXv/hB07/s7y5aNZtOgoCgvvoaSkysLlIiLNSVb58j/R46pK+1NZnqiiK4A/1nZR9ZQaQRjaezIa2nudzMwOFYb2+sV2XRGRuKTQU/oGcKa7fyt6fTFhMdbJVbS9CLgWGOHuxTVdVz2lRpCR0YaDDprA8ccv4PjjF9Kt2zjWrr2fRYuO4K23xrB58wuatSciLU0qyxNhZqcDPwDG1paQQD2l2BQXf8q6dQ9SVHQ/+/b9g7y8I8jPn0yPHhPJyurQpLGIiNRVCj2lLMJEh5FAEWGiwwXuvqJCm8HAXGCUu7+X0nWVlOIVhvb+m8LCe/jss4XR0N7l0dBe30RiEhGpTYpTwkcDd/P58kQ/rbg8kZm9CBwDrIsO+cTdx9Z4TiWlprN9+0IKC+9hw4Y5uJfQpctoevWaTOfOX9OsPRFJK0ktXaGklIDi4nWsXfsga9c+EA3tHUmvXpM56KBLNLQnImlBSSlG6ZaUypWVFbNhw1wKC3/FZ58tJjPzAHr2vJyDD56koT0RSZSSUozSNSlVFIb2pkZDe6V07TqG/Pzr6Nz5dMws6fBEpJVRUopRc0hK5YqL11YY2ltP27ZHk59/bTS01z7p8ESklVBSilFzSkrlysqKWb9+DkVFU/nssyVkZnakZ8/Lyc+fRF7eV5IOT0RauKSSUqxTvsxslJmtNrMCM5tSxf4cM5sd7V9oZr0r7Lsp2r7azM6ssH2Gma03s7fjjD1pGRk59OhxMccfv4jBgxfQtetoioruYeHCfixfPpbNm1/UIoQi0uLE1lNKsYLsNcCx7n61mY0HznH3b5pZf+AJYChwMPAicIS7l5rZycAO4FF3H5hKLM2xp1SVMLT3QDS0t4G2bftHN+ReTGZmk/+DRkRasJbYUxoKFLj7B+6+F5gFjKvUZhwwM3o+Fxhp4Vv9ccAsdy929w+Bguh8uPt8YHOMcaetnJyD6dPnVr761TUcddRMMjLyeO+9b/O3v+VTUPAf7N79QdIhiog0SJxJKZUKsvvbuHsJsA3omuKxNTKzq8qr25aUlNQx9PQWhvYu4YQTFjN48F/p2vUsioqmsnBhX5YvH8eWLf+roT0RaZbiTEpVzWOu/JeyujapHFsjd5/u7kPcfUhWVlZdDm02zIyOHf+Z/v2fYNiwjzjssB+wffsC3nzzdBYvHsjatQ9SWtr8hy1FpPWIMymlUkF2f5uouF9HwtBcStVn5XM5Ofn06XMbw4Z9wlFH/YaMjFzeffdqFizoRUHBd9m9+8OkQxQRqVWcSWkx0M/M+phZG2A8MK9Sm3nAxOj5ecBLHsad5gHjo9l5fYB+wKIYY20xMjNz6dFjIiecsITBg/9K585nUlh4NwsXfoXly89my5aXNLQnImkr1vuUUqggmws8Bgwm9JDGu/sH0bE/AC4HSoDr3f2P0fYngFOAbsA/gB+7+8M1xdFSZt/V1549haxd+wDr1j3Ivn0badt2AL16XcdBB12oWXsiUiXdPBuj1p6UypWW7mH9+lkUFU1lx46/k5XVmZ49v8XBB19DXl7vpMMTkTSipBQjJaUvcne2bfsrRUX3sGHDk4DTrdtY8vOvo1OnU1RrT0SUlOKkpFS9MLR3P2vXPkhJySbatRtIfn750F7bpMMTkYQoKcVISal2paW7KwztLYuG9q4kP/8acnMPSzo8EWliSkoxUlJKXRjaey0a2nuKMLQ3LhraG6GhPZFWQkkpRkpK9bNnz5poaG96NLR3TDS0d4GG9kRaOCWlGCkpNUwY2nuCwsKp7Nz5JllZXSoM7R2adHgiEgMlpRgpKTWOMLT3FwoLp7Jx49MAdOt2Nr16XUfHjidraE+kBVFSipGSUuPbs+cTioruY926hygp2Uy7dsfSq1eYUp6RkVfhkaNkJdIMKSnFSEkpPmFo7/FoaO+tKttkZOR+IVFlZuZVSly5X9r2xde5VR73+evcL2wza6NEKNJASkoxUlKKn7uzffvf2L37fcrKdlNWtofS0t3R8/D44us9VWz74us6FoavwColrviTolm2EqG0KEpKMVJSan7cHfd9tSau2pPbnmqOq7pN/WXUkLhqSoo5mGVFSS2bjIzs6HnlbZ+/btg2JU5JTVJJqWUuNCTNnplh1oaMjDZkZXVskmu6O2VlxVUkrj01JMXU2uzbt6HK49yLm+S9fS6zkZNcEtsq/ix/KNm2FEpKIhEzIzMzl8zMXKBzk1wzjFSUUVa2D/eKj5JK20qinmMy20pLd9XpWChrks/vc5mVklRWhUSWVU0iq/z6y9tqP0ft5/3yORoeC2S02ESspCSSoPCHJZPMzEwgN+lwGo17WQOSYcn+fVVtC88/f4Q2FbfV9rrytr2Ulu6spU3Vr5OUSiJr06YHgwe/mmicdaWkJCKNziyDsLZnGzIzk44mHuW93MZNkKmcI7XzlpXtIyurQ9IfU50pKYmI1EN5L9csE8hJOpwWI87l0EVEROpESUlERNKGkpKIiKQNJSUREUkbsSYlMxtlZqvNrMDMplSxP8fMZkf7F5pZ7wr7boq2rzazM1M9p4iINF+xJSULU1KmAWcB/YEJZta/UrMrgC3u3he4C7gjOrY/MB4YAIwC7jOzzBTPKSIiTaAhHY/qxNlTGgoUuPsH7r4XmAWMq9RmHDAzej4XGGlhnuU4YJa7F7v7h0BBdL5UzikiIjFrSMejJnEmpXxgTYXXhdG2Ktu4ewmwDehaw7GpnBMAM7vKzJaY2ZKSkpIGvA0REalCQzoe1Yrz5tmqLly5JHl1barbXlUSrbLMubtPB6YDmFmZmdW3BHQWkI5ZTXHVjeKqG8VVNy0xrjwzW1Lh9fTo72q5qjoJ/1TpHF/oeJhZecdjY00Bx6UQOKTC617A2mraFFqoMtgR2FzLsbWd80vcvd49QjNb4u5D6nt8XBRX3SiuulFcddNK42pIx6NacQ7fLQb6mVkfC0WwxgPzKrWZB0yMnp8HvOShoNQ8YHz0JVkfoB+wKMVziohI/OrS8aBSx6NasfWUoq7atcALQCYww91XmNmtwBJ3nwc8DDxmZgVRoOOjY1eY2RxgJaHrOcndSwGqOmdc70FERKq1v5MAFBH+fl9QqU15x2MBX+x4VCvWgqzu/hzwXKVtP6rwfA/wjWqO/Snw01TOGbPptTdJhOKqG8VVN4qrblpdXA3peNSkVSyHLiIizYPKDImISNpQUhIRkbShpBSJo1xGE8V1qZltMLNl0eNbTRDTDDNbb2ZvV7PfzGxqFPNbZnZ83DGlGNcpZratwmf1o6raxRDXIWb2spm9Y2YrzOzfq2jT5J9ZinE1+WdmZrlmtsjM3ozi+kkVbZr89zHFuJr897HCtTPN7O9m9ocq9iXy96te3L3VPwhf0r0PHA60Ad4E+ldqcw3wQPR8PDA7TeK6FLi3iT+vk4Hjgber2T8a+CPhHoVhwMI0iesU4A8J/P/VEzg+et4BeLeK/45N/pmlGFeTf2bRZ9A+ep4NLASGVWqTxO9jKnE1+e9jhWvfADxe1X+vJD6v+j7UUwpiKZfRRHE1OXefT833GowDHvXgdaCTmfVMg7gS4e7r3H1p9Pwz4B2+XB6ryT+zFONqctFnsCN6mR09Ks/IavLfxxTjSoSZ9QLGAL+upkkSf7/qRUkpaEidvqTjAjg3GvKZa2aHVLG/qaVcozABX42GX/5oZgOa+uLRsMlgwr+yK0r0M6shLkjgM4uGopYB64E/u3u1n1cT/j6mEhck8/t4N/A9oKya/Yl8XvWhpBTEUi6jEaRyzf8Berv7scCLfP6voSQl8VmlYilwmLsfB9wD/L4pL25m7YEngevdfXvl3VUc0iSfWS1xJfKZuXupuw8iVAkYamYDKzVJ5PNKIa4m/300s38F1rv7GzU1q2JbOvxOfomSUhBLuYymiMvdN7l7cfTyIeCEmGNKRSqfZ5Nz9+3lwy8ebsLONrNuTXFtM8sm/OH/nbs/VUWTRD6z2uJK8jOLrrkVeIWwrlpFSfw+1hpXQr+Pw4GxZvYRYYj/NDP7baU2iX5edaGkFDSkTl+icVX63mEs4XuBpM0DLolmlA0Dtrn7uqSDMrMe5ePoZjaU8P//pia4rhHubH/H3X9ZTbMm/8xSiSuJz8zMDjSzTtHzPOB0YFWlZk3++5hKXEn8Prr7Te7ey917E/5GvOTuF1VqlsTfr3qJtcxQc+ExlctooriuM7OxhBqBmwmzf2JlZk8QZmV1M7NC4MeEL31x9wcIZaBGExZn3AVcFndMKcZ1HvBtMysBdgPjm+gXczhwMbA8+j4C4Gbg0AqxJfGZpRJXEp9ZT2CmhUXkMoA57v6HpH8fU4yryX8fq5MGn1e9qMyQiIikDQ3fiYhI2lBSEhGRtKGkJCIiaUNJSURE0oaSkoiIpA0lJZE0ZqFK95eqPou0VEpKIiKSNpSURBqBmV0UrbWzzMwejAp37jCz/zKzpWb2v2Z2YNR2kJm9HhXtfNrMOkfb+5rZi1Hx06Vm9pXo9O2j4p6rzOx36VrdWaQxKCmJNJCZHQ18ExgeFessBS4E2gFL3f144FVChQmAR4HvR0U7l1fY/jtgWlT89J+B8jJDg4Hrgf6EtbWGx/6mRBKiMkMiDTeSUHhzcdSJySMsbVAGzI7a/BZ4ysw6Ap3c/dVo+0zgv82sA5Dv7k8DuPsegOh8i9y9MHq9DOgNvBb/2xJpekpKIg1nwEx3v+kLG81+WKldTTW9ahqSK67wvBT93koLpuE7kYb7X+A8M+sOYGZdzOwwwu/XeVGbC4DX3H0bsMXMToq2Xwy8Gq1jVGhmZ0fnyDGztk36LkTSgP7FJdJA7r7SzP4v8CczywD2AZOAncAAM3uDsNLnN6NDJgIPREnnAz6vCH4x8GBU3Xkf8I0mfBsiaUFVwkViYmY73L190nGINCcavhMRkbShnpKIiKQN9ZRERCRtKCmJiEjaUFISEZG0oaQkIiJpQ0lJRETSxv8HvoSXpJP191AAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# 모델 학습 과정\n",
    "fig, loss_ax = plt.subplots()\n",
    "\n",
    "acc_ax = loss_ax.twinx()\n",
    "\n",
    "loss_ax.plot(hist.history['loss'], 'y', label='train loss')\n",
    "loss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\n",
    "\n",
    "loss_ax.set_xlabel('epoch')\n",
    "loss_ax.set_ylabel('loss')\n",
    "\n",
    "\n",
    "loss_ax.legend(loc='upper left')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "score_list = dict()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "## GridSearch\n",
    "하이퍼파라미터를 최적화하면 모델 성능을 향상시키는데 큰 도움이 된다.<br>\n",
    "GridSearch는 리스트로 지정된 여러 하이퍼파라미터 값을 받아 모든 조합에 대해 모델 성능을 평가하여<br>\n",
    "최적의 하이퍼파라미터 조합을 찾는다.\n",
    "\n",
    "---"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import GridSearchCV\n",
    "grid_param_LSTM = {\n",
    "    'batch_size' : [10,20,30,40,50,75,100,150],\n",
    "    'epochs' : [5,10,50,100],\n",
    "    'learning_rate' : [0.0001,0.001,0.01,0.1],\n",
    "    'optimizer' : ['Adam','RMSProp'],\n",
    "    'activation' : ['relu','linear','tanh','sigmoid'],\n",
    "    'dropout_rate' : [0.05,0.1,0.2,0.3,0.4,0.5,0.6],\n",
    "}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}