kmp_dispatch.h
17.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*
* kmp_dispatch.h: dynamic scheduling - iteration initialization and dispatch.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef KMP_DISPATCH_H
#define KMP_DISPATCH_H
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#include "kmp.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#if KMP_OS_WINDOWS && KMP_ARCH_X86
#include <float.h>
#endif
#if OMPT_SUPPORT
#include "ompt-internal.h"
#include "ompt-specific.h"
#endif
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#if KMP_USE_HIER_SCHED
// Forward declarations of some hierarchical scheduling data structures
template <typename T> struct kmp_hier_t;
template <typename T> struct kmp_hier_top_unit_t;
#endif // KMP_USE_HIER_SCHED
template <typename T> struct dispatch_shared_info_template;
template <typename T> struct dispatch_private_info_template;
template <typename T>
extern void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid,
dispatch_private_info_template<T> *pr,
enum sched_type schedule, T lb, T ub,
typename traits_t<T>::signed_t st,
#if USE_ITT_BUILD
kmp_uint64 *cur_chunk,
#endif
typename traits_t<T>::signed_t chunk,
T nproc, T unit_id);
template <typename T>
extern int __kmp_dispatch_next_algorithm(
int gtid, dispatch_private_info_template<T> *pr,
dispatch_shared_info_template<T> volatile *sh, kmp_int32 *p_last, T *p_lb,
T *p_ub, typename traits_t<T>::signed_t *p_st, T nproc, T unit_id);
void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
#if KMP_STATIC_STEAL_ENABLED
// replaces dispatch_private_info{32,64} structures and
// dispatch_private_info{32,64}_t types
template <typename T> struct dispatch_private_infoXX_template {
typedef typename traits_t<T>::unsigned_t UT;
typedef typename traits_t<T>::signed_t ST;
UT count; // unsigned
T ub;
/* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
T lb;
ST st; // signed
UT tc; // unsigned
T static_steal_counter; // for static_steal only; maybe better to put after ub
kmp_lock_t *th_steal_lock; // lock used for chunk stealing
/* parm[1-4] are used in different ways by different scheduling algorithms */
// KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
// a) parm3 is properly aligned and
// b) all parm1-4 are in the same cache line.
// Because of parm1-4 are used together, performance seems to be better
// if they are in the same line (not measured though).
struct KMP_ALIGN(32) { // compiler does not accept sizeof(T)*4
T parm1;
T parm2;
T parm3;
T parm4;
};
UT ordered_lower; // unsigned
UT ordered_upper; // unsigned
#if KMP_OS_WINDOWS
T last_upper;
#endif /* KMP_OS_WINDOWS */
};
#else /* KMP_STATIC_STEAL_ENABLED */
// replaces dispatch_private_info{32,64} structures and
// dispatch_private_info{32,64}_t types
template <typename T> struct dispatch_private_infoXX_template {
typedef typename traits_t<T>::unsigned_t UT;
typedef typename traits_t<T>::signed_t ST;
T lb;
T ub;
ST st; // signed
UT tc; // unsigned
T parm1;
T parm2;
T parm3;
T parm4;
UT count; // unsigned
UT ordered_lower; // unsigned
UT ordered_upper; // unsigned
#if KMP_OS_WINDOWS
T last_upper;
#endif /* KMP_OS_WINDOWS */
};
#endif /* KMP_STATIC_STEAL_ENABLED */
template <typename T> struct KMP_ALIGN_CACHE dispatch_private_info_template {
// duplicate alignment here, otherwise size of structure is not correct in our
// compiler
union KMP_ALIGN_CACHE private_info_tmpl {
dispatch_private_infoXX_template<T> p;
dispatch_private_info64_t p64;
} u;
enum sched_type schedule; /* scheduling algorithm */
kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
kmp_uint32 ordered_bumped;
// to retain the structure size after making order
kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
dispatch_private_info *next; /* stack of buffers for nest of serial regions */
kmp_uint32 type_size;
#if KMP_USE_HIER_SCHED
kmp_int32 hier_id;
kmp_hier_top_unit_t<T> *hier_parent;
// member functions
kmp_int32 get_hier_id() const { return hier_id; }
kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; }
#endif
enum cons_type pushed_ws;
};
// replaces dispatch_shared_info{32,64} structures and
// dispatch_shared_info{32,64}_t types
template <typename T> struct dispatch_shared_infoXX_template {
typedef typename traits_t<T>::unsigned_t UT;
/* chunk index under dynamic, number of idle threads under static-steal;
iteration index otherwise */
volatile UT iteration;
volatile UT num_done;
volatile UT ordered_iteration;
// to retain the structure size making ordered_iteration scalar
UT ordered_dummy[KMP_MAX_ORDERED - 3];
};
// replaces dispatch_shared_info structure and dispatch_shared_info_t type
template <typename T> struct dispatch_shared_info_template {
typedef typename traits_t<T>::unsigned_t UT;
// we need union here to keep the structure size
union shared_info_tmpl {
dispatch_shared_infoXX_template<UT> s;
dispatch_shared_info64_t s64;
} u;
volatile kmp_uint32 buffer_index;
volatile kmp_int32 doacross_buf_idx; // teamwise index
kmp_uint32 *doacross_flags; // array of iteration flags (0/1)
kmp_int32 doacross_num_done; // count finished threads
#if KMP_USE_HIER_SCHED
kmp_hier_t<T> *hier;
#endif
#if KMP_USE_HWLOC
// When linking with libhwloc, the ORDERED EPCC test slowsdown on big
// machines (> 48 cores). Performance analysis showed that a cache thrash
// was occurring and this padding helps alleviate the problem.
char padding[64];
#endif
};
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#undef USE_TEST_LOCKS
// test_then_add template (general template should NOT be used)
template <typename T> static __forceinline T test_then_add(volatile T *p, T d);
template <>
__forceinline kmp_int32 test_then_add<kmp_int32>(volatile kmp_int32 *p,
kmp_int32 d) {
kmp_int32 r;
r = KMP_TEST_THEN_ADD32(p, d);
return r;
}
template <>
__forceinline kmp_int64 test_then_add<kmp_int64>(volatile kmp_int64 *p,
kmp_int64 d) {
kmp_int64 r;
r = KMP_TEST_THEN_ADD64(p, d);
return r;
}
// test_then_inc_acq template (general template should NOT be used)
template <typename T> static __forceinline T test_then_inc_acq(volatile T *p);
template <>
__forceinline kmp_int32 test_then_inc_acq<kmp_int32>(volatile kmp_int32 *p) {
kmp_int32 r;
r = KMP_TEST_THEN_INC_ACQ32(p);
return r;
}
template <>
__forceinline kmp_int64 test_then_inc_acq<kmp_int64>(volatile kmp_int64 *p) {
kmp_int64 r;
r = KMP_TEST_THEN_INC_ACQ64(p);
return r;
}
// test_then_inc template (general template should NOT be used)
template <typename T> static __forceinline T test_then_inc(volatile T *p);
template <>
__forceinline kmp_int32 test_then_inc<kmp_int32>(volatile kmp_int32 *p) {
kmp_int32 r;
r = KMP_TEST_THEN_INC32(p);
return r;
}
template <>
__forceinline kmp_int64 test_then_inc<kmp_int64>(volatile kmp_int64 *p) {
kmp_int64 r;
r = KMP_TEST_THEN_INC64(p);
return r;
}
// compare_and_swap template (general template should NOT be used)
template <typename T>
static __forceinline kmp_int32 compare_and_swap(volatile T *p, T c, T s);
template <>
__forceinline kmp_int32 compare_and_swap<kmp_int32>(volatile kmp_int32 *p,
kmp_int32 c, kmp_int32 s) {
return KMP_COMPARE_AND_STORE_REL32(p, c, s);
}
template <>
__forceinline kmp_int32 compare_and_swap<kmp_int64>(volatile kmp_int64 *p,
kmp_int64 c, kmp_int64 s) {
return KMP_COMPARE_AND_STORE_REL64(p, c, s);
}
template <typename T> kmp_uint32 __kmp_ge(T value, T checker) {
return value >= checker;
}
template <typename T> kmp_uint32 __kmp_eq(T value, T checker) {
return value == checker;
}
/*
Spin wait loop that pauses between checks.
Waits until function returns non-zero when called with *spinner and check.
Does NOT put threads to sleep.
Arguments:
UT is unsigned 4- or 8-byte type
spinner - memory location to check value
checker - value which spinner is >, <, ==, etc.
pred - predicate function to perform binary comparison of some sort
#if USE_ITT_BUILD
obj -- is higher-level synchronization object to report to ittnotify. It
is used to report locks consistently. For example, if lock is acquired
immediately, its address is reported to ittnotify via
KMP_FSYNC_ACQUIRED(). However, it lock cannot be acquired immediately
and lock routine calls to KMP_WAIT(), the later should report the
same address, not an address of low-level spinner.
#endif // USE_ITT_BUILD
TODO: make inline function (move to header file for icl)
*/
template <typename UT>
static UT __kmp_wait(volatile UT *spinner, UT checker,
kmp_uint32 (*pred)(UT, UT) USE_ITT_BUILD_ARG(void *obj)) {
// note: we may not belong to a team at this point
volatile UT *spin = spinner;
UT check = checker;
kmp_uint32 spins;
kmp_uint32 (*f)(UT, UT) = pred;
UT r;
KMP_FSYNC_SPIN_INIT(obj, CCAST(UT *, spin));
KMP_INIT_YIELD(spins);
// main wait spin loop
while (!f(r = *spin, check)) {
KMP_FSYNC_SPIN_PREPARE(obj);
/* GEH - remove this since it was accidentally introduced when kmp_wait was
split.
It causes problems with infinite recursion because of exit lock */
/* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort)
__kmp_abort_thread(); */
// If oversubscribed, or have waited a bit then yield.
KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
}
KMP_FSYNC_SPIN_ACQUIRED(obj);
return r;
}
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
template <typename UT>
void __kmp_dispatch_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
dispatch_private_info_template<UT> *pr;
int gtid = *gtid_ref;
// int cid = *cid_ref;
kmp_info_t *th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_dispatch);
KD_TRACE(100, ("__kmp_dispatch_deo: T#%d called\n", gtid));
if (__kmp_env_consistency_check) {
pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_pr_current);
if (pr->pushed_ws != ct_none) {
#if KMP_USE_DYNAMIC_LOCK
__kmp_push_sync(gtid, ct_ordered_in_pdo, loc_ref, NULL, 0);
#else
__kmp_push_sync(gtid, ct_ordered_in_pdo, loc_ref, NULL);
#endif
}
}
if (!th->th.th_team->t.t_serialized) {
dispatch_shared_info_template<UT> *sh =
reinterpret_cast<dispatch_shared_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_sh_current);
UT lower;
if (!__kmp_env_consistency_check) {
pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_pr_current);
}
lower = pr->u.p.ordered_lower;
#if !defined(KMP_GOMP_COMPAT)
if (__kmp_env_consistency_check) {
if (pr->ordered_bumped) {
struct cons_header *p = __kmp_threads[gtid]->th.th_cons;
__kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting,
ct_ordered_in_pdo, loc_ref,
&p->stack_data[p->w_top]);
}
}
#endif /* !defined(KMP_GOMP_COMPAT) */
KMP_MB();
#ifdef KMP_DEBUG
{
char *buff;
// create format specifiers before the debug output
buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d before wait: "
"ordered_iter:%%%s lower:%%%s\n",
traits_t<UT>::spec, traits_t<UT>::spec);
KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
__kmp_str_free(&buff);
}
#endif
__kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
__kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
KMP_MB(); /* is this necessary? */
#ifdef KMP_DEBUG
{
char *buff;
// create format specifiers before the debug output
buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d after wait: "
"ordered_iter:%%%s lower:%%%s\n",
traits_t<UT>::spec, traits_t<UT>::spec);
KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
__kmp_str_free(&buff);
}
#endif
}
KD_TRACE(100, ("__kmp_dispatch_deo: T#%d returned\n", gtid));
}
template <typename UT>
void __kmp_dispatch_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
typedef typename traits_t<UT>::signed_t ST;
dispatch_private_info_template<UT> *pr;
int gtid = *gtid_ref;
// int cid = *cid_ref;
kmp_info_t *th = __kmp_threads[gtid];
KMP_DEBUG_ASSERT(th->th.th_dispatch);
KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d called\n", gtid));
if (__kmp_env_consistency_check) {
pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_pr_current);
if (pr->pushed_ws != ct_none) {
__kmp_pop_sync(gtid, ct_ordered_in_pdo, loc_ref);
}
}
if (!th->th.th_team->t.t_serialized) {
dispatch_shared_info_template<UT> *sh =
reinterpret_cast<dispatch_shared_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_sh_current);
if (!__kmp_env_consistency_check) {
pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
th->th.th_dispatch->th_dispatch_pr_current);
}
KMP_FSYNC_RELEASING(CCAST(UT *, &sh->u.s.ordered_iteration));
#if !defined(KMP_GOMP_COMPAT)
if (__kmp_env_consistency_check) {
if (pr->ordered_bumped != 0) {
struct cons_header *p = __kmp_threads[gtid]->th.th_cons;
/* How to test it? - OM */
__kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting,
ct_ordered_in_pdo, loc_ref,
&p->stack_data[p->w_top]);
}
}
#endif /* !defined(KMP_GOMP_COMPAT) */
KMP_MB(); /* Flush all pending memory write invalidates. */
pr->ordered_bumped += 1;
KD_TRACE(1000,
("__kmp_dispatch_dxo: T#%d bumping ordered ordered_bumped=%d\n",
gtid, pr->ordered_bumped));
KMP_MB(); /* Flush all pending memory write invalidates. */
/* TODO use general release procedure? */
test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration);
KMP_MB(); /* Flush all pending memory write invalidates. */
}
KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d returned\n", gtid));
}
/* Computes and returns x to the power of y, where y must a non-negative integer
*/
template <typename UT>
static __forceinline long double __kmp_pow(long double x, UT y) {
long double s = 1.0L;
KMP_DEBUG_ASSERT(x > 0.0 && x < 1.0);
// KMP_DEBUG_ASSERT(y >= 0); // y is unsigned
while (y) {
if (y & 1)
s *= x;
x *= x;
y >>= 1;
}
return s;
}
/* Computes and returns the number of unassigned iterations after idx chunks
have been assigned
(the total number of unassigned iterations in chunks with index greater than
or equal to idx).
__forceinline seems to be broken so that if we __forceinline this function,
the behavior is wrong
(one of the unit tests, sch_guided_analytical_basic.cpp, fails)
*/
template <typename T>
static __inline typename traits_t<T>::unsigned_t
__kmp_dispatch_guided_remaining(T tc, typename traits_t<T>::floating_t base,
typename traits_t<T>::unsigned_t idx) {
/* Note: On Windows* OS on IA-32 architecture and Intel(R) 64, at
least for ICL 8.1, long double arithmetic may not really have
long double precision, even with /Qlong_double. Currently, we
workaround that in the caller code, by manipulating the FPCW for
Windows* OS on IA-32 architecture. The lack of precision is not
expected to be a correctness issue, though.
*/
typedef typename traits_t<T>::unsigned_t UT;
long double x = tc * __kmp_pow<UT>(base, idx);
UT r = (UT)x;
if (x == r)
return r;
return r + 1;
}
// Parameters of the guided-iterative algorithm:
// p2 = n * nproc * ( chunk + 1 ) // point of switching to dynamic
// p3 = 1 / ( n * nproc ) // remaining iterations multiplier
// by default n = 2. For example with n = 3 the chunks distribution will be more
// flat.
// With n = 1 first chunk is the same as for static schedule, e.g. trip / nproc.
static const int guided_int_param = 2;
static const double guided_flt_param = 0.5; // = 1.0 / guided_int_param;
#endif // KMP_DISPATCH_H