kmp_dispatch.h 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * kmp_dispatch.h: dynamic scheduling - iteration initialization and dispatch.
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef KMP_DISPATCH_H
#define KMP_DISPATCH_H

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

#include "kmp.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#if KMP_OS_WINDOWS && KMP_ARCH_X86
#include <float.h>
#endif

#if OMPT_SUPPORT
#include "ompt-internal.h"
#include "ompt-specific.h"
#endif

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
#if KMP_USE_HIER_SCHED
// Forward declarations of some hierarchical scheduling data structures
template <typename T> struct kmp_hier_t;
template <typename T> struct kmp_hier_top_unit_t;
#endif // KMP_USE_HIER_SCHED

template <typename T> struct dispatch_shared_info_template;
template <typename T> struct dispatch_private_info_template;

template <typename T>
extern void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid,
                                          dispatch_private_info_template<T> *pr,
                                          enum sched_type schedule, T lb, T ub,
                                          typename traits_t<T>::signed_t st,
#if USE_ITT_BUILD
                                          kmp_uint64 *cur_chunk,
#endif
                                          typename traits_t<T>::signed_t chunk,
                                          T nproc, T unit_id);
template <typename T>
extern int __kmp_dispatch_next_algorithm(
    int gtid, dispatch_private_info_template<T> *pr,
    dispatch_shared_info_template<T> volatile *sh, kmp_int32 *p_last, T *p_lb,
    T *p_ub, typename traits_t<T>::signed_t *p_st, T nproc, T unit_id);

void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref);

#if KMP_STATIC_STEAL_ENABLED

// replaces dispatch_private_info{32,64} structures and
// dispatch_private_info{32,64}_t types
template <typename T> struct dispatch_private_infoXX_template {
  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::signed_t ST;
  UT count; // unsigned
  T ub;
  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
  T lb;
  ST st; // signed
  UT tc; // unsigned
  T static_steal_counter; // for static_steal only; maybe better to put after ub
  kmp_lock_t *th_steal_lock; // lock used for chunk stealing
  /* parm[1-4] are used in different ways by different scheduling algorithms */

  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
  //    a) parm3 is properly aligned and
  //    b) all parm1-4 are in the same cache line.
  // Because of parm1-4 are used together, performance seems to be better
  // if they are in the same line (not measured though).

  struct KMP_ALIGN(32) { // compiler does not accept sizeof(T)*4
    T parm1;
    T parm2;
    T parm3;
    T parm4;
  };

  UT ordered_lower; // unsigned
  UT ordered_upper; // unsigned
#if KMP_OS_WINDOWS
  T last_upper;
#endif /* KMP_OS_WINDOWS */
};

#else /* KMP_STATIC_STEAL_ENABLED */

// replaces dispatch_private_info{32,64} structures and
// dispatch_private_info{32,64}_t types
template <typename T> struct dispatch_private_infoXX_template {
  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::signed_t ST;
  T lb;
  T ub;
  ST st; // signed
  UT tc; // unsigned

  T parm1;
  T parm2;
  T parm3;
  T parm4;

  UT count; // unsigned

  UT ordered_lower; // unsigned
  UT ordered_upper; // unsigned
#if KMP_OS_WINDOWS
  T last_upper;
#endif /* KMP_OS_WINDOWS */
};
#endif /* KMP_STATIC_STEAL_ENABLED */

template <typename T> struct KMP_ALIGN_CACHE dispatch_private_info_template {
  // duplicate alignment here, otherwise size of structure is not correct in our
  // compiler
  union KMP_ALIGN_CACHE private_info_tmpl {
    dispatch_private_infoXX_template<T> p;
    dispatch_private_info64_t p64;
  } u;
  enum sched_type schedule; /* scheduling algorithm */
  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
  kmp_uint32 ordered_bumped;
  // to retain the structure size after making order
  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
  dispatch_private_info *next; /* stack of buffers for nest of serial regions */
  kmp_uint32 type_size;
#if KMP_USE_HIER_SCHED
  kmp_int32 hier_id;
  kmp_hier_top_unit_t<T> *hier_parent;
  // member functions
  kmp_int32 get_hier_id() const { return hier_id; }
  kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; }
#endif
  enum cons_type pushed_ws;
};

// replaces dispatch_shared_info{32,64} structures and
// dispatch_shared_info{32,64}_t types
template <typename T> struct dispatch_shared_infoXX_template {
  typedef typename traits_t<T>::unsigned_t UT;
  /* chunk index under dynamic, number of idle threads under static-steal;
     iteration index otherwise */
  volatile UT iteration;
  volatile UT num_done;
  volatile UT ordered_iteration;
  // to retain the structure size making ordered_iteration scalar
  UT ordered_dummy[KMP_MAX_ORDERED - 3];
};

// replaces dispatch_shared_info structure and dispatch_shared_info_t type
template <typename T> struct dispatch_shared_info_template {
  typedef typename traits_t<T>::unsigned_t UT;
  // we need union here to keep the structure size
  union shared_info_tmpl {
    dispatch_shared_infoXX_template<UT> s;
    dispatch_shared_info64_t s64;
  } u;
  volatile kmp_uint32 buffer_index;
  volatile kmp_int32 doacross_buf_idx; // teamwise index
  kmp_uint32 *doacross_flags; // array of iteration flags (0/1)
  kmp_int32 doacross_num_done; // count finished threads
#if KMP_USE_HIER_SCHED
  kmp_hier_t<T> *hier;
#endif
#if KMP_USE_HWLOC
  // When linking with libhwloc, the ORDERED EPCC test slowsdown on big
  // machines (> 48 cores). Performance analysis showed that a cache thrash
  // was occurring and this padding helps alleviate the problem.
  char padding[64];
#endif
};

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

#undef USE_TEST_LOCKS

// test_then_add template (general template should NOT be used)
template <typename T> static __forceinline T test_then_add(volatile T *p, T d);

template <>
__forceinline kmp_int32 test_then_add<kmp_int32>(volatile kmp_int32 *p,
                                                 kmp_int32 d) {
  kmp_int32 r;
  r = KMP_TEST_THEN_ADD32(p, d);
  return r;
}

template <>
__forceinline kmp_int64 test_then_add<kmp_int64>(volatile kmp_int64 *p,
                                                 kmp_int64 d) {
  kmp_int64 r;
  r = KMP_TEST_THEN_ADD64(p, d);
  return r;
}

// test_then_inc_acq template (general template should NOT be used)
template <typename T> static __forceinline T test_then_inc_acq(volatile T *p);

template <>
__forceinline kmp_int32 test_then_inc_acq<kmp_int32>(volatile kmp_int32 *p) {
  kmp_int32 r;
  r = KMP_TEST_THEN_INC_ACQ32(p);
  return r;
}

template <>
__forceinline kmp_int64 test_then_inc_acq<kmp_int64>(volatile kmp_int64 *p) {
  kmp_int64 r;
  r = KMP_TEST_THEN_INC_ACQ64(p);
  return r;
}

// test_then_inc template (general template should NOT be used)
template <typename T> static __forceinline T test_then_inc(volatile T *p);

template <>
__forceinline kmp_int32 test_then_inc<kmp_int32>(volatile kmp_int32 *p) {
  kmp_int32 r;
  r = KMP_TEST_THEN_INC32(p);
  return r;
}

template <>
__forceinline kmp_int64 test_then_inc<kmp_int64>(volatile kmp_int64 *p) {
  kmp_int64 r;
  r = KMP_TEST_THEN_INC64(p);
  return r;
}

// compare_and_swap template (general template should NOT be used)
template <typename T>
static __forceinline kmp_int32 compare_and_swap(volatile T *p, T c, T s);

template <>
__forceinline kmp_int32 compare_and_swap<kmp_int32>(volatile kmp_int32 *p,
                                                    kmp_int32 c, kmp_int32 s) {
  return KMP_COMPARE_AND_STORE_REL32(p, c, s);
}

template <>
__forceinline kmp_int32 compare_and_swap<kmp_int64>(volatile kmp_int64 *p,
                                                    kmp_int64 c, kmp_int64 s) {
  return KMP_COMPARE_AND_STORE_REL64(p, c, s);
}

template <typename T> kmp_uint32 __kmp_ge(T value, T checker) {
  return value >= checker;
}
template <typename T> kmp_uint32 __kmp_eq(T value, T checker) {
  return value == checker;
}

/*
    Spin wait loop that pauses between checks.
    Waits until function returns non-zero when called with *spinner and check.
    Does NOT put threads to sleep.
    Arguments:
        UT is unsigned 4- or 8-byte type
        spinner - memory location to check value
        checker - value which spinner is >, <, ==, etc.
        pred - predicate function to perform binary comparison of some sort
#if USE_ITT_BUILD
        obj -- is higher-level synchronization object to report to ittnotify. It
        is used to report locks consistently. For example, if lock is acquired
        immediately, its address is reported to ittnotify via
        KMP_FSYNC_ACQUIRED(). However, it lock cannot be acquired immediately
        and lock routine calls to KMP_WAIT(), the later should report the
        same address, not an address of low-level spinner.
#endif // USE_ITT_BUILD
    TODO: make inline function (move to header file for icl)
*/
template <typename UT>
static UT __kmp_wait(volatile UT *spinner, UT checker,
                     kmp_uint32 (*pred)(UT, UT) USE_ITT_BUILD_ARG(void *obj)) {
  // note: we may not belong to a team at this point
  volatile UT *spin = spinner;
  UT check = checker;
  kmp_uint32 spins;
  kmp_uint32 (*f)(UT, UT) = pred;
  UT r;

  KMP_FSYNC_SPIN_INIT(obj, CCAST(UT *, spin));
  KMP_INIT_YIELD(spins);
  // main wait spin loop
  while (!f(r = *spin, check)) {
    KMP_FSYNC_SPIN_PREPARE(obj);
    /* GEH - remove this since it was accidentally introduced when kmp_wait was
       split.
       It causes problems with infinite recursion because of exit lock */
    /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort)
        __kmp_abort_thread(); */
    // If oversubscribed, or have waited a bit then yield.
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
  }
  KMP_FSYNC_SPIN_ACQUIRED(obj);
  return r;
}

/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */

template <typename UT>
void __kmp_dispatch_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  dispatch_private_info_template<UT> *pr;

  int gtid = *gtid_ref;
  //    int  cid = *cid_ref;
  kmp_info_t *th = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(th->th.th_dispatch);

  KD_TRACE(100, ("__kmp_dispatch_deo: T#%d called\n", gtid));
  if (__kmp_env_consistency_check) {
    pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
        th->th.th_dispatch->th_dispatch_pr_current);
    if (pr->pushed_ws != ct_none) {
#if KMP_USE_DYNAMIC_LOCK
      __kmp_push_sync(gtid, ct_ordered_in_pdo, loc_ref, NULL, 0);
#else
      __kmp_push_sync(gtid, ct_ordered_in_pdo, loc_ref, NULL);
#endif
    }
  }

  if (!th->th.th_team->t.t_serialized) {
    dispatch_shared_info_template<UT> *sh =
        reinterpret_cast<dispatch_shared_info_template<UT> *>(
            th->th.th_dispatch->th_dispatch_sh_current);
    UT lower;

    if (!__kmp_env_consistency_check) {
      pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
          th->th.th_dispatch->th_dispatch_pr_current);
    }
    lower = pr->u.p.ordered_lower;

#if !defined(KMP_GOMP_COMPAT)
    if (__kmp_env_consistency_check) {
      if (pr->ordered_bumped) {
        struct cons_header *p = __kmp_threads[gtid]->th.th_cons;
        __kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting,
                               ct_ordered_in_pdo, loc_ref,
                               &p->stack_data[p->w_top]);
      }
    }
#endif /* !defined(KMP_GOMP_COMPAT) */

    KMP_MB();
#ifdef KMP_DEBUG
    {
      char *buff;
      // create format specifiers before the debug output
      buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d before wait: "
                              "ordered_iter:%%%s lower:%%%s\n",
                              traits_t<UT>::spec, traits_t<UT>::spec);
      KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
      __kmp_str_free(&buff);
    }
#endif
    __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
                   __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
    KMP_MB(); /* is this necessary? */
#ifdef KMP_DEBUG
    {
      char *buff;
      // create format specifiers before the debug output
      buff = __kmp_str_format("__kmp_dispatch_deo: T#%%d after wait: "
                              "ordered_iter:%%%s lower:%%%s\n",
                              traits_t<UT>::spec, traits_t<UT>::spec);
      KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
      __kmp_str_free(&buff);
    }
#endif
  }
  KD_TRACE(100, ("__kmp_dispatch_deo: T#%d returned\n", gtid));
}

template <typename UT>
void __kmp_dispatch_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  typedef typename traits_t<UT>::signed_t ST;
  dispatch_private_info_template<UT> *pr;

  int gtid = *gtid_ref;
  //    int  cid = *cid_ref;
  kmp_info_t *th = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(th->th.th_dispatch);

  KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d called\n", gtid));
  if (__kmp_env_consistency_check) {
    pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
        th->th.th_dispatch->th_dispatch_pr_current);
    if (pr->pushed_ws != ct_none) {
      __kmp_pop_sync(gtid, ct_ordered_in_pdo, loc_ref);
    }
  }

  if (!th->th.th_team->t.t_serialized) {
    dispatch_shared_info_template<UT> *sh =
        reinterpret_cast<dispatch_shared_info_template<UT> *>(
            th->th.th_dispatch->th_dispatch_sh_current);

    if (!__kmp_env_consistency_check) {
      pr = reinterpret_cast<dispatch_private_info_template<UT> *>(
          th->th.th_dispatch->th_dispatch_pr_current);
    }

    KMP_FSYNC_RELEASING(CCAST(UT *, &sh->u.s.ordered_iteration));
#if !defined(KMP_GOMP_COMPAT)
    if (__kmp_env_consistency_check) {
      if (pr->ordered_bumped != 0) {
        struct cons_header *p = __kmp_threads[gtid]->th.th_cons;
        /* How to test it? - OM */
        __kmp_error_construct2(kmp_i18n_msg_CnsMultipleNesting,
                               ct_ordered_in_pdo, loc_ref,
                               &p->stack_data[p->w_top]);
      }
    }
#endif /* !defined(KMP_GOMP_COMPAT) */

    KMP_MB(); /* Flush all pending memory write invalidates.  */

    pr->ordered_bumped += 1;

    KD_TRACE(1000,
             ("__kmp_dispatch_dxo: T#%d bumping ordered ordered_bumped=%d\n",
              gtid, pr->ordered_bumped));

    KMP_MB(); /* Flush all pending memory write invalidates.  */

    /* TODO use general release procedure? */
    test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration);

    KMP_MB(); /* Flush all pending memory write invalidates.  */
  }
  KD_TRACE(100, ("__kmp_dispatch_dxo: T#%d returned\n", gtid));
}

/* Computes and returns x to the power of y, where y must a non-negative integer
 */
template <typename UT>
static __forceinline long double __kmp_pow(long double x, UT y) {
  long double s = 1.0L;

  KMP_DEBUG_ASSERT(x > 0.0 && x < 1.0);
  // KMP_DEBUG_ASSERT(y >= 0); // y is unsigned
  while (y) {
    if (y & 1)
      s *= x;
    x *= x;
    y >>= 1;
  }
  return s;
}

/* Computes and returns the number of unassigned iterations after idx chunks
   have been assigned
   (the total number of unassigned iterations in chunks with index greater than
   or equal to idx).
   __forceinline seems to be broken so that if we __forceinline this function,
   the behavior is wrong
   (one of the unit tests, sch_guided_analytical_basic.cpp, fails)
*/
template <typename T>
static __inline typename traits_t<T>::unsigned_t
__kmp_dispatch_guided_remaining(T tc, typename traits_t<T>::floating_t base,
                                typename traits_t<T>::unsigned_t idx) {
  /* Note: On Windows* OS on IA-32 architecture and Intel(R) 64, at
     least for ICL 8.1, long double arithmetic may not really have
     long double precision, even with /Qlong_double.  Currently, we
     workaround that in the caller code, by manipulating the FPCW for
     Windows* OS on IA-32 architecture.  The lack of precision is not
     expected to be a correctness issue, though.
  */
  typedef typename traits_t<T>::unsigned_t UT;

  long double x = tc * __kmp_pow<UT>(base, idx);
  UT r = (UT)x;
  if (x == r)
    return r;
  return r + 1;
}

// Parameters of the guided-iterative algorithm:
//   p2 = n * nproc * ( chunk + 1 )  // point of switching to dynamic
//   p3 = 1 / ( n * nproc )          // remaining iterations multiplier
// by default n = 2. For example with n = 3 the chunks distribution will be more
// flat.
// With n = 1 first chunk is the same as for static schedule, e.g. trip / nproc.
static const int guided_int_param = 2;
static const double guided_flt_param = 0.5; // = 1.0 / guided_int_param;
#endif // KMP_DISPATCH_H