ScreenSpaceReflection.shader
31.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/**
\author Michael Mara and Morgan McGuire, Casual Effects. 2015.
*/
Shader "Hidden/Post FX/Screen Space Reflection"
{
Properties
{
_MainTex ("Base (RGB)", 2D) = "white" {}
}
CGINCLUDE
#pragma target 3.0
#include "UnityCG.cginc"
#include "UnityPBSLighting.cginc"
#include "UnityStandardBRDF.cginc"
#include "UnityStandardUtils.cginc"
#include "Common.cginc"
#include "ScreenSpaceRaytrace.cginc"
float4 _ProjInfo;
float4x4 _WorldToCameraMatrix;
float4x4 _CameraToWorldMatrix;
float4x4 _ProjectToPixelMatrix;
float2 _ScreenSize;
float2 _ReflectionBufferSize;
float2 _InvScreenSize;
float3 _CameraClipInfo;
sampler2D _CameraGBufferTexture0;
sampler2D _CameraGBufferTexture1;
sampler2D _CameraGBufferTexture2;
sampler2D _CameraGBufferTexture3;
sampler2D _CameraReflectionsTexture;
float _CurrentMipLevel;
float _RayStepSize;
float _MaxRayTraceDistance;
float _LayerThickness;
float _FresnelFade;
float _FresnelFadePower;
float _ReflectionBlur;
int _HalfResolution;
int _TreatBackfaceHitAsMiss;
int _AllowBackwardsRays;
// RG: SS Hitpoint of ray
// B: distance ray travelled, used for mip-selection in the final resolve
// A: confidence value
sampler2D _HitPointTexture;
sampler2D _FinalReflectionTexture;
// RGB: camera-space normal (encoded in [0-1])
// A: Roughness
sampler2D _NormalAndRoughnessTexture;
int _EnableRefine;
int _AdditiveReflection;
float _ScreenEdgeFading;
int _MaxSteps;
int _BilateralUpsampling;
float _MaxRoughness;
float _RoughnessFalloffRange;
float _SSRMultiplier;
float _FadeDistance;
int _TraceBehindObjects;
int _UseEdgeDetector;
int _HighlightSuppression;
/** The height in pixels of a 1m object if viewed from 1m away. */
float _PixelsPerMeterAtOneMeter;
// For temporal filtering:
float4x4 _CurrentCameraToPreviousCamera;
sampler2D _PreviousReflectionTexture;
sampler2D _PreviousCSZBuffer;
float _TemporalAlpha;
int _UseTemporalConfidence;
struct v2f
{
float4 pos : SV_POSITION;
float2 uv : TEXCOORD0;
float2 uv2 : TEXCOORD1;
};
v2f vert( appdata_img v )
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.uv = v.texcoord.xy;
o.uv2 = v.texcoord.xy;
#if UNITY_UV_STARTS_AT_TOP
if (_MainTex_TexelSize.y < 0)
o.uv2.y = 1.0 - o.uv2.y;
#endif
return o;
}
float2 mipToSize(int mip)
{
return floor(_ReflectionBufferSize * exp2(-mip));
}
float3 ReconstructCSPosition(float2 S, float z)
{
float linEyeZ = -LinearEyeDepth(z);
return float3((((S.xy * _MainTex_TexelSize.zw)) * _ProjInfo.xy + _ProjInfo.zw) * linEyeZ, linEyeZ);
}
/** Read the camera-space position of the point at screen-space pixel ssP */
float3 GetPosition(float2 ssP)
{
float3 P;
P.z = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, ssP.xy);
// Offset to pixel center
P = ReconstructCSPosition(float2(ssP) /*+ float2(0.5, 0.5)*/, P.z);
return P;
}
float applyEdgeFade(float2 tsP, float fadeStrength)
{
float maxFade = 0.1;
float2 itsP = float2(1.0, 1.0) - tsP;
float dist = min(min(itsP.x, itsP.y), min(tsP.x, tsP.x));
float fade = dist / (maxFade*fadeStrength + 0.001);
fade = max(min(fade, 1.0), 0.0);
fade = pow(fade, 0.2);
return fade;
}
float3 csMirrorVector(float3 csPosition, float3 csN)
{
float3 csE = -normalize(csPosition.xyz);
float cos_o = dot(csN, csE);
float3 c_mi = normalize((csN * (2.0 * cos_o)) - csE);
return c_mi;
}
float4 fragRaytrace(v2f i, int stepRate)
{
float2 ssP = i.uv2.xy;
float3 csPosition = GetPosition(ssP);
float smoothness = tex2D(_CameraGBufferTexture1, ssP).a;
if (csPosition.z < -100.0 || smoothness == 0.0)
{
return float4(0.0,0.0,0.0,0.0);
}
float3 wsNormal = tex2D(_CameraGBufferTexture2, ssP).rgb * 2.0 - 1.0;
int2 ssC = int2(ssP * _ScreenSize);
float3 csN = mul((float3x3)(_WorldToCameraMatrix), wsNormal);
float3 csRayDirection = csMirrorVector(csPosition, csN);
if (_AllowBackwardsRays == 0 && csRayDirection.z > 0.0)
{
return float4(0.0, 0.0, 0.0, 0.0);
}
float maxRayTraceDistance = _MaxRayTraceDistance;
float jitterFraction = 0.0f;
float layerThickness = _LayerThickness;
int maxSteps = _MaxSteps;
// Bump the ray more in world space as it gets farther away (and so each pixel covers more WS distance)
float rayBump = max(-0.01*csPosition.z, 0.001);
float2 hitPixel;
float3 csHitPoint;
float stepCount;
bool wasHit = castDenseScreenSpaceRay
(csPosition + (csN) * rayBump,
csRayDirection,
_ProjectToPixelMatrix,
_ScreenSize,
_CameraClipInfo,
jitterFraction,
maxSteps,
layerThickness,
maxRayTraceDistance,
hitPixel,
stepRate,
_TraceBehindObjects == 1,
csHitPoint,
stepCount);
float2 tsPResult = hitPixel / _ScreenSize;
float rayDist = dot(csHitPoint - csPosition, csRayDirection);
float confidence = 0.0;
if (wasHit)
{
confidence = Pow2(1.0 - max(2.0*float(stepCount) / float(maxSteps) - 1.0, 0.0));
confidence *= clamp(((_MaxRayTraceDistance - rayDist) / _FadeDistance), 0.0, 1.0);
// Fake fresnel fade
float3 csE = -normalize(csPosition.xyz);
confidence *= max(0.0, lerp(pow(abs(dot(csRayDirection, -csE)), _FresnelFadePower), 1, 1.0 - _FresnelFade));
if (_TreatBackfaceHitAsMiss > 0)
{
float3 wsHitNormal = tex2Dlod(_CameraGBufferTexture2, float4(tsPResult, 0, 0)).rgb * 2.0 - 1.0;
float3 wsRayDirection = mul(_CameraToWorldMatrix, float4(csRayDirection, 0)).xyz;
if (dot(wsHitNormal, wsRayDirection) > 0)
{
confidence = 0.0;
}
}
}
// Fade out reflections that hit near edge of screen, to prevent abrupt appearance/disappearance when object go off screen
// Fade out reflections that hit near edge of screen,
// to prevent abrupt appearance/disappearance when object go off screen
float vignette = applyEdgeFade(tsPResult, _ScreenEdgeFading);
confidence *= vignette;
confidence *= vignette;
return float4(tsPResult, rayDist, confidence);
}
float4 fragComposite(v2f i) : SV_Target
{
// Pixel being shaded
float2 tsP = i.uv2.xy;
// View space point being shaded
float3 C = GetPosition(tsP);
// Final image before this pass
float4 gbuffer3 = tex2D(_MainTex, i.uv);
float4 specEmission = float4(0.0,0.0,0.0,0.0);
float3 specColor = tex2D(_CameraGBufferTexture1, tsP).rgb;
float roughness = tex2D(_CameraGBufferTexture1, tsP).a;
float4 reflectionTexel = tex2D(_FinalReflectionTexture, tsP);
float4 gbuffer0 = tex2D(_CameraGBufferTexture0, tsP);
// Let core Unity functions do the dirty work of applying the BRDF
float3 baseColor = gbuffer0.rgb;
float occlusion = gbuffer0.a;
float oneMinusReflectivity;
baseColor = EnergyConservationBetweenDiffuseAndSpecular(baseColor, specColor, oneMinusReflectivity);
float3 wsNormal = tex2D(_CameraGBufferTexture2, tsP).rgb * 2.0 - 1.0;
float3 csEyeVec = normalize(C);
float3 eyeVec = mul(_CameraToWorldMatrix, float4(csEyeVec, 0)).xyz;
float3 worldPos = mul(_CameraToWorldMatrix, float4(C, 1)).xyz;
float cos_o = dot(wsNormal, eyeVec);
float3 w_mi = -normalize((wsNormal * (2.0 * cos_o)) - eyeVec);
float3 incomingRadiance = reflectionTexel.rgb;
UnityLight light;
light.color = 0;
light.dir = 0;
#if UNITY_VERSION < 550
light.ndotl = 0;
#endif
UnityIndirect ind;
ind.diffuse = 0;
ind.specular = incomingRadiance;
float3 ssrResult = UNITY_BRDF_PBS (0, specColor, oneMinusReflectivity, roughness, wsNormal, -eyeVec, light, ind).rgb * _SSRMultiplier;
float confidence = reflectionTexel.a;
specEmission.rgb = tex2D(_CameraReflectionsTexture, tsP).rgb;
float3 finalGlossyTerm;
// Subtract out Unity's glossy result: (we're just applying the delta)
if (_AdditiveReflection == 0)
{
gbuffer3 -= specEmission;
// We may have blown out our dynamic range by adding then subtracting the reflection probes.
// As a half-measure to fix this, simply clamp to zero
gbuffer3 = max(gbuffer3, 0);
finalGlossyTerm = lerp(specEmission.rgb, ssrResult, saturate(confidence));
}
else
{
finalGlossyTerm = ssrResult*saturate(confidence);
}
finalGlossyTerm *= occlusion;
// Additively blend the glossy GI result with the output buffer
return gbuffer3 + float4(finalGlossyTerm, 0);
}
float roughnessWeight(float midpointRoughness, float tapRoughness)
{
return (1.0 - sqrt(sqrt(abs(midpointRoughness-tapRoughness))));
}
float normalWeight(float3 midpointNormal, float3 tapNormal)
{
return clamp(dot(midpointNormal, tapNormal), 0, 1);
}
float highlightDecompression(float x)
{
return x / (1.0 - x);
}
float3 highlightDecompression(float3 x)
{
return float3(
highlightDecompression(x.x),
highlightDecompression(x.y),
highlightDecompression(x.z)
);
}
float highlightCompression(float x)
{
return x / (1.0 + x);
}
float3 highlightCompression(float3 x)
{
return float3(
highlightCompression(x.x),
highlightCompression(x.y),
highlightCompression(x.z)
);
}
float4 _Axis;
float4 fragGBlur(v2f i) : SV_Target
{
int radius = 4;
// Pixel being shaded
float2 tsP = i.uv2.xy;
float weightSum = 0.0;
float gaussWeights[5] = { 0.225, 0.150, 0.110, 0.075, 0.0525 };//{0.225, 0.150, 0.110, 0.075, 0.0525};
float4 resultSum = float4(0.0, 0.0, 0.0, 0.0);
float4 unweightedResultSum = float4(0.0, 0.0, 0.0, 0.0);
float4 nAndRough = tex2D(_NormalAndRoughnessTexture, tsP);
float midpointRoughness = nAndRough.a;
float3 midpointNormal = nAndRough.rgb * 2 - 1;
for (int i = -radius; i <= radius; ++i)
{
float4 temp;
float tapRoughness;
float3 tapNormal;
float2 tsTap = tsP + (_Axis.xy * _MainTex_TexelSize.xy * float2(i,i)*2.0);
temp = tex2D(_MainTex, tsTap);
float weight = temp.a * gaussWeights[abs(i)];
// Bilateral filtering
// if (_ImproveCorners)
// {
nAndRough = tex2D(_NormalAndRoughnessTexture, tsTap);
tapRoughness = nAndRough.a;
tapNormal = nAndRough.rgb * 2 - 1;
weight *= normalWeight(midpointNormal, tapNormal);
// }
weightSum += weight;
if (_HighlightSuppression)
{
temp.rgb = highlightCompression(temp.rgb);
}
unweightedResultSum += temp;
resultSum += temp*weight;
}
if (weightSum > 0.01)
{
float invWeightSum = (1.0/weightSum);
// Adding the sqrt seems to decrease temporal flickering at the expense
// of having larger "halos" of fallback on rough surfaces
// Subject to change with testing. Sqrt around only half the expression is *intentional*.
float confidence = min(resultSum.a * sqrt(max(invWeightSum, 2.0)), 1.0);
float3 finalColor = resultSum.rgb * invWeightSum;
if (_HighlightSuppression)
{
finalColor = highlightDecompression(finalColor);
}
return float4(finalColor, confidence);
}
else
{
float3 finalColor = unweightedResultSum.rgb / (2 * radius + 1);
if (_HighlightSuppression)
{
finalColor = highlightDecompression(finalColor);
}
return float4(finalColor, 0.0);
}
}
sampler2D _ReflectionTexture0;
sampler2D _ReflectionTexture1;
sampler2D _ReflectionTexture2;
sampler2D _ReflectionTexture3;
sampler2D _ReflectionTexture4;
// Simulate mip maps, since we don't have NPOT mip-chains
float4 getReflectionValue(float2 tsP, int mip)
{
float4 coord = float4(tsP,0,0);
if (mip == 0)
{
return tex2Dlod(_ReflectionTexture0, coord);
}
else if (mip == 1)
{
return tex2Dlod(_ReflectionTexture1, coord);
}
else if (mip == 2)
{
return tex2Dlod(_ReflectionTexture2, coord);
}
else if (mip == 3)
{
return tex2Dlod(_ReflectionTexture3, coord);
}
else
{
return tex2Dlod(_ReflectionTexture4, coord);
}
}
sampler2D _EdgeTexture0;
sampler2D _EdgeTexture1;
sampler2D _EdgeTexture2;
sampler2D _EdgeTexture3;
sampler2D _EdgeTexture4;
// Simulate mip maps, since we don't have NPOT mip-chains
float4 getEdgeValue(float2 tsP, int mip)
{
float4 coord = float4(tsP + float2(1.0/(2 * mipToSize(mip))),0,0);
if (mip == 0)
{
return tex2Dlod(_EdgeTexture0, coord);
}
else if (mip == 1)
{
return tex2Dlod(_EdgeTexture1, coord);
}
else if (mip == 2)
{
return tex2Dlod(_EdgeTexture2, coord);
}
else if (mip == 3)
{
return tex2Dlod(_EdgeTexture3, coord);
}
else
{
return tex2Dlod(_EdgeTexture4, coord);
}
}
float2 centerPixel(float2 inputP)
{
return floor(inputP - float2(0.5,0.5)) + float2(0.5,0.5);
}
float2 snapToTexelCenter(float2 inputP, float2 texSize, float2 texSizeInv)
{
return centerPixel(inputP * texSize) * texSizeInv;
}
float4 bilateralUpsampleReflection(float2 tsP, int mip)
{
float2 smallTexSize = mipToSize(mip);
float2 smallPixelPos = tsP * smallTexSize;
float2 smallPixelPosi = centerPixel(smallPixelPos);
float2 smallTexSizeInv = 1.0 / smallTexSize;
float2 p0 = smallPixelPosi * smallTexSizeInv;
float2 p3 = (smallPixelPosi + float2(1.0, 1.0)) * smallTexSizeInv;
float2 p1 = float2(p3.x, p0.y);
float2 p2 = float2(p0.x, p3.y);
float4 V0 = getReflectionValue(p0.xy, mip);
float4 V1 = getReflectionValue(p1.xy, mip);
float4 V2 = getReflectionValue(p2.xy, mip);
float4 V3 = getReflectionValue(p3.xy, mip);
// Bilateral weights:
// Bilinear interpolation (filter distance)
float2 smallPixelPosf = smallPixelPos - smallPixelPosi;
float a0 = (1.0 - smallPixelPosf.x) * (1.0 - smallPixelPosf.y);
float a1 = smallPixelPosf.x * (1.0 - smallPixelPosf.y);
float a2 = (1.0 - smallPixelPosf.x) * smallPixelPosf.y;
float a3 = smallPixelPosf.x * smallPixelPosf.y;
float2 fullTexSize = _ReflectionBufferSize;
float2 fullTexSizeInv = 1.0 / fullTexSize;
float4 hiP0 = float4(snapToTexelCenter(p0, fullTexSize, fullTexSizeInv), 0,0);
float4 hiP3 = float4(snapToTexelCenter(p3, fullTexSize, fullTexSizeInv), 0,0);
float4 hiP1 = float4(snapToTexelCenter(p1, fullTexSize, fullTexSizeInv), 0,0);
float4 hiP2 = float4(snapToTexelCenter(p2, fullTexSize, fullTexSizeInv), 0,0);
float4 tempCenter = tex2Dlod(_NormalAndRoughnessTexture, float4(tsP, 0, 0));
float3 n = tempCenter.xyz * 2 - 1;
float4 temp0 = tex2Dlod(_NormalAndRoughnessTexture, hiP0);
float4 temp1 = tex2Dlod(_NormalAndRoughnessTexture, hiP1);
float4 temp2 = tex2Dlod(_NormalAndRoughnessTexture, hiP2);
float4 temp3 = tex2Dlod(_NormalAndRoughnessTexture, hiP3);
float3 n0 = temp0.xyz * 2 - 1;
float3 n1 = temp1.xyz * 2 - 1;
float3 n2 = temp2.xyz * 2 - 1;
float3 n3 = temp3.xyz * 2 - 1;
a0 *= normalWeight(n, n0);
a1 *= normalWeight(n, n1);
a2 *= normalWeight(n, n2);
a3 *= normalWeight(n, n3);
float r = tempCenter.a;
float r0 = temp0.a;
float r1 = temp1.a;
float r2 = temp2.a;
float r3 = temp3.a;
a0 *= roughnessWeight(r, r0);
a1 *= roughnessWeight(r, r1);
a2 *= roughnessWeight(r, r2);
a3 *= roughnessWeight(r, r3);
// Slightly offset from zero
a0 = max(a0, 0.001);
a1 = max(a1, 0.001);
a2 = max(a2, 0.001);
a3 = max(a3, 0.001);
// Nearest neighbor
// a0 = a1 = a2 = a3 = 1.0;
// Normalize the blending weights (weights were chosen so that
// the denominator can never be zero)
float norm = 1.0 / (a0 + a1 + a2 + a3);
// Blend
float4 value = (V0 * a0 + V1 * a1 + V2 * a2 + V3 * a3) * norm;
//return V0;
return value;
}
/** Explicit bilinear fetches; must be used if the reflection buffer is bound using point sampling */
float4 bilinearUpsampleReflection(float2 tsP, int mip)
{
float2 smallTexSize = mipToSize(mip);
float2 smallPixelPos = tsP * smallTexSize;
float2 smallPixelPosi = centerPixel(smallPixelPos);
float2 smallTexSizeInv = 1.0 / smallTexSize;
float2 p0 = smallPixelPosi * smallTexSizeInv;
float2 p3 = (smallPixelPosi + float2(1.0, 1.0)) * smallTexSizeInv;
float2 p1 = float2(p3.x, p0.y);
float2 p2 = float2(p0.x, p3.y);
float4 V0 = getReflectionValue(p0.xy, mip);
float4 V1 = getReflectionValue(p1.xy, mip);
float4 V2 = getReflectionValue(p2.xy, mip);
float4 V3 = getReflectionValue(p3.xy, mip);
float a0 = 1.0;
float a1 = 1.0;
float a2 = 1.0;
float a3 = 1.0;
// Bilateral weights:
// Bilinear interpolation (filter distance)
float2 smallPixelPosf = smallPixelPos - smallPixelPosi;
a0 = (1.0 - smallPixelPosf.x) * (1.0 - smallPixelPosf.y);
a1 = smallPixelPosf.x * (1.0 - smallPixelPosf.y);
a2 = (1.0 - smallPixelPosf.x) * smallPixelPosf.y;
a3 = smallPixelPosf.x * smallPixelPosf.y;
// Blend
float4 value = (V0 * a0 + V1 * a1 + V2 * a2 + V3 * a3);
return value;
}
// Unity's roughness is GGX roughness squared
float roughnessToBlinnPhongExponent(float roughness)
{
float r2 = roughness*roughness;
return 2.0f / r2*r2 - 2.0f;
}
float glossyLobeSlope(float roughness)
{
return pow(roughness, 4.0/3.0);
}
// Empirically based on our filter:
// Mip | Pixels
// --------------
// 0 | 1 no filter, so single pixel
// 1 | 17 2r + 1 filter applied once, grabbing from pixels r away in either direction (r=8, four samples times stride of 2)
// 2 | 50 2r + 1 filter applied on double size pixels, and each of those pixels had reached another r out to the side 2(2r + 1) + m_1
// 3 | 118 4(2r + 1) + m_2
// 4 | 254 8(2r + 1) + m_3
//
// Approximated by pixels = 16*2^mip-15
// rearranging we get mip = log_2((pixels + 15) / 16)
//
float filterFootprintInPixelsToMip(float footprint)
{
return log2((footprint + 15) / 16);
}
float3 ansiGradient(float t)
{
//return float3(t, t, t);
return fmod(floor(t * float3(8.0, 4.0, 2.0)), 2.0);
}
float4 fragCompositeSSR(v2f i) : SV_Target
{
// Pixel being shaded
float2 tsP = i.uv2.xy;
float roughness = 1.0-tex2D(_CameraGBufferTexture1, tsP).a;
float rayDistance = tex2D(_HitPointTexture, tsP).z;
// Get the camera space position of the reflection hit
float3 csPosition = GetPosition(tsP);
float3 wsNormal = tex2D(_CameraGBufferTexture2, tsP).rgb * 2.0 - 1.0;
float3 csN = mul((float3x3)(_WorldToCameraMatrix), wsNormal);
float3 c_mi = csMirrorVector(csPosition, csN);
float3 csHitpoint = c_mi * rayDistance + csPosition;
float gatherFootprintInMeters = glossyLobeSlope(roughness) * rayDistance;
// We could add a term that incorporates the normal
// This approximation assumes reflections happen at a glancing angle
float filterFootprintInPixels = gatherFootprintInMeters * _PixelsPerMeterAtOneMeter / csHitpoint.z;
if (_HalfResolution == 1)
{
filterFootprintInPixels *= 0.5;
}
float mip = filterFootprintInPixelsToMip(filterFootprintInPixels);
float nonPhysicalMip = pow(roughness, 3.0 / 4.0) * UNITY_SPECCUBE_LOD_STEPS;
if (_HalfResolution == 1)
{
nonPhysicalMip = nonPhysicalMip * 0.7;
}
mip = max(0, min(4, mip));
float4 result = 0.;
{
int mipMin = int(mip);
int mipMax = min(mipMin + 1, 4);
float mipLerp = mip-mipMin;
if (_BilateralUpsampling == 1)
{
result = lerp(bilateralUpsampleReflection(tsP, mipMin), bilateralUpsampleReflection(tsP, mipMax), mipLerp);
}
else
{
float4 minResult = getReflectionValue(tsP, mipMin);
float4 maxResult = getReflectionValue(tsP, mipMax);
result = lerp(minResult, maxResult, mipLerp);
result.a = min(minResult.a, maxResult.a);
}
}
result.a = min(result.a, 1.0);
float vignette = applyEdgeFade(tsP, _ScreenEdgeFading);
result.a *= vignette;
// THIS MIGHT BE SLIGHTLY WRONG, TRY STEP()
float alphaModifier = 1.0 - clamp(roughness * .3, 0., 1.);
result.a *= alphaModifier;
return result;
}
int _LastMip;
float4 fragMin(v2f i) : SV_Target
{
float2 tsP = i.uv2.xy;
float2 lastTexSize = mipToSize(_LastMip);
float2 lastTexSizeInv = 1.0 / lastTexSize;
float2 p00 = snapToTexelCenter(tsP, lastTexSize, lastTexSizeInv);
float2 p11 = p00 + lastTexSizeInv;
return min(
min(tex2D(_MainTex, p00), tex2D(_MainTex, p11)),
min(tex2D(_MainTex, float2(p00.x, p11.y)), tex2D(_MainTex, float2(p11.x, p00.y)))
);
}
float4 fragResolveHitPoints(v2f i) : SV_Target
{
float2 tsP = i.uv2.xy;
float4 temp = tex2D(_HitPointTexture, tsP);
float2 hitPoint = temp.xy;
float confidence = temp.w;
float3 colorResult = confidence > 0.0 ? tex2D(_MainTex, hitPoint).rgb : tex2D(_CameraReflectionsTexture, tsP).rgb;
if (any(isnan(colorResult)))
colorResult = float3(0.0, 0.0, 0.0);
// As of 11/29/2015, on Unity 5.3 on a Windows 8.1 computer with a NVIDIA GeForce 980,
// with driver 347.62, the above check does not actually work to get rid of NaNs!
// So we add this "redundant" check.
if (!all(isfinite(colorResult)))
colorResult = float3(0.0, 0.0, 0.0);
return float4(colorResult, confidence);
}
float4 fragBilatKeyPack(v2f i) : SV_Target
{
float2 tsP = i.uv2.xy;
float3 csN = tex2D(_CameraGBufferTexture2, tsP).xyz;
float roughness = tex2D(_CameraGBufferTexture1, tsP).a;
return float4(csN, roughness);
}
float4 fragDepthToCSZ(v2f i) : SV_Target
{
float depth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv2.xy);
return float4(-LinearEyeDepth(depth), 0.0, 0.0, 0.0);
}
static const int NUM_POISSON_TAPS = 12;
// Same as used in CameraMotionBlur.shader
static const float2 poissonSamples[NUM_POISSON_TAPS] =
{
float2(-0.326212,-0.40581),
float2(-0.840144,-0.07358),
float2(-0.695914,0.457137),
float2(-0.203345,0.620716),
float2(0.96234,-0.194983),
float2(0.473434,-0.480026),
float2(0.519456,0.767022),
float2(0.185461,-0.893124),
float2(0.507431,0.064425),
float2(0.89642,0.412458),
float2(-0.32194,-0.932615),
float2(-0.791559,-0.59771)
};
float4 fragFilterSharpReflections(v2f i) : SV_Target
{
// Could improve perf by not computing blur when we won't be sampling the highest level anyways
float2 tsP = i.uv2.xy;
float4 sum = 0.0;
float sampleRadius = _MainTex_TexelSize.xy * _ReflectionBlur;
for (int i = 0; i < NUM_POISSON_TAPS; i++)
{
float2 p = tsP + poissonSamples[i] * sampleRadius;
float4 tap = tex2D(_MainTex, p);
if (_HighlightSuppression)
{
tap.rgb = highlightCompression(tap.rgb);
}
sum += tap;
}
float4 result = sum / float(NUM_POISSON_TAPS);
if (_HighlightSuppression)
{
result.rgb = highlightDecompression(result.rgb);
}
return result;
}
ENDCG
SubShader
{
ZTest Always Cull Off ZWrite Off
// 0: Raytrace
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragRaytrace1
float4 fragRaytrace1(v2f i) : SV_Target
{
return fragRaytrace(i, _RayStepSize);
}
ENDCG
}
// 1: Composite
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragComposite
ENDCG
}
// 2: GBlur
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragGBlur
ENDCG
}
// 3: CompositeSSR
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragCompositeSSR
ENDCG
}
// 4: Min mip generation
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragMin
ENDCG
}
// 5: Hit point texture to reflection buffer
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragResolveHitPoints
ENDCG
}
// 6: Pack Bilateral Filter Keys in single buffer
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragBilatKeyPack
ENDCG
}
// 7: Blit depth information as camera space Z
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragDepthToCSZ
ENDCG
}
// 8: Filter the highest quality reflection buffer
Pass
{
CGPROGRAM
#pragma exclude_renderers gles xbox360 ps3
#pragma vertex vert
#pragma fragment fragFilterSharpReflections
ENDCG
}
}
Fallback "Diffuse"
}