gps_blending.cpp
21.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/****************************************************************************
*
* Copyright (c) 2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file gps_blending.cpp
*/
#include "gps_blending.hpp"
void GpsBlending::update(uint64_t hrt_now_us)
{
_is_new_output_data_available = false;
// blend multiple receivers if available
if (!blend_gps_data(hrt_now_us)) {
// Only use selected receiver data if it has been updated
uint8_t gps_select_index = 0;
// Find the single "best" GPS from the data we have
// First, find the GPS(s) with the best fix
uint8_t best_fix = 0;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type > best_fix) {
best_fix = _gps_state[i].fix_type;
}
}
// Second, compare GPS's with best fix and take the one with most satellites
uint8_t max_sats = 0;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type == best_fix && _gps_state[i].satellites_used > max_sats) {
max_sats = _gps_state[i].satellites_used;
gps_select_index = i;
}
}
// Check for new data on selected GPS, and clear blend offsets
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
_NE_pos_offset_m[i].zero();
_hgt_offset_mm[i] = 0.0f;
}
// Only use a secondary instance if the fallback is allowed
if ((_primary_instance > -1)
&& (gps_select_index != _primary_instance)
&& !_fallback_allowed) {
gps_select_index = _primary_instance;
}
_selected_gps = gps_select_index;
_is_new_output_data_available = _gps_updated[gps_select_index];
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
_gps_updated[gps_select_index] = false;
}
}
}
bool GpsBlending::blend_gps_data(uint64_t hrt_now_us)
{
/*
* If both receivers have the same update rate, use the oldest non-zero time.
* If two receivers with different update rates are used, use the slowest.
* If time difference is excessive, use newest to prevent a disconnected receiver
* from blocking updates.
*/
// Calculate the time step for each receiver with some filtering to reduce the effects of jitter
// Find the largest and smallest time step.
float dt_max = 0.0f;
float dt_min = GPS_TIMEOUT_S;
_np_gps_suitable_for_blending = 0;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
const float raw_dt = 1e-6f * ((float)_gps_state[i].timestamp - (float)_time_prev_us[i]);
const float present_dt = 1e-6f * ((float)hrt_now_us - (float)_gps_state[i].timestamp);
if (raw_dt > 0.0f && raw_dt < GPS_TIMEOUT_S) {
_gps_dt[i] = 0.1f * raw_dt + 0.9f * _gps_dt[i];
} else if ((present_dt >= GPS_TIMEOUT_S)
&& (_gps_state[i].timestamp > 0)) {
// Timed out - kill the stored fix for this receiver and don't track its (stale) gps_dt
_gps_state[i].timestamp = 0;
_gps_state[i].fix_type = 0;
_gps_state[i].satellites_used = 0;
_gps_state[i].vel_ned_valid = 0;
if (i == _primary_instance) {
// Allow using a secondary instance when the primary
// receiver has timed out
_fallback_allowed = true;
}
continue;
}
// Only count GPSs with at least a 2D fix for blending purposes
if (_gps_state[i].fix_type < 2) {
continue;
}
if (_gps_dt[i] > dt_max) {
dt_max = _gps_dt[i];
_gps_slowest_index = i;
}
if (_gps_dt[i] < dt_min) {
dt_min = _gps_dt[i];
}
_np_gps_suitable_for_blending++;
}
// Find the receiver that is last be updated
uint64_t max_us = 0; // newest non-zero system time of arrival of a GPS message
uint64_t min_us = -1; // oldest non-zero system time of arrival of a GPS message
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
// Find largest and smallest times
if (_gps_state[i].timestamp > max_us) {
max_us = _gps_state[i].timestamp;
_gps_newest_index = i;
}
if ((_gps_state[i].timestamp < min_us) && (_gps_state[i].timestamp > 0)) {
min_us = _gps_state[i].timestamp;
}
}
if (_np_gps_suitable_for_blending < 2) {
// Less than 2 receivers left, so fall out of blending
return false;
}
/*
* If the largest dt is less than 20% greater than the smallest, then we have receivers
* running at the same rate then we wait until we have two messages with an arrival time
* difference that is less than 50% of the smallest time step and use the time stamp from
* the newest data.
* Else we have two receivers at different update rates and use the slowest receiver
* as the timing reference.
*/
bool gps_new_output_data = false;
if ((dt_max - dt_min) < 0.2f * dt_min) {
// both receivers assumed to be running at the same rate
if ((max_us - min_us) < (uint64_t)(5e5f * dt_min)) {
// data arrival within a short time window enables the two measurements to be blended
_gps_time_ref_index = _gps_newest_index;
gps_new_output_data = true;
}
} else {
// both receivers running at different rates
_gps_time_ref_index = _gps_slowest_index;
if (_gps_state[_gps_time_ref_index].timestamp > _time_prev_us[_gps_time_ref_index]) {
// blend data at the rate of the slower receiver
gps_new_output_data = true;
}
}
if (gps_new_output_data) {
// calculate the sum squared speed accuracy across all GPS sensors
float speed_accuracy_sum_sq = 0.0f;
if (_blend_use_spd_acc) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 3 && _gps_state[i].s_variance_m_s > 0.0f) {
speed_accuracy_sum_sq += _gps_state[i].s_variance_m_s * _gps_state[i].s_variance_m_s;
}
}
}
// calculate the sum squared horizontal position accuracy across all GPS sensors
float horizontal_accuracy_sum_sq = 0.0f;
if (_blend_use_hpos_acc) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 2 && _gps_state[i].eph > 0.0f) {
horizontal_accuracy_sum_sq += _gps_state[i].eph * _gps_state[i].eph;
}
}
}
// calculate the sum squared vertical position accuracy across all GPS sensors
float vertical_accuracy_sum_sq = 0.0f;
if (_blend_use_vpos_acc) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 3 && _gps_state[i].epv > 0.0f) {
vertical_accuracy_sum_sq += _gps_state[i].epv * _gps_state[i].epv;
}
}
}
// Check if we can do blending using reported accuracy
bool can_do_blending = (horizontal_accuracy_sum_sq > 0.0f || vertical_accuracy_sum_sq > 0.0f
|| speed_accuracy_sum_sq > 0.0f);
// if we can't do blending using reported accuracy, return false and hard switch logic will be used instead
if (!can_do_blending) {
return false;
}
float sum_of_all_weights = 0.0f;
// calculate a weighting using the reported speed accuracy
float spd_blend_weights[GPS_MAX_RECEIVERS_BLEND] {};
if (speed_accuracy_sum_sq > 0.0f && _blend_use_spd_acc) {
// calculate the weights using the inverse of the variances
float sum_of_spd_weights = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 3 && _gps_state[i].s_variance_m_s >= 0.001f) {
spd_blend_weights[i] = 1.0f / (_gps_state[i].s_variance_m_s * _gps_state[i].s_variance_m_s);
sum_of_spd_weights += spd_blend_weights[i];
}
}
// normalise the weights
if (sum_of_spd_weights > 0.0f) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
spd_blend_weights[i] = spd_blend_weights[i] / sum_of_spd_weights;
}
sum_of_all_weights += 1.0f;
}
}
// calculate a weighting using the reported horizontal position
float hpos_blend_weights[GPS_MAX_RECEIVERS_BLEND] {};
if (horizontal_accuracy_sum_sq > 0.0f && _blend_use_hpos_acc) {
// calculate the weights using the inverse of the variances
float sum_of_hpos_weights = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 2 && _gps_state[i].eph >= 0.001f) {
hpos_blend_weights[i] = horizontal_accuracy_sum_sq / (_gps_state[i].eph * _gps_state[i].eph);
sum_of_hpos_weights += hpos_blend_weights[i];
}
}
// normalise the weights
if (sum_of_hpos_weights > 0.0f) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
hpos_blend_weights[i] = hpos_blend_weights[i] / sum_of_hpos_weights;
}
sum_of_all_weights += 1.0f;
}
}
// calculate a weighting using the reported vertical position accuracy
float vpos_blend_weights[GPS_MAX_RECEIVERS_BLEND] = {};
if (vertical_accuracy_sum_sq > 0.0f && _blend_use_vpos_acc) {
// calculate the weights using the inverse of the variances
float sum_of_vpos_weights = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].fix_type >= 3 && _gps_state[i].epv >= 0.001f) {
vpos_blend_weights[i] = vertical_accuracy_sum_sq / (_gps_state[i].epv * _gps_state[i].epv);
sum_of_vpos_weights += vpos_blend_weights[i];
}
}
// normalise the weights
if (sum_of_vpos_weights > 0.0f) {
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
vpos_blend_weights[i] = vpos_blend_weights[i] / sum_of_vpos_weights;
}
sum_of_all_weights += 1.0f;
};
}
// blend weight for each GPS. The blend weights must sum to 1.0 across all instances.
float blend_weights[GPS_MAX_RECEIVERS_BLEND];
// calculate an overall weight
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
blend_weights[i] = (hpos_blend_weights[i] + vpos_blend_weights[i] + spd_blend_weights[i]) / sum_of_all_weights;
}
// With updated weights we can calculate a blended GPS solution and
// offsets for each physical receiver
sensor_gps_s gps_blended_state = gps_blend_states(blend_weights);
update_gps_offsets(gps_blended_state);
// calculate a blended output from the offset corrected receiver data
// publish if blending was successful
calc_gps_blend_output(gps_blended_state, blend_weights);
_gps_blended_state = gps_blended_state;
_selected_gps = GPS_MAX_RECEIVERS_BLEND;
_is_new_output_data_available = true;
}
return true;
}
sensor_gps_s GpsBlending::gps_blend_states(float blend_weights[GPS_MAX_RECEIVERS_BLEND]) const
{
// initialise the blended states so we can accumulate the results using the weightings for each GPS receiver.
sensor_gps_s gps_blended_state{};
gps_blended_state.eph = FLT_MAX;
gps_blended_state.epv = FLT_MAX;
gps_blended_state.s_variance_m_s = FLT_MAX;
gps_blended_state.vel_ned_valid = true;
gps_blended_state.hdop = FLT_MAX;
gps_blended_state.vdop = FLT_MAX;
// combine the the GPS states into a blended solution using the weights calculated in calc_blend_weights()
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
// blend the timing data
gps_blended_state.timestamp += (uint64_t)((double)_gps_state[i].timestamp * (double)blend_weights[i]);
// use the highest status
if (_gps_state[i].fix_type > gps_blended_state.fix_type) {
gps_blended_state.fix_type = _gps_state[i].fix_type;
}
// Assume blended error magnitude, DOP and sat count is equal to the best value from contributing receivers
// If any receiver contributing has an invalid velocity, then report blended velocity as invalid
if (blend_weights[i] > 0.0f) {
// calculate a blended average speed and velocity vector
gps_blended_state.vel_m_s += _gps_state[i].vel_m_s * blend_weights[i];
gps_blended_state.vel_n_m_s += _gps_state[i].vel_n_m_s * blend_weights[i];
gps_blended_state.vel_e_m_s += _gps_state[i].vel_e_m_s * blend_weights[i];
gps_blended_state.vel_d_m_s += _gps_state[i].vel_d_m_s * blend_weights[i];
if (_gps_state[i].eph > 0.0f
&& _gps_state[i].eph < gps_blended_state.eph) {
gps_blended_state.eph = _gps_state[i].eph;
}
if (_gps_state[i].epv > 0.0f
&& _gps_state[i].epv < gps_blended_state.epv) {
gps_blended_state.epv = _gps_state[i].epv;
}
if (_gps_state[i].s_variance_m_s > 0.0f
&& _gps_state[i].s_variance_m_s < gps_blended_state.s_variance_m_s) {
gps_blended_state.s_variance_m_s = _gps_state[i].s_variance_m_s;
}
if (_gps_state[i].hdop > 0
&& _gps_state[i].hdop < gps_blended_state.hdop) {
gps_blended_state.hdop = _gps_state[i].hdop;
}
if (_gps_state[i].vdop > 0
&& _gps_state[i].vdop < gps_blended_state.vdop) {
gps_blended_state.vdop = _gps_state[i].vdop;
}
if (_gps_state[i].satellites_used > 0
&& _gps_state[i].satellites_used > gps_blended_state.satellites_used) {
gps_blended_state.satellites_used = _gps_state[i].satellites_used;
}
if (!_gps_state[i].vel_ned_valid) {
gps_blended_state.vel_ned_valid = false;
}
}
// TODO read parameters for individual GPS antenna positions and blend
// Vector3f temp_antenna_offset = _antenna_offset[i];
// temp_antenna_offset *= blend_weights[i];
// _blended_antenna_offset += temp_antenna_offset;
}
/*
* Calculate the instantaneous weighted average location using available GPS instances and store in _gps_state.
* This is statistically the most likely location, but may not be stable enough for direct use by the EKF.
*/
// Use the GPS with the highest weighting as the reference position
float best_weight = 0.0f;
// index of the physical receiver with the lowest reported error
uint8_t gps_best_index = 0;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (blend_weights[i] > best_weight) {
best_weight = blend_weights[i];
gps_best_index = i;
gps_blended_state.lat = _gps_state[i].lat;
gps_blended_state.lon = _gps_state[i].lon;
gps_blended_state.alt = _gps_state[i].alt;
}
}
// Convert each GPS position to a local NEU offset relative to the reference position
Vector2f blended_NE_offset_m{0, 0};
float blended_alt_offset_mm = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if ((blend_weights[i] > 0.0f) && (i != gps_best_index)) {
// calculate the horizontal offset
Vector2f horiz_offset{};
get_vector_to_next_waypoint((gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
(_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
&horiz_offset(0), &horiz_offset(1));
// sum weighted offsets
blended_NE_offset_m += horiz_offset * blend_weights[i];
// calculate vertical offset
float vert_offset = (float)(_gps_state[i].alt - gps_blended_state.alt);
// sum weighted offsets
blended_alt_offset_mm += vert_offset * blend_weights[i];
}
}
// Add the sum of weighted offsets to the reference position to obtain the blended position
const double lat_deg_now = (double)gps_blended_state.lat * 1.0e-7;
const double lon_deg_now = (double)gps_blended_state.lon * 1.0e-7;
double lat_deg_res = 0;
double lon_deg_res = 0;
add_vector_to_global_position(lat_deg_now, lon_deg_now,
blended_NE_offset_m(0), blended_NE_offset_m(1),
&lat_deg_res, &lon_deg_res);
gps_blended_state.lat = (int32_t)(1.0E7 * lat_deg_res);
gps_blended_state.lon = (int32_t)(1.0E7 * lon_deg_res);
gps_blended_state.alt += (int32_t)blended_alt_offset_mm;
// Take GPS heading from the highest weighted receiver that is publishing a valid .heading value
uint8_t gps_best_yaw_index = 0;
float best_yaw_weight = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (PX4_ISFINITE(_gps_state[i].heading) && (blend_weights[i] > best_yaw_weight)) {
best_yaw_weight = blend_weights[i];
gps_best_yaw_index = i;
}
}
gps_blended_state.heading = _gps_state[gps_best_yaw_index].heading;
gps_blended_state.heading_offset = _gps_state[gps_best_yaw_index].heading_offset;
return gps_blended_state;
}
void GpsBlending::update_gps_offsets(const sensor_gps_s &gps_blended_state)
{
// Calculate filter coefficients to be applied to the offsets for each GPS position and height offset
// A weighting of 1 will make the offset adjust the slowest, a weighting of 0 will make it adjust with zero filtering
float alpha[GPS_MAX_RECEIVERS_BLEND] {};
float omega_lpf = 1.0f / fmaxf(_blending_time_constant, 1.0f);
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (_gps_state[i].timestamp - _time_prev_us[i] > 0) {
// calculate the filter coefficient that achieves the time constant specified by the user adjustable parameter
alpha[i] = constrain(omega_lpf * 1e-6f * (float)(_gps_state[i].timestamp - _time_prev_us[i]),
0.0f, 1.0f);
_time_prev_us[i] = _gps_state[i].timestamp;
}
}
// Calculate a filtered position delta for each GPS relative to the blended solution state
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
Vector2f offset;
get_vector_to_next_waypoint((_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
(gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
&offset(0), &offset(1));
_NE_pos_offset_m[i] = offset * alpha[i] + _NE_pos_offset_m[i] * (1.0f - alpha[i]);
_hgt_offset_mm[i] = (float)(gps_blended_state.alt - _gps_state[i].alt) * alpha[i] +
_hgt_offset_mm[i] * (1.0f - alpha[i]);
}
// calculate offset limits from the largest difference between receivers
Vector2f max_ne_offset{};
float max_alt_offset = 0;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
for (uint8_t j = i; j < GPS_MAX_RECEIVERS_BLEND; j++) {
if (i != j) {
Vector2f offset;
get_vector_to_next_waypoint((_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
(_gps_state[j].lat / 1.0e7), (_gps_state[j].lon / 1.0e7),
&offset(0), &offset(1));
max_ne_offset(0) = fmaxf(max_ne_offset(0), fabsf(offset(0)));
max_ne_offset(1) = fmaxf(max_ne_offset(1), fabsf(offset(1)));
max_alt_offset = fmaxf(max_alt_offset, fabsf((float)(_gps_state[i].alt - _gps_state[j].alt)));
}
}
}
// apply offset limits
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
_NE_pos_offset_m[i](0) = constrain(_NE_pos_offset_m[i](0), -max_ne_offset(0), max_ne_offset(0));
_NE_pos_offset_m[i](1) = constrain(_NE_pos_offset_m[i](1), -max_ne_offset(1), max_ne_offset(1));
_hgt_offset_mm[i] = constrain(_hgt_offset_mm[i], -max_alt_offset, max_alt_offset);
}
}
void GpsBlending::calc_gps_blend_output(sensor_gps_s &gps_blended_state,
float blend_weights[GPS_MAX_RECEIVERS_BLEND]) const
{
// Convert each GPS position to a local NEU offset relative to the reference position
// which is defined as the positon of the blended solution calculated from non offset corrected data
Vector2f blended_NE_offset_m{0, 0};
float blended_alt_offset_mm = 0.0f;
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
if (blend_weights[i] > 0.0f) {
// Add the sum of weighted offsets to the reference position to obtain the blended position
const double lat_deg_orig = (double)_gps_state[i].lat * 1.0e-7;
const double lon_deg_orig = (double)_gps_state[i].lon * 1.0e-7;
double lat_deg_offset_res = 0;
double lon_deg_offset_res = 0;
add_vector_to_global_position(lat_deg_orig, lon_deg_orig,
_NE_pos_offset_m[i](0), _NE_pos_offset_m[i](1),
&lat_deg_offset_res, &lon_deg_offset_res);
float alt_offset = _gps_state[i].alt + (int32_t)_hgt_offset_mm[i];
// calculate the horizontal offset
Vector2f horiz_offset{};
get_vector_to_next_waypoint((gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
lat_deg_offset_res, lon_deg_offset_res,
&horiz_offset(0), &horiz_offset(1));
// sum weighted offsets
blended_NE_offset_m += horiz_offset * blend_weights[i];
// calculate vertical offset
float vert_offset = alt_offset - gps_blended_state.alt;
// sum weighted offsets
blended_alt_offset_mm += vert_offset * blend_weights[i];
}
}
// Add the sum of weighted offsets to the reference position to obtain the blended position
const double lat_deg_now = (double)gps_blended_state.lat * 1.0e-7;
const double lon_deg_now = (double)gps_blended_state.lon * 1.0e-7;
double lat_deg_res = 0;
double lon_deg_res = 0;
add_vector_to_global_position(lat_deg_now, lon_deg_now,
blended_NE_offset_m(0), blended_NE_offset_m(1),
&lat_deg_res, &lon_deg_res);
gps_blended_state.lat = (int32_t)(1.0E7 * lat_deg_res);
gps_blended_state.lon = (int32_t)(1.0E7 * lon_deg_res);
gps_blended_state.alt = gps_blended_state.alt + (int32_t)blended_alt_offset_mm;
}