gps_blending.cpp 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/****************************************************************************
 *
 *   Copyright (c) 2021 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file gps_blending.cpp
 */

#include "gps_blending.hpp"


void GpsBlending::update(uint64_t hrt_now_us)
{
	_is_new_output_data_available = false;

	// blend multiple receivers if available
	if (!blend_gps_data(hrt_now_us)) {
		// Only use selected receiver data if it has been updated
		uint8_t gps_select_index = 0;

		// Find the single "best" GPS from the data we have
		// First, find the GPS(s) with the best fix
		uint8_t best_fix = 0;

		for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
			if (_gps_state[i].fix_type > best_fix) {
				best_fix = _gps_state[i].fix_type;
			}
		}

		// Second, compare GPS's with best fix and take the one with most satellites
		uint8_t max_sats = 0;

		for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
			if (_gps_state[i].fix_type == best_fix && _gps_state[i].satellites_used > max_sats) {
				max_sats = _gps_state[i].satellites_used;
				gps_select_index = i;
			}
		}

		// Check for new data on selected GPS, and clear blend offsets
		for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
			_NE_pos_offset_m[i].zero();
			_hgt_offset_mm[i] = 0.0f;
		}

		// Only use a secondary instance if the fallback is allowed
		if ((_primary_instance > -1)
		    && (gps_select_index != _primary_instance)
		    && !_fallback_allowed) {
			gps_select_index = _primary_instance;
		}

		_selected_gps = gps_select_index;
		_is_new_output_data_available =  _gps_updated[gps_select_index];

		for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
			_gps_updated[gps_select_index] = false;
		}
	}
}

bool GpsBlending::blend_gps_data(uint64_t hrt_now_us)
{
	/*
	 * If both receivers have the same update rate, use the oldest non-zero time.
	 * If two receivers with different update rates are used, use the slowest.
	 * If time difference is excessive, use newest to prevent a disconnected receiver
	 * from blocking updates.
	 */

	// Calculate the time step for each receiver with some filtering to reduce the effects of jitter
	// Find the largest and smallest time step.
	float dt_max = 0.0f;
	float dt_min = GPS_TIMEOUT_S;
	_np_gps_suitable_for_blending = 0;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		const float raw_dt = 1e-6f * ((float)_gps_state[i].timestamp - (float)_time_prev_us[i]);
		const float present_dt = 1e-6f * ((float)hrt_now_us - (float)_gps_state[i].timestamp);

		if (raw_dt > 0.0f && raw_dt < GPS_TIMEOUT_S) {
			_gps_dt[i] = 0.1f * raw_dt + 0.9f * _gps_dt[i];

		} else if ((present_dt >= GPS_TIMEOUT_S)
			   && (_gps_state[i].timestamp > 0)) {
			// Timed out - kill the stored fix for this receiver and don't track its (stale) gps_dt
			_gps_state[i].timestamp = 0;
			_gps_state[i].fix_type = 0;
			_gps_state[i].satellites_used = 0;
			_gps_state[i].vel_ned_valid = 0;

			if (i == _primary_instance) {
				// Allow using a secondary instance when the primary
				// receiver has timed out
				_fallback_allowed = true;
			}

			continue;
		}

		// Only count GPSs with at least a 2D fix for blending purposes
		if (_gps_state[i].fix_type < 2) {
			continue;
		}

		if (_gps_dt[i] > dt_max) {
			dt_max = _gps_dt[i];
			_gps_slowest_index = i;
		}

		if (_gps_dt[i] < dt_min) {
			dt_min = _gps_dt[i];
		}

		_np_gps_suitable_for_blending++;
	}

	// Find the receiver that is last be updated
	uint64_t max_us = 0; // newest non-zero system time of arrival of a GPS message
	uint64_t min_us = -1; // oldest non-zero system time of arrival of a GPS message

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		// Find largest and smallest times
		if (_gps_state[i].timestamp > max_us) {
			max_us = _gps_state[i].timestamp;
			_gps_newest_index = i;
		}

		if ((_gps_state[i].timestamp < min_us) && (_gps_state[i].timestamp > 0)) {
			min_us = _gps_state[i].timestamp;
		}
	}

	if (_np_gps_suitable_for_blending < 2) {
		// Less than 2 receivers left, so fall out of blending
		return false;
	}

	/*
	 * If the largest dt is less than 20% greater than the smallest, then we have  receivers
	 * running at the same rate then we wait until we have two messages with an arrival time
	 * difference that is less than 50% of the smallest time step and use the time stamp from
	 * the newest data.
	 * Else we have two receivers at different update rates and use the slowest receiver
	 * as the timing reference.
	 */
	bool gps_new_output_data = false;

	if ((dt_max - dt_min) < 0.2f * dt_min) {
		// both receivers assumed to be running at the same rate
		if ((max_us - min_us) < (uint64_t)(5e5f * dt_min)) {
			// data arrival within a short time window enables the two measurements to be blended
			_gps_time_ref_index = _gps_newest_index;
			gps_new_output_data = true;
		}

	} else {
		// both receivers running at different rates
		_gps_time_ref_index = _gps_slowest_index;

		if (_gps_state[_gps_time_ref_index].timestamp > _time_prev_us[_gps_time_ref_index]) {
			// blend data at the rate of the slower receiver
			gps_new_output_data = true;
		}
	}

	if (gps_new_output_data) {
		// calculate the sum squared speed accuracy across all GPS sensors
		float speed_accuracy_sum_sq = 0.0f;

		if (_blend_use_spd_acc) {
			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 3 && _gps_state[i].s_variance_m_s > 0.0f) {
					speed_accuracy_sum_sq += _gps_state[i].s_variance_m_s * _gps_state[i].s_variance_m_s;
				}
			}
		}

		// calculate the sum squared horizontal position accuracy across all GPS sensors
		float horizontal_accuracy_sum_sq = 0.0f;

		if (_blend_use_hpos_acc) {
			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 2 && _gps_state[i].eph > 0.0f) {
					horizontal_accuracy_sum_sq += _gps_state[i].eph * _gps_state[i].eph;
				}
			}
		}

		// calculate the sum squared vertical position accuracy across all GPS sensors
		float vertical_accuracy_sum_sq = 0.0f;

		if (_blend_use_vpos_acc) {
			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 3 && _gps_state[i].epv > 0.0f) {
					vertical_accuracy_sum_sq += _gps_state[i].epv * _gps_state[i].epv;
				}
			}
		}

		// Check if we can do blending using reported accuracy
		bool can_do_blending = (horizontal_accuracy_sum_sq > 0.0f || vertical_accuracy_sum_sq > 0.0f
					|| speed_accuracy_sum_sq > 0.0f);

		// if we can't do blending using reported accuracy, return false and hard switch logic will be used instead
		if (!can_do_blending) {
			return false;
		}

		float sum_of_all_weights = 0.0f;

		// calculate a weighting using the reported speed accuracy
		float spd_blend_weights[GPS_MAX_RECEIVERS_BLEND] {};

		if (speed_accuracy_sum_sq > 0.0f && _blend_use_spd_acc) {
			// calculate the weights using the inverse of the variances
			float sum_of_spd_weights = 0.0f;

			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 3 && _gps_state[i].s_variance_m_s >= 0.001f) {
					spd_blend_weights[i] = 1.0f / (_gps_state[i].s_variance_m_s * _gps_state[i].s_variance_m_s);
					sum_of_spd_weights += spd_blend_weights[i];
				}
			}

			// normalise the weights
			if (sum_of_spd_weights > 0.0f) {
				for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
					spd_blend_weights[i] = spd_blend_weights[i] / sum_of_spd_weights;
				}

				sum_of_all_weights += 1.0f;
			}
		}

		// calculate a weighting using the reported horizontal position
		float hpos_blend_weights[GPS_MAX_RECEIVERS_BLEND] {};

		if (horizontal_accuracy_sum_sq > 0.0f && _blend_use_hpos_acc) {
			// calculate the weights using the inverse of the variances
			float sum_of_hpos_weights = 0.0f;

			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 2 && _gps_state[i].eph >= 0.001f) {
					hpos_blend_weights[i] = horizontal_accuracy_sum_sq / (_gps_state[i].eph * _gps_state[i].eph);
					sum_of_hpos_weights += hpos_blend_weights[i];
				}
			}

			// normalise the weights
			if (sum_of_hpos_weights > 0.0f) {
				for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
					hpos_blend_weights[i] = hpos_blend_weights[i] / sum_of_hpos_weights;
				}

				sum_of_all_weights += 1.0f;
			}
		}

		// calculate a weighting using the reported vertical position accuracy
		float vpos_blend_weights[GPS_MAX_RECEIVERS_BLEND] = {};

		if (vertical_accuracy_sum_sq > 0.0f && _blend_use_vpos_acc) {
			// calculate the weights using the inverse of the variances
			float sum_of_vpos_weights = 0.0f;

			for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
				if (_gps_state[i].fix_type >= 3 && _gps_state[i].epv >= 0.001f) {
					vpos_blend_weights[i] = vertical_accuracy_sum_sq / (_gps_state[i].epv * _gps_state[i].epv);
					sum_of_vpos_weights += vpos_blend_weights[i];
				}
			}

			// normalise the weights
			if (sum_of_vpos_weights > 0.0f) {
				for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
					vpos_blend_weights[i] = vpos_blend_weights[i] / sum_of_vpos_weights;
				}

				sum_of_all_weights += 1.0f;
			};
		}

		// blend weight for each GPS. The blend weights must sum to 1.0 across all instances.
		float blend_weights[GPS_MAX_RECEIVERS_BLEND];

		// calculate an overall weight
		for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
			blend_weights[i] = (hpos_blend_weights[i] + vpos_blend_weights[i] + spd_blend_weights[i]) / sum_of_all_weights;
		}

		// With updated weights we can calculate a blended GPS solution and
		// offsets for each physical receiver
		sensor_gps_s gps_blended_state = gps_blend_states(blend_weights);

		update_gps_offsets(gps_blended_state);

		// calculate a blended output from the offset corrected receiver data
		// publish if blending was successful
		calc_gps_blend_output(gps_blended_state, blend_weights);

		_gps_blended_state = gps_blended_state;
		_selected_gps = GPS_MAX_RECEIVERS_BLEND;
		_is_new_output_data_available = true;
	}

	return true;
}

sensor_gps_s GpsBlending::gps_blend_states(float blend_weights[GPS_MAX_RECEIVERS_BLEND]) const
{
	// initialise the blended states so we can accumulate the results using the weightings for each GPS receiver.
	sensor_gps_s gps_blended_state{};
	gps_blended_state.eph = FLT_MAX;
	gps_blended_state.epv = FLT_MAX;
	gps_blended_state.s_variance_m_s = FLT_MAX;
	gps_blended_state.vel_ned_valid = true;
	gps_blended_state.hdop = FLT_MAX;
	gps_blended_state.vdop = FLT_MAX;

	// combine the the GPS states into a blended solution using the weights calculated in calc_blend_weights()
	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		// blend the timing data
		gps_blended_state.timestamp += (uint64_t)((double)_gps_state[i].timestamp * (double)blend_weights[i]);

		// use the highest status
		if (_gps_state[i].fix_type > gps_blended_state.fix_type) {
			gps_blended_state.fix_type = _gps_state[i].fix_type;
		}

		// Assume blended error magnitude, DOP and sat count is equal to the best value from contributing receivers
		// If any receiver contributing has an invalid velocity, then report blended velocity as invalid
		if (blend_weights[i] > 0.0f) {

			// calculate a blended average speed and velocity vector
			gps_blended_state.vel_m_s += _gps_state[i].vel_m_s * blend_weights[i];
			gps_blended_state.vel_n_m_s += _gps_state[i].vel_n_m_s * blend_weights[i];
			gps_blended_state.vel_e_m_s += _gps_state[i].vel_e_m_s * blend_weights[i];
			gps_blended_state.vel_d_m_s += _gps_state[i].vel_d_m_s * blend_weights[i];

			if (_gps_state[i].eph > 0.0f
			    && _gps_state[i].eph < gps_blended_state.eph) {
				gps_blended_state.eph = _gps_state[i].eph;
			}

			if (_gps_state[i].epv > 0.0f
			    && _gps_state[i].epv < gps_blended_state.epv) {
				gps_blended_state.epv = _gps_state[i].epv;
			}

			if (_gps_state[i].s_variance_m_s > 0.0f
			    && _gps_state[i].s_variance_m_s < gps_blended_state.s_variance_m_s) {
				gps_blended_state.s_variance_m_s = _gps_state[i].s_variance_m_s;
			}

			if (_gps_state[i].hdop > 0
			    && _gps_state[i].hdop < gps_blended_state.hdop) {
				gps_blended_state.hdop = _gps_state[i].hdop;
			}

			if (_gps_state[i].vdop > 0
			    && _gps_state[i].vdop < gps_blended_state.vdop) {
				gps_blended_state.vdop = _gps_state[i].vdop;
			}

			if (_gps_state[i].satellites_used > 0
			    && _gps_state[i].satellites_used > gps_blended_state.satellites_used) {
				gps_blended_state.satellites_used = _gps_state[i].satellites_used;
			}

			if (!_gps_state[i].vel_ned_valid) {
				gps_blended_state.vel_ned_valid = false;
			}
		}

		// TODO read parameters for individual GPS antenna positions and blend
		// Vector3f temp_antenna_offset = _antenna_offset[i];
		// temp_antenna_offset *= blend_weights[i];
		// _blended_antenna_offset += temp_antenna_offset;
	}

	/*
	 * Calculate the instantaneous weighted average location using  available GPS instances and store in  _gps_state.
	 * This is statistically the most likely location, but may not be stable enough for direct use by the EKF.
	*/

	// Use the GPS with the highest weighting as the reference position
	float best_weight = 0.0f;

	// index of the physical receiver with the lowest reported error
	uint8_t gps_best_index = 0;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		if (blend_weights[i] > best_weight) {
			best_weight = blend_weights[i];
			gps_best_index = i;
			gps_blended_state.lat = _gps_state[i].lat;
			gps_blended_state.lon = _gps_state[i].lon;
			gps_blended_state.alt = _gps_state[i].alt;
		}
	}

	// Convert each GPS position to a local NEU offset relative to the reference position
	Vector2f blended_NE_offset_m{0, 0};
	float blended_alt_offset_mm = 0.0f;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		if ((blend_weights[i] > 0.0f) && (i != gps_best_index)) {
			// calculate the horizontal offset
			Vector2f horiz_offset{};
			get_vector_to_next_waypoint((gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
						    (_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
						    &horiz_offset(0), &horiz_offset(1));

			// sum weighted offsets
			blended_NE_offset_m += horiz_offset * blend_weights[i];

			// calculate vertical offset
			float vert_offset = (float)(_gps_state[i].alt - gps_blended_state.alt);

			// sum weighted offsets
			blended_alt_offset_mm += vert_offset * blend_weights[i];
		}
	}

	// Add the sum of weighted offsets to the reference position to obtain the blended position
	const double lat_deg_now = (double)gps_blended_state.lat * 1.0e-7;
	const double lon_deg_now = (double)gps_blended_state.lon * 1.0e-7;
	double lat_deg_res = 0;
	double lon_deg_res = 0;
	add_vector_to_global_position(lat_deg_now, lon_deg_now,
				      blended_NE_offset_m(0), blended_NE_offset_m(1),
				      &lat_deg_res, &lon_deg_res);
	gps_blended_state.lat = (int32_t)(1.0E7 * lat_deg_res);
	gps_blended_state.lon = (int32_t)(1.0E7 * lon_deg_res);
	gps_blended_state.alt += (int32_t)blended_alt_offset_mm;

	// Take GPS heading from the highest weighted receiver that is publishing a valid .heading value
	uint8_t gps_best_yaw_index = 0;
	float best_yaw_weight = 0.0f;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		if (PX4_ISFINITE(_gps_state[i].heading) && (blend_weights[i] > best_yaw_weight)) {
			best_yaw_weight = blend_weights[i];
			gps_best_yaw_index = i;
		}
	}

	gps_blended_state.heading = _gps_state[gps_best_yaw_index].heading;
	gps_blended_state.heading_offset = _gps_state[gps_best_yaw_index].heading_offset;

	return gps_blended_state;
}

void GpsBlending::update_gps_offsets(const sensor_gps_s &gps_blended_state)
{
	// Calculate filter coefficients to be applied to the offsets for each GPS position and height offset
	// A weighting of 1 will make the offset adjust the slowest, a weighting of 0 will make it adjust with zero filtering
	float alpha[GPS_MAX_RECEIVERS_BLEND] {};
	float omega_lpf = 1.0f / fmaxf(_blending_time_constant, 1.0f);

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		if (_gps_state[i].timestamp - _time_prev_us[i] > 0) {
			// calculate the filter coefficient that achieves the time constant specified by the user adjustable parameter
			alpha[i] = constrain(omega_lpf * 1e-6f * (float)(_gps_state[i].timestamp - _time_prev_us[i]),
					     0.0f, 1.0f);

			_time_prev_us[i] = _gps_state[i].timestamp;
		}
	}

	// Calculate a filtered position delta for each GPS relative to the blended solution state
	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		Vector2f offset;
		get_vector_to_next_waypoint((_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
					    (gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
					    &offset(0), &offset(1));

		_NE_pos_offset_m[i] = offset * alpha[i] + _NE_pos_offset_m[i] * (1.0f - alpha[i]);

		_hgt_offset_mm[i] = (float)(gps_blended_state.alt - _gps_state[i].alt) *  alpha[i] +
				    _hgt_offset_mm[i] * (1.0f - alpha[i]);
	}

	// calculate offset limits from the largest difference between receivers
	Vector2f max_ne_offset{};
	float max_alt_offset = 0;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		for (uint8_t j = i; j < GPS_MAX_RECEIVERS_BLEND; j++) {
			if (i != j) {
				Vector2f offset;
				get_vector_to_next_waypoint((_gps_state[i].lat / 1.0e7), (_gps_state[i].lon / 1.0e7),
							    (_gps_state[j].lat / 1.0e7), (_gps_state[j].lon / 1.0e7),
							    &offset(0), &offset(1));
				max_ne_offset(0) = fmaxf(max_ne_offset(0), fabsf(offset(0)));
				max_ne_offset(1) = fmaxf(max_ne_offset(1), fabsf(offset(1)));
				max_alt_offset = fmaxf(max_alt_offset, fabsf((float)(_gps_state[i].alt - _gps_state[j].alt)));
			}
		}
	}

	// apply offset limits
	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		_NE_pos_offset_m[i](0) = constrain(_NE_pos_offset_m[i](0), -max_ne_offset(0), max_ne_offset(0));
		_NE_pos_offset_m[i](1) = constrain(_NE_pos_offset_m[i](1), -max_ne_offset(1), max_ne_offset(1));
		_hgt_offset_mm[i] = constrain(_hgt_offset_mm[i], -max_alt_offset, max_alt_offset);
	}
}

void GpsBlending::calc_gps_blend_output(sensor_gps_s &gps_blended_state,
					float blend_weights[GPS_MAX_RECEIVERS_BLEND]) const
{
	// Convert each GPS position to a local NEU offset relative to the reference position
	// which is defined as the positon of the blended solution calculated from non offset corrected data
	Vector2f blended_NE_offset_m{0, 0};
	float blended_alt_offset_mm = 0.0f;

	for (uint8_t i = 0; i < GPS_MAX_RECEIVERS_BLEND; i++) {
		if (blend_weights[i] > 0.0f) {

			// Add the sum of weighted offsets to the reference position to obtain the blended position
			const double lat_deg_orig = (double)_gps_state[i].lat * 1.0e-7;
			const double lon_deg_orig = (double)_gps_state[i].lon * 1.0e-7;
			double lat_deg_offset_res = 0;
			double lon_deg_offset_res = 0;
			add_vector_to_global_position(lat_deg_orig, lon_deg_orig,
						      _NE_pos_offset_m[i](0), _NE_pos_offset_m[i](1),
						      &lat_deg_offset_res, &lon_deg_offset_res);

			float alt_offset = _gps_state[i].alt + (int32_t)_hgt_offset_mm[i];


			// calculate the horizontal offset
			Vector2f horiz_offset{};
			get_vector_to_next_waypoint((gps_blended_state.lat / 1.0e7), (gps_blended_state.lon / 1.0e7),
						    lat_deg_offset_res, lon_deg_offset_res,
						    &horiz_offset(0), &horiz_offset(1));

			// sum weighted offsets
			blended_NE_offset_m += horiz_offset * blend_weights[i];

			// calculate vertical offset
			float vert_offset = alt_offset - gps_blended_state.alt;

			// sum weighted offsets
			blended_alt_offset_mm += vert_offset * blend_weights[i];
		}
	}

	// Add the sum of weighted offsets to the reference position to obtain the blended position
	const double lat_deg_now = (double)gps_blended_state.lat * 1.0e-7;
	const double lon_deg_now = (double)gps_blended_state.lon * 1.0e-7;
	double lat_deg_res = 0;
	double lon_deg_res = 0;
	add_vector_to_global_position(lat_deg_now, lon_deg_now,
				      blended_NE_offset_m(0), blended_NE_offset_m(1),
				      &lat_deg_res, &lon_deg_res);

	gps_blended_state.lat = (int32_t)(1.0E7 * lat_deg_res);
	gps_blended_state.lon = (int32_t)(1.0E7 * lon_deg_res);
	gps_blended_state.alt = gps_blended_state.alt + (int32_t)blended_alt_offset_mm;
}