mc_att_control_main.cpp 14.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/****************************************************************************
 *
 *   Copyright (c) 2013-2018 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file mc_att_control_main.cpp
 * Multicopter attitude controller.
 *
 * @author Lorenz Meier		<lorenz@px4.io>
 * @author Anton Babushkin	<anton.babushkin@me.com>
 * @author Sander Smeets	<sander@droneslab.com>
 * @author Matthias Grob	<maetugr@gmail.com>
 * @author Beat Küng		<beat-kueng@gmx.net>
 *
 */

#include "mc_att_control.hpp"

#include <drivers/drv_hrt.h>
#include <mathlib/math/Limits.hpp>
#include <mathlib/math/Functions.hpp>

using namespace matrix;

MulticopterAttitudeControl::MulticopterAttitudeControl(bool vtol) :
	ModuleParams(nullptr),
	WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
	_vehicle_attitude_setpoint_pub(vtol ? ORB_ID(mc_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
	_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle")),
	_vtol(vtol)
{
	if (_vtol) {
		int32_t vt_type = -1;

		if (param_get(param_find("VT_TYPE"), &vt_type) == PX4_OK) {
			_vtol_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
		}
	}

	parameters_updated();
}

MulticopterAttitudeControl::~MulticopterAttitudeControl()
{
	perf_free(_loop_perf);
}

bool
MulticopterAttitudeControl::init()
{
	if (!_vehicle_attitude_sub.registerCallback()) {
		PX4_ERR("vehicle_attitude callback registration failed!");
		return false;
	}

	return true;
}

void
MulticopterAttitudeControl::parameters_updated()
{
	// Store some of the parameters in a more convenient way & precompute often-used values
	_attitude_control.setProportionalGain(Vector3f(_param_mc_roll_p.get(), _param_mc_pitch_p.get(), _param_mc_yaw_p.get()),
					      _param_mc_yaw_weight.get());

	// angular rate limits
	using math::radians;
	_attitude_control.setRateLimit(Vector3f(radians(_param_mc_rollrate_max.get()), radians(_param_mc_pitchrate_max.get()),
						radians(_param_mc_yawrate_max.get())));

	_man_tilt_max = math::radians(_param_mpc_man_tilt_max.get());
}

float
MulticopterAttitudeControl::throttle_curve(float throttle_stick_input)
{
	const float throttle_min = _landed ? 0.0f : _param_mpc_manthr_min.get();

	// throttle_stick_input is in range [0, 1]
	switch (_param_mpc_thr_curve.get()) {
	case 1: // no rescaling to hover throttle
		return throttle_min + throttle_stick_input * (_param_mpc_thr_max.get() - throttle_min);

	default: // 0 or other: rescale to hover throttle at 0.5 stick
		return math::gradual3(throttle_stick_input,
				      0.f, .5f, 1.f,
				      throttle_min, _param_mpc_thr_hover.get(), _param_mpc_thr_max.get());
	}
}

void
MulticopterAttitudeControl::generate_attitude_setpoint(const Quatf &q, float dt, bool reset_yaw_sp)
{
	vehicle_attitude_setpoint_s attitude_setpoint{};
	const float yaw = Eulerf(q).psi();

	/* reset yaw setpoint to current position if needed */
	if (reset_yaw_sp) {
		_man_yaw_sp = yaw;

	} else if (math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f) > 0.05f
		   || _param_mc_airmode.get() == (int32_t)Mixer::Airmode::roll_pitch_yaw) {

		const float yaw_rate = math::radians(_param_mpc_man_y_max.get());
		attitude_setpoint.yaw_sp_move_rate = _manual_control_setpoint.r * yaw_rate;
		_man_yaw_sp = wrap_pi(_man_yaw_sp + attitude_setpoint.yaw_sp_move_rate * dt);
	}

	/*
	 * Input mapping for roll & pitch setpoints
	 * ----------------------------------------
	 * We control the following 2 angles:
	 * - tilt angle, given by sqrt(x*x + y*y)
	 * - the direction of the maximum tilt in the XY-plane, which also defines the direction of the motion
	 *
	 * This allows a simple limitation of the tilt angle, the vehicle flies towards the direction that the stick
	 * points to, and changes of the stick input are linear.
	 */
	_man_x_input_filter.setParameters(dt, _param_mc_man_tilt_tau.get());
	_man_y_input_filter.setParameters(dt, _param_mc_man_tilt_tau.get());
	_man_x_input_filter.update(_manual_control_setpoint.x * _man_tilt_max);
	_man_y_input_filter.update(_manual_control_setpoint.y * _man_tilt_max);
	const float x = _man_x_input_filter.getState();
	const float y = _man_y_input_filter.getState();

	// we want to fly towards the direction of (x, y), so we use a perpendicular axis angle vector in the XY-plane
	Vector2f v = Vector2f(y, -x);
	float v_norm = v.norm(); // the norm of v defines the tilt angle

	if (v_norm > _man_tilt_max) { // limit to the configured maximum tilt angle
		v *= _man_tilt_max / v_norm;
	}

	Quatf q_sp_rpy = AxisAnglef(v(0), v(1), 0.f);
	Eulerf euler_sp = q_sp_rpy;
	attitude_setpoint.roll_body = euler_sp(0);
	attitude_setpoint.pitch_body = euler_sp(1);
	// The axis angle can change the yaw as well (noticeable at higher tilt angles).
	// This is the formula by how much the yaw changes:
	//   let a := tilt angle, b := atan(y/x) (direction of maximum tilt)
	//   yaw = atan(-2 * sin(b) * cos(b) * sin^2(a/2) / (1 - 2 * cos^2(b) * sin^2(a/2))).
	attitude_setpoint.yaw_body = _man_yaw_sp + euler_sp(2);

	/* modify roll/pitch only if we're a VTOL */
	if (_vtol) {
		// Construct attitude setpoint rotation matrix. Modify the setpoints for roll
		// and pitch such that they reflect the user's intention even if a large yaw error
		// (yaw_sp - yaw) is present. In the presence of a yaw error constructing a rotation matrix
		// from the pure euler angle setpoints will lead to unexpected attitude behaviour from
		// the user's view as the euler angle sequence uses the  yaw setpoint and not the current
		// heading of the vehicle.
		// However there's also a coupling effect that causes oscillations for fast roll/pitch changes
		// at higher tilt angles, so we want to avoid using this on multicopters.
		// The effect of that can be seen with:
		// - roll/pitch into one direction, keep it fixed (at high angle)
		// - apply a fast yaw rotation
		// - look at the roll and pitch angles: they should stay pretty much the same as when not yawing

		// calculate our current yaw error
		float yaw_error = wrap_pi(attitude_setpoint.yaw_body - yaw);

		// compute the vector obtained by rotating a z unit vector by the rotation
		// given by the roll and pitch commands of the user
		Vector3f zB = {0.0f, 0.0f, 1.0f};
		Dcmf R_sp_roll_pitch = Eulerf(attitude_setpoint.roll_body, attitude_setpoint.pitch_body, 0.0f);
		Vector3f z_roll_pitch_sp = R_sp_roll_pitch * zB;

		// transform the vector into a new frame which is rotated around the z axis
		// by the current yaw error. this vector defines the desired tilt when we look
		// into the direction of the desired heading
		Dcmf R_yaw_correction = Eulerf(0.0f, 0.0f, -yaw_error);
		z_roll_pitch_sp = R_yaw_correction * z_roll_pitch_sp;

		// use the formula z_roll_pitch_sp = R_tilt * [0;0;1]
		// R_tilt is computed from_euler; only true if cos(roll) not equal zero
		// -> valid if roll is not +-pi/2;
		attitude_setpoint.roll_body = -asinf(z_roll_pitch_sp(1));
		attitude_setpoint.pitch_body = atan2f(z_roll_pitch_sp(0), z_roll_pitch_sp(2));
	}

	/* copy quaternion setpoint to attitude setpoint topic */
	Quatf q_sp = Eulerf(attitude_setpoint.roll_body, attitude_setpoint.pitch_body, attitude_setpoint.yaw_body);
	q_sp.copyTo(attitude_setpoint.q_d);

	attitude_setpoint.thrust_body[2] = -throttle_curve(math::constrain(_manual_control_setpoint.z, 0.0f, 1.0f));
	attitude_setpoint.timestamp = hrt_absolute_time();

	_vehicle_attitude_setpoint_pub.publish(attitude_setpoint);
}

void
MulticopterAttitudeControl::Run()
{
	if (should_exit()) {
		_vehicle_attitude_sub.unregisterCallback();
		exit_and_cleanup();
		return;
	}

	perf_begin(_loop_perf);

	// Check if parameters have changed
	if (_parameter_update_sub.updated()) {
		// clear update
		parameter_update_s param_update;
		_parameter_update_sub.copy(&param_update);

		updateParams();
		parameters_updated();
	}

	// run controller on attitude updates
	vehicle_attitude_s v_att;

	if (_vehicle_attitude_sub.update(&v_att)) {

		// Check for new attitude setpoint
		if (_vehicle_attitude_setpoint_sub.updated()) {
			vehicle_attitude_setpoint_s vehicle_attitude_setpoint;
			_vehicle_attitude_setpoint_sub.update(&vehicle_attitude_setpoint);
			_attitude_control.setAttitudeSetpoint(Quatf(vehicle_attitude_setpoint.q_d), vehicle_attitude_setpoint.yaw_sp_move_rate);
			_thrust_setpoint_body = Vector3f(vehicle_attitude_setpoint.thrust_body);
		}

		// Check for a heading reset
		if (_quat_reset_counter != v_att.quat_reset_counter) {
			const Quatf delta_q_reset(v_att.delta_q_reset);
			// for stabilized attitude generation only extract the heading change from the delta quaternion
			_man_yaw_sp += Eulerf(delta_q_reset).psi();
			_attitude_control.adaptAttitudeSetpoint(delta_q_reset);

			_quat_reset_counter = v_att.quat_reset_counter;
		}

		// Guard against too small (< 0.2ms) and too large (> 20ms) dt's.
		const float dt = math::constrain(((v_att.timestamp - _last_run) * 1e-6f), 0.0002f, 0.02f);
		_last_run = v_att.timestamp;

		/* check for updates in other topics */
		_manual_control_setpoint_sub.update(&_manual_control_setpoint);
		_v_control_mode_sub.update(&_v_control_mode);

		if (_vehicle_land_detected_sub.updated()) {
			vehicle_land_detected_s vehicle_land_detected;

			if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
				_landed = vehicle_land_detected.landed;
			}
		}

		if (_vehicle_status_sub.updated()) {
			vehicle_status_s vehicle_status;

			if (_vehicle_status_sub.copy(&vehicle_status)) {
				_vehicle_type_rotary_wing = (vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING);
				_vtol = vehicle_status.is_vtol;
				_vtol_in_transition_mode = vehicle_status.in_transition_mode;
			}
		}

		bool attitude_setpoint_generated = false;

		const bool is_hovering = (_vehicle_type_rotary_wing && !_vtol_in_transition_mode);

		// vehicle is a tailsitter in transition mode
		const bool is_tailsitter_transition = (_vtol_tailsitter && _vtol_in_transition_mode);

		bool run_att_ctrl = _v_control_mode.flag_control_attitude_enabled && (is_hovering || is_tailsitter_transition);

		if (run_att_ctrl) {

			const Quatf q{v_att.q};

			// Generate the attitude setpoint from stick inputs if we are in Manual/Stabilized mode
			if (_v_control_mode.flag_control_manual_enabled &&
			    !_v_control_mode.flag_control_altitude_enabled &&
			    !_v_control_mode.flag_control_velocity_enabled &&
			    !_v_control_mode.flag_control_position_enabled) {

				generate_attitude_setpoint(q, dt, _reset_yaw_sp);
				attitude_setpoint_generated = true;

			} else {
				_man_x_input_filter.reset(0.f);
				_man_y_input_filter.reset(0.f);
			}

			Vector3f rates_sp = _attitude_control.update(q);

			// publish rate setpoint
			vehicle_rates_setpoint_s v_rates_sp{};
			v_rates_sp.roll = rates_sp(0);
			v_rates_sp.pitch = rates_sp(1);
			v_rates_sp.yaw = rates_sp(2);
			_thrust_setpoint_body.copyTo(v_rates_sp.thrust_body);
			v_rates_sp.timestamp = hrt_absolute_time();

			_v_rates_sp_pub.publish(v_rates_sp);
		}

		// reset yaw setpoint during transitions, tailsitter.cpp generates
		// attitude setpoint for the transition
		_reset_yaw_sp = !attitude_setpoint_generated || _landed || (_vtol && _vtol_in_transition_mode);
	}

	perf_end(_loop_perf);
}

int MulticopterAttitudeControl::task_spawn(int argc, char *argv[])
{
	bool vtol = false;

	if (argc > 1) {
		if (strcmp(argv[1], "vtol") == 0) {
			vtol = true;
		}
	}

	MulticopterAttitudeControl *instance = new MulticopterAttitudeControl(vtol);

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int MulticopterAttitudeControl::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int MulticopterAttitudeControl::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
This implements the multicopter attitude controller. It takes attitude
setpoints (`vehicle_attitude_setpoint`) as inputs and outputs a rate setpoint.

The controller has a P loop for angular error

Publication documenting the implemented Quaternion Attitude Control:
Nonlinear Quadrocopter Attitude Control (2013)
by Dario Brescianini, Markus Hehn and Raffaello D'Andrea
Institute for Dynamic Systems and Control (IDSC), ETH Zurich

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf

)DESCR_STR");

	PRINT_MODULE_USAGE_NAME("mc_att_control", "controller");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

	return 0;
}

int mc_att_control_main(int argc, char *argv[])
{
	return MulticopterAttitudeControl::main(argc, argv);
}