drv_hrt.cpp
11.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/****************************************************************************
*
* Copyright (c) 2012 - 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file drv_hrt.cpp
*
* High-resolution timer with callouts and timekeeping.
*/
#include <px4_platform_common/time.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/defines.h>
#include <px4_platform_common/workqueue.h>
#include <px4_platform_common/tasks.h>
#include <drivers/drv_hrt.h>
#include <semaphore.h>
#include <time.h>
#include <string.h>
#include <errno.h>
#include "hrt_work.h"
// Intervals in usec
static constexpr unsigned HRT_INTERVAL_MIN = 50;
static constexpr unsigned HRT_INTERVAL_MAX = 50000000;
/*
* Queue of callout entries.
*/
static struct sq_queue_s callout_queue;
/* latency baseline (last compare value applied) */
static uint64_t latency_baseline;
/* timer count at interrupt (for latency purposes) */
static uint64_t latency_actual;
/* latency histogram */
const uint16_t latency_bucket_count = LATENCY_BUCKET_COUNT;
const uint16_t latency_buckets[LATENCY_BUCKET_COUNT] = { 1, 2, 5, 10, 20, 50, 100, 1000 };
__EXPORT uint32_t latency_counters[LATENCY_BUCKET_COUNT + 1];
static px4_sem_t _hrt_lock;
static struct work_s _hrt_work;
static int32_t dsp_offset = 0;
static void hrt_latency_update();
static void hrt_call_reschedule();
static void hrt_call_invoke();
hrt_abstime hrt_absolute_time_offset()
{
return 0;
}
static void hrt_lock()
{
px4_sem_wait(&_hrt_lock);
}
static void hrt_unlock()
{
px4_sem_post(&_hrt_lock);
}
#include "dspal_time.h"
int px4_clock_settime(clockid_t clk_id, struct timespec *tp)
{
/* do nothing right now */
return 0;
}
int px4_clock_gettime(clockid_t clk_id, struct timespec *tp)
{
return clock_gettime(clk_id, tp);
}
/*
* Get absolute time.
*/
hrt_abstime hrt_absolute_time()
{
struct timespec ts;
px4_clock_gettime(CLOCK_MONOTONIC, &ts);
return ts_to_abstime(&ts) + dsp_offset;
}
int hrt_set_absolute_time_offset(int32_t time_diff_us)
{
dsp_offset = time_diff_us;
return 0;
}
/*
* Convert a timespec to absolute time.
*/
hrt_abstime ts_to_abstime(const struct timespec *ts)
{
hrt_abstime result;
result = (hrt_abstime)(ts->tv_sec) * 1000000;
result += ts->tv_nsec / 1000;
return result;
}
/*
* Compute the delta between a timestamp taken in the past
* and now.
*
* This function is safe to use even if the timestamp is updated
* by an interrupt during execution.
*/
hrt_abstime hrt_elapsed_time_atomic(const volatile hrt_abstime *then)
{
// This is not atomic as the value on the application layer of POSIX is limited.
hrt_abstime delta = hrt_absolute_time() - *then;
return delta;
}
/*
* Store the absolute time in an interrupt-safe fashion.
*
* This function ensures that the timestamp cannot be seen half-written by an interrupt handler.
*/
void hrt_store_absolute_time(volatile hrt_abstime *t)
{
*t = hrt_absolute_time();
}
/*
* If this returns true, the entry has been invoked and removed from the callout list,
* or it has never been entered.
*
* Always returns false for repeating callouts.
*/
bool hrt_called(struct hrt_call *entry)
{
return (entry->deadline == 0);
}
/*
* Remove the entry from the callout list.
*/
void hrt_cancel(struct hrt_call *entry)
{
hrt_lock();
sq_rem(&entry->link, &callout_queue);
entry->deadline = 0;
/* if this is a periodic call being removed by the callout, prevent it from
* being re-entered when the callout returns.
*/
entry->period = 0;
hrt_unlock();
// endif
}
static void hrt_latency_update()
{
uint16_t latency = latency_actual - latency_baseline;
unsigned index;
/* bounded buckets */
for (index = 0; index < LATENCY_BUCKET_COUNT; index++) {
if (latency <= latency_buckets[index]) {
latency_counters[index]++;
return;
}
}
/* catch-all at the end */
latency_counters[index]++;
}
/*
* initialise a hrt_call structure
*/
void hrt_call_init(struct hrt_call *entry)
{
memset(entry, 0, sizeof(*entry));
}
/*
* delay a hrt_call_every() periodic call by the given number of
* microseconds. This should be called from within the callout to
* cause the callout to be re-scheduled for a later time. The periodic
* callouts will then continue from that new base time at the
* previously specified period.
*/
void hrt_call_delay(struct hrt_call *entry, hrt_abstime delay)
{
entry->deadline = hrt_absolute_time() + delay;
}
/*
* Initialise the HRT.
*/
void hrt_init()
{
sq_init(&callout_queue);
int sem_ret = px4_sem_init(&_hrt_lock, 0, 1);
if (sem_ret) {
PX4_ERR("SEM INIT FAIL: %s", strerror(errno));
}
memset(&_hrt_work, 0, sizeof(_hrt_work));
}
static void
hrt_call_enter(struct hrt_call *entry)
{
struct hrt_call *call, *next;
call = (struct hrt_call *)sq_peek(&callout_queue);
if ((call == nullptr) || (entry->deadline < call->deadline)) {
sq_addfirst(&entry->link, &callout_queue);
//if (call != nullptr) PX4_INFO("call enter at head, reschedule (%lu %lu)", entry->deadline, call->deadline);
/* we changed the next deadline, reschedule the timer event */
hrt_call_reschedule();
} else {
do {
next = (struct hrt_call *)sq_next(&call->link);
if ((next == nullptr) || (entry->deadline < next->deadline)) {
//lldbg("call enter after head\n");
sq_addafter(&call->link, &entry->link, &callout_queue);
break;
}
} while ((call = next) != nullptr);
}
}
/**
* Timer interrupt handler
*
* This routine simulates a timer interrupt handler
*/
static void
hrt_tim_isr(void *p)
{
/* grab the timer for latency tracking purposes */
latency_actual = hrt_absolute_time();
/* do latency calculations */
hrt_latency_update();
/* run any callouts that have met their deadline */
hrt_call_invoke();
hrt_lock();
/* and schedule the next interrupt */
hrt_call_reschedule();
hrt_unlock();
}
/**
* Reschedule the next timer interrupt.
*
* This routine must be called with interrupts disabled.
*/
static void
hrt_call_reschedule()
{
hrt_abstime now = hrt_absolute_time();
hrt_abstime delay = HRT_INTERVAL_MAX;
struct hrt_call *next = (struct hrt_call *)sq_peek(&callout_queue);
hrt_abstime deadline = now + HRT_INTERVAL_MAX;
/*
* Determine what the next deadline will be.
*
* Note that we ensure that this will be within the counter
* period, so that when we truncate all but the low 16 bits
* the next time the compare matches it will be the deadline
* we want.
*
* It is important for accurate timekeeping that the compare
* interrupt fires sufficiently often that the base_time update in
* hrt_absolute_time runs at least once per timer period.
*/
if (next != nullptr) {
//lldbg("entry in queue\n");
if (next->deadline <= (now + HRT_INTERVAL_MIN)) {
//lldbg("pre-expired\n");
/* set a minimal deadline so that we call ASAP */
delay = HRT_INTERVAL_MIN;
} else if (next->deadline < deadline) {
//lldbg("due soon\n");
delay = next->deadline - now;
}
}
/* set the new compare value and remember it for latency tracking */
latency_baseline = now + delay;
// There is no timer ISR, so simulate one by putting an event on the
// high priority work queue
// Remove the existing expiry and update with the new expiry
hrt_work_cancel(&_hrt_work);
hrt_work_queue(&_hrt_work, (worker_t)&hrt_tim_isr, nullptr, delay);
}
static void
hrt_call_internal(struct hrt_call *entry, hrt_abstime deadline, hrt_abstime interval, hrt_callout callout, void *arg)
{
PX4_DEBUG("hrt_call_internal deadline=%lu interval = %lu", deadline, interval);
hrt_lock();
//PX4_INFO("hrt_call_internal after lock");
/* if the entry is currently queued, remove it */
/* note that we are using a potentially uninitialised
entry->link here, but it is safe as sq_rem() doesn't
dereference the passed node unless it is found in the
list. So we potentially waste a bit of time searching the
queue for the uninitialised entry->link but we don't do
anything actually unsafe.
*/
if (entry->deadline != 0) {
sq_rem(&entry->link, &callout_queue);
}
entry->deadline = deadline;
entry->period = interval;
entry->callout = callout;
entry->arg = arg;
hrt_call_enter(entry);
hrt_unlock();
}
/*
* Call callout(arg) after delay has elapsed.
*
* If callout is nullptr, this can be used to implement a timeout by testing the call
* with hrt_called().
*/
void hrt_call_after(struct hrt_call *entry, hrt_abstime delay, hrt_callout callout, void *arg)
{
//printf("hrt_call_after\n");
hrt_call_internal(entry,
hrt_absolute_time() + delay,
0,
callout,
arg);
}
/*
* Call callout(arg) after delay, and then after every interval.
*
* Note thet the interval is timed between scheduled, not actual, call times, so the call rate may
* jitter but should not drift.
*/
void hrt_call_every(struct hrt_call *entry, hrt_abstime delay, hrt_abstime interval, hrt_callout callout, void *arg)
{
hrt_call_internal(entry,
hrt_absolute_time() + delay,
interval,
callout,
arg);
}
/*
* Call callout(arg) at absolute time calltime.
*/
void hrt_call_at(struct hrt_call *entry, hrt_abstime calltime, hrt_callout callout, void *arg)
{
hrt_call_internal(entry, calltime, 0, callout, arg);
}
static void
hrt_call_invoke()
{
struct hrt_call *call;
hrt_abstime deadline;
hrt_lock();
while (true) {
/* get the current time */
hrt_abstime now = hrt_absolute_time();
call = (struct hrt_call *)sq_peek(&callout_queue);
if (call == nullptr) {
break;
}
if (call->deadline > now) {
break;
}
sq_rem(&call->link, &callout_queue);
//PX4_INFO("call pop");
/* save the intended deadline for periodic calls */
deadline = call->deadline;
/* zero the deadline, as the call has occurred */
call->deadline = 0;
/* invoke the callout (if there is one) */
if (call->callout) {
// Unlock so we don't deadlock in callback
hrt_unlock();
//PX4_INFO("call %p: %p(%p)", call, call->callout, call->arg);
call->callout(call->arg);
hrt_lock();
}
/* if the callout has a non-zero period, it has to be re-entered */
if (call->period != 0) {
// re-check call->deadline to allow for
// callouts to re-schedule themselves
// using hrt_call_delay()
if (call->deadline <= now) {
call->deadline = deadline + call->period;
//PX4_INFO("call deadline set to %lu now=%lu", call->deadline, now);
}
hrt_call_enter(call);
}
}
hrt_unlock();
}
void abstime_to_ts(struct timespec *ts, hrt_abstime abstime)
{
ts->tv_sec = abstime / 1000000;
abstime -= ts->tv_sec * 1000000;
ts->tv_nsec = abstime * 1000;
}