drv_hrt.cpp 11.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/****************************************************************************
 *
 *   Copyright (c) 2012 - 2018 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file drv_hrt.cpp
 *
 * High-resolution timer with callouts and timekeeping.
 */

#include <px4_platform_common/time.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/defines.h>
#include <px4_platform_common/workqueue.h>
#include <px4_platform_common/tasks.h>
#include <drivers/drv_hrt.h>

#include <semaphore.h>
#include <time.h>
#include <string.h>
#include <errno.h>
#include "hrt_work.h"

// Intervals in usec
static constexpr unsigned HRT_INTERVAL_MIN = 50;
static constexpr unsigned HRT_INTERVAL_MAX = 50000000;

/*
 * Queue of callout entries.
 */
static struct sq_queue_s	callout_queue;

/* latency baseline (last compare value applied) */
static uint64_t			latency_baseline;

/* timer count at interrupt (for latency purposes) */
static uint64_t			latency_actual;

/* latency histogram */
const uint16_t latency_bucket_count = LATENCY_BUCKET_COUNT;
const uint16_t latency_buckets[LATENCY_BUCKET_COUNT] = { 1, 2, 5, 10, 20, 50, 100, 1000 };
__EXPORT uint32_t latency_counters[LATENCY_BUCKET_COUNT + 1];

static px4_sem_t 	_hrt_lock;
static struct work_s	_hrt_work;

static int32_t dsp_offset = 0;

static void hrt_latency_update();

static void hrt_call_reschedule();
static void hrt_call_invoke();

hrt_abstime hrt_absolute_time_offset()
{
	return 0;
}

static void hrt_lock()
{
	px4_sem_wait(&_hrt_lock);
}

static void hrt_unlock()
{
	px4_sem_post(&_hrt_lock);
}

#include "dspal_time.h"

int px4_clock_settime(clockid_t clk_id, struct timespec *tp)
{
	/* do nothing right now */
	return 0;
}

int px4_clock_gettime(clockid_t clk_id, struct timespec *tp)
{
	return clock_gettime(clk_id, tp);
}

/*
 * Get absolute time.
 */
hrt_abstime hrt_absolute_time()
{
	struct timespec ts;
	px4_clock_gettime(CLOCK_MONOTONIC, &ts);
	return ts_to_abstime(&ts) + dsp_offset;
}

int hrt_set_absolute_time_offset(int32_t time_diff_us)
{
	dsp_offset = time_diff_us;
	return 0;
}

/*
 * Convert a timespec to absolute time.
 */
hrt_abstime ts_to_abstime(const struct timespec *ts)
{
	hrt_abstime	result;

	result = (hrt_abstime)(ts->tv_sec) * 1000000;
	result += ts->tv_nsec / 1000;

	return result;
}

/*
 * Compute the delta between a timestamp taken in the past
 * and now.
 *
 * This function is safe to use even if the timestamp is updated
 * by an interrupt during execution.
 */
hrt_abstime hrt_elapsed_time_atomic(const volatile hrt_abstime *then)
{
	// This is not atomic as the value on the application layer of POSIX is limited.
	hrt_abstime delta = hrt_absolute_time() - *then;
	return delta;
}

/*
 * Store the absolute time in an interrupt-safe fashion.
 *
 * This function ensures that the timestamp cannot be seen half-written by an interrupt handler.
 */
void hrt_store_absolute_time(volatile hrt_abstime *t)
{
	*t = hrt_absolute_time();
}

/*
 * If this returns true, the entry has been invoked and removed from the callout list,
 * or it has never been entered.
 *
 * Always returns false for repeating callouts.
 */
bool	hrt_called(struct hrt_call *entry)
{
	return (entry->deadline == 0);
}

/*
 * Remove the entry from the callout list.
 */
void	hrt_cancel(struct hrt_call *entry)
{
	hrt_lock();
	sq_rem(&entry->link, &callout_queue);
	entry->deadline = 0;

	/* if this is a periodic call being removed by the callout, prevent it from
	 * being re-entered when the callout returns.
	 */
	entry->period = 0;
	hrt_unlock();
	// endif
}

static void hrt_latency_update()
{
	uint16_t latency = latency_actual - latency_baseline;
	unsigned	index;

	/* bounded buckets */
	for (index = 0; index < LATENCY_BUCKET_COUNT; index++) {
		if (latency <= latency_buckets[index]) {
			latency_counters[index]++;
			return;
		}
	}

	/* catch-all at the end */
	latency_counters[index]++;
}

/*
 * initialise a hrt_call structure
 */
void	hrt_call_init(struct hrt_call *entry)
{
	memset(entry, 0, sizeof(*entry));
}

/*
 * delay a hrt_call_every() periodic call by the given number of
 * microseconds. This should be called from within the callout to
 * cause the callout to be re-scheduled for a later time. The periodic
 * callouts will then continue from that new base time at the
 * previously specified period.
 */
void	hrt_call_delay(struct hrt_call *entry, hrt_abstime delay)
{
	entry->deadline = hrt_absolute_time() + delay;
}

/*
 * Initialise the HRT.
 */
void	hrt_init()
{
	sq_init(&callout_queue);

	int sem_ret = px4_sem_init(&_hrt_lock, 0, 1);

	if (sem_ret) {
		PX4_ERR("SEM INIT FAIL: %s", strerror(errno));
	}

	memset(&_hrt_work, 0, sizeof(_hrt_work));
}

static void
hrt_call_enter(struct hrt_call *entry)
{
	struct hrt_call	*call, *next;

	call = (struct hrt_call *)sq_peek(&callout_queue);

	if ((call == nullptr) || (entry->deadline < call->deadline)) {
		sq_addfirst(&entry->link, &callout_queue);
		//if (call != nullptr) PX4_INFO("call enter at head, reschedule (%lu %lu)", entry->deadline, call->deadline);
		/* we changed the next deadline, reschedule the timer event */
		hrt_call_reschedule();

	} else {
		do {
			next = (struct hrt_call *)sq_next(&call->link);

			if ((next == nullptr) || (entry->deadline < next->deadline)) {
				//lldbg("call enter after head\n");
				sq_addafter(&call->link, &entry->link, &callout_queue);
				break;
			}
		} while ((call = next) != nullptr);
	}
}

/**
 * Timer interrupt handler
 *
 * This routine simulates a timer interrupt handler
 */
static void
hrt_tim_isr(void *p)
{
	/* grab the timer for latency tracking purposes */
	latency_actual = hrt_absolute_time();

	/* do latency calculations */
	hrt_latency_update();

	/* run any callouts that have met their deadline */
	hrt_call_invoke();

	hrt_lock();

	/* and schedule the next interrupt */
	hrt_call_reschedule();

	hrt_unlock();
}

/**
 * Reschedule the next timer interrupt.
 *
 * This routine must be called with interrupts disabled.
 */
static void
hrt_call_reschedule()
{
	hrt_abstime	now = hrt_absolute_time();
	hrt_abstime	delay = HRT_INTERVAL_MAX;
	struct hrt_call	*next = (struct hrt_call *)sq_peek(&callout_queue);
	hrt_abstime	deadline = now + HRT_INTERVAL_MAX;

	/*
	 * Determine what the next deadline will be.
	 *
	 * Note that we ensure that this will be within the counter
	 * period, so that when we truncate all but the low 16 bits
	 * the next time the compare matches it will be the deadline
	 * we want.
	 *
	 * It is important for accurate timekeeping that the compare
	 * interrupt fires sufficiently often that the base_time update in
	 * hrt_absolute_time runs at least once per timer period.
	 */
	if (next != nullptr) {
		//lldbg("entry in queue\n");
		if (next->deadline <= (now + HRT_INTERVAL_MIN)) {
			//lldbg("pre-expired\n");
			/* set a minimal deadline so that we call ASAP */
			delay = HRT_INTERVAL_MIN;

		} else if (next->deadline < deadline) {
			//lldbg("due soon\n");
			delay = next->deadline - now;
		}
	}

	/* set the new compare value and remember it for latency tracking */
	latency_baseline = now + delay;

	// There is no timer ISR, so simulate one by putting an event on the
	// high priority work queue

	// Remove the existing expiry and update with the new expiry
	hrt_work_cancel(&_hrt_work);

	hrt_work_queue(&_hrt_work, (worker_t)&hrt_tim_isr, nullptr, delay);
}

static void
hrt_call_internal(struct hrt_call *entry, hrt_abstime deadline, hrt_abstime interval, hrt_callout callout, void *arg)
{
	PX4_DEBUG("hrt_call_internal deadline=%lu interval = %lu", deadline, interval);
	hrt_lock();

	//PX4_INFO("hrt_call_internal after lock");
	/* if the entry is currently queued, remove it */
	/* note that we are using a potentially uninitialised
	   entry->link here, but it is safe as sq_rem() doesn't
	   dereference the passed node unless it is found in the
	   list. So we potentially waste a bit of time searching the
	   queue for the uninitialised entry->link but we don't do
	   anything actually unsafe.
	*/
	if (entry->deadline != 0) {
		sq_rem(&entry->link, &callout_queue);
	}

	entry->deadline = deadline;
	entry->period = interval;
	entry->callout = callout;
	entry->arg = arg;

	hrt_call_enter(entry);
	hrt_unlock();
}

/*
 * Call callout(arg) after delay has elapsed.
 *
 * If callout is nullptr, this can be used to implement a timeout by testing the call
 * with hrt_called().
 */
void	hrt_call_after(struct hrt_call *entry, hrt_abstime delay, hrt_callout callout, void *arg)
{
	//printf("hrt_call_after\n");
	hrt_call_internal(entry,
			  hrt_absolute_time() + delay,
			  0,
			  callout,
			  arg);
}

/*
 * Call callout(arg) after delay, and then after every interval.
 *
 * Note thet the interval is timed between scheduled, not actual, call times, so the call rate may
 * jitter but should not drift.
 */
void	hrt_call_every(struct hrt_call *entry, hrt_abstime delay, hrt_abstime interval, hrt_callout callout, void *arg)
{
	hrt_call_internal(entry,
			  hrt_absolute_time() + delay,
			  interval,
			  callout,
			  arg);
}

/*
 * Call callout(arg) at absolute time calltime.
 */
void	hrt_call_at(struct hrt_call *entry, hrt_abstime calltime, hrt_callout callout, void *arg)
{
	hrt_call_internal(entry, calltime, 0, callout, arg);
}

static void
hrt_call_invoke()
{
	struct hrt_call	*call;
	hrt_abstime deadline;

	hrt_lock();

	while (true) {
		/* get the current time */
		hrt_abstime now = hrt_absolute_time();

		call = (struct hrt_call *)sq_peek(&callout_queue);

		if (call == nullptr) {
			break;
		}

		if (call->deadline > now) {
			break;
		}

		sq_rem(&call->link, &callout_queue);
		//PX4_INFO("call pop");

		/* save the intended deadline for periodic calls */
		deadline = call->deadline;

		/* zero the deadline, as the call has occurred */
		call->deadline = 0;

		/* invoke the callout (if there is one) */
		if (call->callout) {
			// Unlock so we don't deadlock in callback
			hrt_unlock();

			//PX4_INFO("call %p: %p(%p)", call, call->callout, call->arg);
			call->callout(call->arg);

			hrt_lock();
		}

		/* if the callout has a non-zero period, it has to be re-entered */
		if (call->period != 0) {
			// re-check call->deadline to allow for
			// callouts to re-schedule themselves
			// using hrt_call_delay()
			if (call->deadline <= now) {
				call->deadline = deadline + call->period;
				//PX4_INFO("call deadline set to %lu now=%lu", call->deadline,  now);
			}

			hrt_call_enter(call);
		}
	}

	hrt_unlock();
}

void abstime_to_ts(struct timespec *ts, hrt_abstime abstime)
{
	ts->tv_sec = abstime / 1000000;
	abstime -= ts->tv_sec * 1000000;
	ts->tv_nsec = abstime * 1000;
}