Nuttx.py
20.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
# GDB/Python functions for dealing with NuttX
from __future__ import print_function
import gdb, gdb.types
parse_int = lambda x: int(str(x), 0)
class NX_register_set(object):
"""Copy of the registers for a given context"""
v7_regmap = {
'R13': 0,
'SP': 0,
'PRIORITY': 1,
'R4': 2,
'R5': 3,
'R6': 4,
'R7': 5,
'R8': 6,
'R9': 7,
'R10': 8,
'R11': 9,
'EXC_RETURN': 10,
'R0': 11,
'R1': 12,
'R2': 13,
'R3': 14,
'R12': 15,
'R14': 16,
'LR': 16,
'R15': 17,
'PC': 17,
'XPSR': 18,
}
v7em_regmap = {
'R13': 0,
'SP': 0,
'PRIORITY': 1,
'R4': 2,
'R5': 3,
'R6': 4,
'R7': 5,
'R8': 6,
'R9': 7,
'R10': 8,
'R11': 9,
'EXC_RETURN': 10,
'R0': 27,
'R1': 28,
'R2': 29,
'R3': 30,
'R12': 31,
'R14': 32,
'LR': 32,
'R15': 33,
'PC': 33,
'XPSR': 34,
}
regs = dict()
def __init__(self, xcpt_regs):
if xcpt_regs is None:
self.regs['R0'] = self.mon_reg_call('r0')
self.regs['R1'] = self.mon_reg_call('r1')
self.regs['R2'] = self.mon_reg_call('r2')
self.regs['R3'] = self.mon_reg_call('r3')
self.regs['R4'] = self.mon_reg_call('r4')
self.regs['R5'] = self.mon_reg_call('r5')
self.regs['R6'] = self.mon_reg_call('r6')
self.regs['R7'] = self.mon_reg_call('r7')
self.regs['R8'] = self.mon_reg_call('r8')
self.regs['R9'] = self.mon_reg_call('r9')
self.regs['R10'] = self.mon_reg_call('r10')
self.regs['R11'] = self.mon_reg_call('r11')
self.regs['R12'] = self.mon_reg_call('r12')
self.regs['R13'] = self.mon_reg_call('r13')
self.regs['SP'] = self.mon_reg_call('sp')
self.regs['R14'] = self.mon_reg_call('r14')
self.regs['LR'] = self.mon_reg_call('lr')
self.regs['R15'] = self.mon_reg_call('r15')
self.regs['PC'] = self.mon_reg_call('pc')
#self.regs['XPSR'] = self.mon_reg_call('xPSR')
else:
for key in self.v7em_regmap.keys():
self.regs[key] = int(xcpt_regs[self.v7em_regmap[key]])
def mon_reg_call(self,register):
"""
register is the register as a string e.g. 'pc'
return integer containing the value of the register
"""
str_to_eval = "info registers "+register
resp = gdb.execute(str_to_eval,to_string = True)
content = resp.split()[-1]
try:
return int(content)
except:
return 0
@classmethod
def with_xcpt_regs(cls, xcpt_regs):
return cls(xcpt_regs)
@classmethod
def for_current(cls):
return cls(None)
def __format__(self, format_spec):
return format_spec.format(
registers = self.registers
)
@property
def registers(self):
return self.regs
class NX_task(object):
"""Reference to a NuttX task and methods for introspecting it"""
def __init__(self, tcb_ptr):
self._tcb = tcb_ptr.dereference()
self._group = self._tcb['group'].dereference()
self.pid = tcb_ptr['pid']
@classmethod
def for_tcb(cls, tcb):
"""return a task with the given TCB pointer"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
pidhash_entry = pidhash_value[i]
if pidhash_entry['tcb'] == tcb:
return cls(pidhash_entry['tcb'])
return None
@classmethod
def for_pid(cls, pid):
"""return a task for the given PID"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
pidhash_entry = pidhash_value[i]
if pidhash_entry['pid'] == pid:
return cls(pidhash_entry['tcb'])
return None
@staticmethod
def pids():
"""return a list of all PIDs"""
pidhash_sym = gdb.lookup_global_symbol('g_pidhash')
pidhash_value = pidhash_sym.value()
pidhash_type = pidhash_sym.type
result = []
for i in range(pidhash_type.range()[0],pidhash_type.range()[1]):
entry = pidhash_value[i]
pid = parse_int(entry['pid'])
if pid is not -1:
result.append(pid)
return result
@staticmethod
def tasks():
"""return a list of all tasks"""
tasks = []
for pid in NX_task.pids():
tasks.append(NX_task.for_pid(pid))
return tasks
def _state_is(self, state):
"""tests the current state of the task against the passed-in state name"""
statenames = gdb.types.make_enum_dict(gdb.lookup_type('enum tstate_e'))
if self._tcb['task_state'] == statenames[state]:
return True
return False
@property
def stack_used(self):
"""calculate the stack used by the thread"""
if 'stack_used' not in self.__dict__:
stack_base = self._tcb['stack_alloc_ptr'].cast(gdb.lookup_type('unsigned char').pointer())
if stack_base == 0:
self.__dict__['stack_used'] = 0
else:
stack_limit = self._tcb['adj_stack_size']
for offset in range(0, parse_int(stack_limit)):
if stack_base[offset] != 0xff:
break
self.__dict__['stack_used'] = stack_limit - offset
return self.__dict__['stack_used']
@property
def name(self):
"""return the task's name"""
return self._tcb['name'].string()
@property
def state(self):
"""return the name of the task's current state"""
statenames = gdb.types.make_enum_dict(gdb.lookup_type('enum tstate_e'))
for name,value in statenames.items():
if value == self._tcb['task_state']:
return name
return 'UNKNOWN'
@property
def waiting_for(self):
"""return a description of what the task is waiting for, if it is waiting"""
if self._state_is('TSTATE_WAIT_SEM'):
try:
waitsem = self._tcb['waitsem'].dereference()
waitsem_holder = waitsem['holder']
holder = NX_task.for_tcb(waitsem_holder['htcb'])
if holder is not None:
return '{}({})'.format(waitsem.address, holder.name)
else:
return '{}(<bad holder>)'.format(waitsem.address)
except:
return 'EXCEPTION'
if self._state_is('TSTATE_WAIT_SIG'):
return 'signal'
return ""
@property
def is_waiting(self):
"""tests whether the task is waiting for something"""
if self._state_is('TSTATE_WAIT_SEM') or self._state_is('TSTATE_WAIT_SIG'):
return True
@property
def is_runnable(self):
"""tests whether the task is runnable"""
if (self._state_is('TSTATE_TASK_PENDING') or
self._state_is('TSTATE_TASK_READYTORUN') or
self._state_is('TSTATE_TASK_RUNNING')):
return True
return False
@property
def file_descriptors(self):
"""return a dictionary of file descriptors and inode pointers"""
filelist = self._group['tg_filelist']
filearray = filelist['fl_files']
result = dict()
for i in range(filearray.type.range()[0],filearray.type.range()[1]):
inode = parse_int(filearray[i]['f_inode'])
if inode != 0:
result[i] = inode
return result
@property
def registers(self):
if 'registers' not in self.__dict__:
registers = dict()
if self._state_is('TSTATE_TASK_RUNNING'):
registers = NX_register_set.for_current().registers
else:
context = self._tcb['xcp']
regs = context['regs']
registers = NX_register_set.with_xcpt_regs(regs).registers
self.__dict__['registers'] = registers
return self.__dict__['registers']
def __repr__(self):
return "<NX_task {}>".format(self.pid)
def __str__(self):
return "{}:{}".format(self.pid, self.name)
def showoff(self):
print("-------")
print(self.pid,end = ", ")
print(self.name,end = ", ")
print(self.state,end = ", ")
print(self.waiting_for,end = ", ")
print(self.stack_used,end = ", ")
print(self._tcb['adj_stack_size'],end = ", ")
print(self.file_descriptors)
print(self.registers)
def __format__(self, format_spec):
return format_spec.format(
pid = self.pid,
name = self.name,
state = self.state,
waiting_for = self.waiting_for,
stack_used = self.stack_used,
stack_limit = self._tcb['adj_stack_size'],
file_descriptors = self.file_descriptors,
registers = self.registers
)
class NX_show_task (gdb.Command):
"""(NuttX) prints information about a task"""
def __init__(self):
super(NX_show_task, self).__init__("show task", gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
t = NX_task.for_pid(parse_int(arg))
if t is not None:
my_fmt = 'PID:{pid} name:{name} state:{state}\n'
my_fmt += ' stack used {stack_used} of {stack_limit}\n'
if t.is_waiting:
my_fmt += ' waiting for {waiting_for}\n'
my_fmt += ' open files: {file_descriptors}\n'
my_fmt += ' R0 {registers[R0]:#010x} {registers[R1]:#010x} {registers[R2]:#010x} {registers[R3]:#010x}\n'
my_fmt += ' R4 {registers[R4]:#010x} {registers[R5]:#010x} {registers[R6]:#010x} {registers[R7]:#010x}\n'
my_fmt += ' R8 {registers[R8]:#010x} {registers[R9]:#010x} {registers[R10]:#010x} {registers[R11]:#010x}\n'
my_fmt += ' R12 {registers[PC]:#010x}\n'
my_fmt += ' SP {registers[SP]:#010x} LR {registers[LR]:#010x} PC {registers[PC]:#010x} XPSR {registers[XPSR]:#010x}\n'
print(format(t, my_fmt))
class NX_show_tasks (gdb.Command):
"""(NuttX) prints a list of tasks"""
def __init__(self):
super(NX_show_tasks, self).__init__('show tasks', gdb.COMMAND_USER)
def invoke(self, args, from_tty):
tasks = NX_task.tasks()
print ('Number of tasks: ' + str(len(tasks)))
for t in tasks:
#t.showoff()
print(format(t, 'Task: {pid} {name} {state} {stack_used}/{stack_limit}'))
NX_show_task()
NX_show_tasks()
class NX_show_heap (gdb.Command):
"""(NuttX) prints the heap"""
def __init__(self):
super(NX_show_heap, self).__init__('show heap', gdb.COMMAND_USER)
struct_mm_allocnode_s = gdb.lookup_type('struct mm_allocnode_s')
preceding_size = struct_mm_allocnode_s['preceding'].type.sizeof
if preceding_size == 2:
self._allocflag = 0x8000
elif preceding_size == 4:
self._allocflag = 0x80000000
else:
raise gdb.GdbError('invalid mm_allocnode_s.preceding size %u' % preceding_size)
self._allocnodesize = struct_mm_allocnode_s.sizeof
def _node_allocated(self, allocnode):
if allocnode['preceding'] & self._allocflag:
return True
return False
def _node_size(self, allocnode):
return allocnode['size'] & ~self._allocflag
def _print_allocations(self, region_start, region_end):
if region_start >= region_end:
raise gdb.GdbError('heap region {} corrupt'.format(hex(region_start)))
nodecount = region_end - region_start
print ('heap {} - {}'.format(region_start, region_end))
cursor = 1
while cursor < nodecount:
allocnode = region_start[cursor]
if self._node_allocated(allocnode):
state = ''
else:
state = '(free)'
print( ' {} {} {}'.format(allocnode.address + self._allocnodesize,
self._node_size(allocnode), state))
cursor += self._node_size(allocnode) / self._allocnodesize
def invoke(self, args, from_tty):
heap = gdb.lookup_global_symbol('g_mmheap').value()
nregions = heap['mm_nregions']
region_starts = heap['mm_heapstart']
region_ends = heap['mm_heapend']
print( '{} heap(s)'.format(nregions))
# walk the heaps
for i in range(0, nregions):
self._print_allocations(region_starts[i], region_ends[i])
NX_show_heap()
class NX_show_interrupted_thread (gdb.Command):
"""(NuttX) prints the register state of an interrupted thread when in interrupt/exception context"""
def __init__(self):
super(NX_show_interrupted_thread, self).__init__('show interrupted-thread', gdb.COMMAND_USER)
def invoke(self, args, from_tty):
regs = gdb.lookup_global_symbol('current_regs').value()
if regs == 0:
raise gdb.GdbError('not in interrupt context')
else:
registers = NX_register_set.with_xcpt_regs(regs)
my_fmt = ''
my_fmt += ' R0 {registers[R0]:#010x} {registers[R1]:#010x} {registers[R2]:#010x} {registers[R3]:#010x}\n'
my_fmt += ' R4 {registers[R4]:#010x} {registers[R5]:#010x} {registers[R6]:#010x} {registers[R7]:#010x}\n'
my_fmt += ' R8 {registers[R8]:#010x} {registers[R9]:#010x} {registers[R10]:#010x} {registers[R11]:#010x}\n'
my_fmt += ' R12 {registers[PC]:#010x}\n'
my_fmt += ' SP {registers[SP]:#010x} LR {registers[LR]:#010x} PC {registers[PC]:#010x} XPSR {registers[XPSR]:#010x}\n'
print (format(registers, my_fmt))
NX_show_interrupted_thread()
class NX_check_tcb(gdb.Command):
""" check the tcb of a task from a address """
def __init__(self):
super(NX_check_tcb,self).__init__('show tcb', gdb.COMMAND_USER)
def invoke(self,args,sth):
tasks = NX_task.tasks()
print("tcb int: ",int(args))
print(tasks[int(args)]._tcb)
a = tasks[int(args)]._tcb['xcp']['regs']
print("relevant registers:")
regmap = NX_register_set.v7em_regmap
for reg in regmap:
hex_addr= hex(int(a[regmap[reg]]))
eval_string = 'info line *'+str(hex_addr)
print(reg,": ",hex_addr,)
NX_check_tcb()
class NX_tcb(object):
def __init__(self):
pass
def is_in(self,arg,list):
for i in list:
if arg == i:
return True
return False
def find_tcb_list(self,dq_entry_t):
tcb_list = []
tcb_ptr = dq_entry_t.cast(gdb.lookup_type('struct tcb_s').pointer())
first_tcb = tcb_ptr.dereference()
tcb_list.append(first_tcb)
next_tcb = first_tcb['flink'].dereference()
while not self.is_in(parse_int(next_tcb['pid']),[parse_int(t['pid']) for t in tcb_list]):
tcb_list.append(next_tcb)
old_tcb = next_tcb
next_tcb = old_tcb['flink'].dereference()
return [t for t in tcb_list if parse_int(t['pid'])<2000]
def getTCB(self):
list_of_listsnames = ['g_pendingtasks','g_readytorun','g_waitingforsemaphore','g_waitingforsignal','g_inactivetasks']
tcb_list = []
for l in list_of_listsnames:
li = gdb.lookup_global_symbol(l)
print(li)
cursor = li.value()['head']
tcb_list = tcb_list + self.find_tcb_list(cursor)
class NX_check_stack_order(gdb.Command):
""" Check the Stack order corresponding to the tasks """
def __init__(self):
super(NX_check_stack_order,self).__init__('show check_stack', gdb.COMMAND_USER)
def is_in(self,arg,list):
for i in list:
if arg == i:
return True
return False
def find_tcb_list(self,dq_entry_t):
tcb_list = []
tcb_ptr = dq_entry_t.cast(gdb.lookup_type('struct tcb_s').pointer())
first_tcb = tcb_ptr.dereference()
tcb_list.append(first_tcb)
next_tcb = first_tcb['flink'].dereference()
while not self.is_in(parse_int(next_tcb['pid']),[parse_int(t['pid']) for t in tcb_list]):
tcb_list.append(next_tcb)
old_tcb = next_tcb
next_tcb = old_tcb['flink'].dereference()
return [t for t in tcb_list if parse_int(t['pid'])<2000]
def getTCB(self):
list_of_listsnames = ['g_pendingtasks','g_readytorun','g_waitingforsemaphore','g_waitingforsignal','g_inactivetasks']
tcb_list = []
for l in list_of_listsnames:
li = gdb.lookup_global_symbol(l)
cursor = li.value()['head']
tcb_list = tcb_list + self.find_tcb_list(cursor)
return tcb_list
def getSPfromTask(self,tcb):
regmap = NX_register_set.v7em_regmap
a =tcb['xcp']['regs']
return parse_int(a[regmap['SP']])
def find_closest(self,list,val):
tmp_list = [abs(i-val) for i in list]
tmp_min = min(tmp_list)
idx = tmp_list.index(tmp_min)
return idx,list[idx]
def find_next_stack(self,address,_dict_in):
add_list = []
name_list = []
for key in _dict_in.keys():
for i in range(3):
if _dict_in[key][i] < address:
add_list.append(_dict_in[key][i])
if i == 2: # the last one is the processes stack pointer
name_list.append(self.check_name(key)+"_SP")
else:
name_list.append(self.check_name(key))
idx,new_address = self.find_closest(add_list,address)
return new_address,name_list[idx]
def check_name(self,name):
if isinstance(name,(list)):
name = name[0]
idx = name.find("\\")
newname = name[:idx]
return newname
def invoke(self,args,sth):
tcb = self.getTCB()
stackadresses={}
for t in tcb:
p = []
#print(t.name,t._tcb['stack_alloc_ptr'])
p.append(parse_int(t['stack_alloc_ptr']))
p.append(parse_int(t['adj_stack_ptr']))
p.append(self.getSPfromTask(t))
stackadresses[str(t['name'])] = p
address = int("0x30000000",0)
print("stack address : process")
for i in range(len(stackadresses)*3):
address,name = self.find_next_stack(address,stackadresses)
print(hex(address),": ",name)
NX_check_stack_order()
class NX_run_debug_util(gdb.Command):
""" show the registers of a task corresponding to a tcb address"""
def __init__(self):
super(NX_run_debug_util,self).__init__('show regs', gdb.COMMAND_USER)
def printRegisters(self,task):
regmap = NX_register_set.v7em_regmap
a =task._tcb['xcp']['regs']
print("relevant registers in ",task.name,":")
for reg in regmap:
hex_addr= hex(int(a[regmap[reg]]))
eval_string = 'info line *'+str(hex_addr)
print(reg,": ",hex_addr,)
def getPCfromTask(self,task):
regmap = NX_register_set.v7em_regmap
a =task._tcb['xcp']['regs']
return hex(int(a[regmap['PC']]))
def invoke(self,args,sth):
tasks = NX_task.tasks()
if args == '':
for t in tasks:
self.printRegisters(t)
eval_str = "list *"+str(self.getPCfromTask(t))
print("this is the location in code where the current threads $pc is:")
gdb.execute(eval_str)
else:
tcb_nr = int(args)
print("tcb_nr = ",tcb_nr)
t = tasks[tcb_nr]
self.printRegisters(t)
eval_str = "list *"+str(self.getPCfromTask(t))
print("this is the location in code where the current threads $pc is:")
gdb.execute(eval_str)
NX_run_debug_util()
class NX_search_tcb(gdb.Command):
""" shot PID's of all running tasks """
def __init__(self):
super(NX_search_tcb,self).__init__('show alltcb', gdb.COMMAND_USER)
def is_in(self,arg,list):
for i in list:
if arg == i:
return True
return False
def find_tcb_list(self,dq_entry_t):
tcb_list = []
tcb_ptr = dq_entry_t.cast(gdb.lookup_type('struct tcb_s').pointer())
first_tcb = tcb_ptr.dereference()
tcb_list.append(first_tcb)
next_tcb = first_tcb['flink'].dereference()
while not self.is_in(parse_int(next_tcb['pid']),[parse_int(t['pid']) for t in tcb_list]):
tcb_list.append(next_tcb)
old_tcb = next_tcb
next_tcb = old_tcb['flink'].dereference()
return [t for t in tcb_list if parse_int(t['pid'])<2000]
def invoke(self,args,sth):
list_of_listsnames = ['g_pendingtasks','g_readytorun','g_waitingforsemaphore','g_waitingforsignal','g_inactivetasks']
tasks = []
for l in list_of_listsnames:
li = gdb.lookup_global_symbol(l)
cursor = li.value()['head']
tasks = tasks + self.find_tcb_list(cursor)
# filter for tasks that are listed twice
tasks_filt = {}
for t in tasks:
pid = parse_int(t['pid'])
if not pid in tasks_filt.keys():
tasks_filt[pid] = t['name']
print('{num_t} Tasks found:'.format(num_t = len(tasks_filt)))
for pid in tasks_filt.keys():
print("PID: ",pid," ",tasks_filt[pid])
NX_search_tcb()
class NX_my_bt(gdb.Command):
""" 'fake' backtrace: backtrace the stack of a process and check every suspicious address for the list
arg: tcb_address$
(can easily be found by typing 'showtask').
"""
def __init__(self):
super(NX_my_bt,self).__init__('show mybt', gdb.COMMAND_USER)
def readmem(self,addr):
'''
read memory at addr and return nr
'''
str_to_eval = "x/x "+hex(addr)
resp = gdb.execute(str_to_eval,to_string = True)
idx = resp.find('\t')
return int(resp[idx:],16)
def is_in_bounds(self,val):
lower_bound = int("08004000",16)
upper_bound = int("080ae0c0",16)
#print(lower_bound," ",val," ",upper_bound)
if val>lower_bound and val<upper_bound:
return True
else:
return False
def get_tcb_from_address(self,addr):
addr_value = gdb.Value(addr)
tcb_ptr = addr_value.cast(gdb.lookup_type('struct tcb_s').pointer())
return tcb_ptr.dereference()
def resolve_file_line_func(self,addr,stack_percentage):
gdb.write(str(round(stack_percentage,2))+":")
str_to_eval = "info line *"+hex(addr)
#gdb.execute(str_to_eval)
res = gdb.execute(str_to_eval,to_string = True)
# get information from results string:
words = res.split()
if words[0] != 'No':
line = int(words[1])
block = gdb.block_for_pc(addr)
func = block.function
if str(func) == "None":
func = block.superblock.function
return words[3].strip('"'), line, func
def invoke(self,args,sth):
try:
addr_dec = parse_int(args) # Trying to interpret the input as TCB address
except ValueError:
for task in NX_task.tasks(): # Interpreting as a task name
if task.name == args:
_tcb = task._tcb
break
else:
_tcb = self.get_tcb_from_address(addr_dec)
print("found task with PID: ",_tcb["pid"])
up_stack = parse_int(_tcb['adj_stack_ptr'])
curr_sp = parse_int(_tcb['xcp']['regs'][0]) #curr stack pointer
other_sp = parse_int(_tcb['xcp']['regs'][8]) # other stack pointer
stacksize = parse_int(_tcb['adj_stack_size']) # other stack pointer
print("tasks current SP = ",hex(curr_sp),"stack max ptr is at ",hex(up_stack))
item = 0
for sp in range(other_sp if curr_sp == up_stack else curr_sp, up_stack, 4):
mem = self.readmem(sp)
#print(hex(sp)," : ",hex(mem))
if self.is_in_bounds(mem):
# this is a potential instruction ptr
stack_percentage = (up_stack-sp)/stacksize
filename,line,func = self.resolve_file_line_func(mem, stack_percentage)
print('#%-2d ' % item, '0x%08x in ' % mem, func, ' at ', filename, ':', line, sep='')
item += 1
NX_my_bt()