TemperatureCompensation.cpp
16.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/****************************************************************************
*
* Copyright (c) 2016-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file temperature_compensation.cpp
*
* Sensors temperature compensation methods
*
* @author Paul Riseborough <gncsolns@gmail.com>
*/
#include "TemperatureCompensation.h"
#include <parameters/param.h>
#include <px4_platform_common/defines.h>
#include <px4_platform_common/log.h>
namespace temperature_compensation
{
int TemperatureCompensation::initialize_parameter_handles(ParameterHandles ¶meter_handles)
{
char nbuf[16] {};
int ret = PX4_ERROR;
/* rate gyro calibration parameters */
parameter_handles.gyro_tc_enable = param_find("TC_G_ENABLE");
int32_t gyro_tc_enabled = 0;
ret = param_get(parameter_handles.gyro_tc_enable, &gyro_tc_enabled);
if (ret == PX4_OK && gyro_tc_enabled) {
for (unsigned j = 0; j < GYRO_COUNT_MAX; j++) {
sprintf(nbuf, "TC_G%d_ID", j);
parameter_handles.gyro_cal_handles[j].ID = param_find(nbuf);
for (unsigned i = 0; i < 3; i++) {
sprintf(nbuf, "TC_G%d_X3_%d", j, i);
parameter_handles.gyro_cal_handles[j].x3[i] = param_find(nbuf);
sprintf(nbuf, "TC_G%d_X2_%d", j, i);
parameter_handles.gyro_cal_handles[j].x2[i] = param_find(nbuf);
sprintf(nbuf, "TC_G%d_X1_%d", j, i);
parameter_handles.gyro_cal_handles[j].x1[i] = param_find(nbuf);
sprintf(nbuf, "TC_G%d_X0_%d", j, i);
parameter_handles.gyro_cal_handles[j].x0[i] = param_find(nbuf);
}
sprintf(nbuf, "TC_G%d_TREF", j);
parameter_handles.gyro_cal_handles[j].ref_temp = param_find(nbuf);
sprintf(nbuf, "TC_G%d_TMIN", j);
parameter_handles.gyro_cal_handles[j].min_temp = param_find(nbuf);
sprintf(nbuf, "TC_G%d_TMAX", j);
parameter_handles.gyro_cal_handles[j].max_temp = param_find(nbuf);
}
}
/* accelerometer calibration parameters */
parameter_handles.accel_tc_enable = param_find("TC_A_ENABLE");
int32_t accel_tc_enabled = 0;
ret = param_get(parameter_handles.accel_tc_enable, &accel_tc_enabled);
if (ret == PX4_OK && accel_tc_enabled) {
for (unsigned j = 0; j < ACCEL_COUNT_MAX; j++) {
sprintf(nbuf, "TC_A%d_ID", j);
parameter_handles.accel_cal_handles[j].ID = param_find(nbuf);
for (unsigned i = 0; i < 3; i++) {
sprintf(nbuf, "TC_A%d_X3_%d", j, i);
parameter_handles.accel_cal_handles[j].x3[i] = param_find(nbuf);
sprintf(nbuf, "TC_A%d_X2_%d", j, i);
parameter_handles.accel_cal_handles[j].x2[i] = param_find(nbuf);
sprintf(nbuf, "TC_A%d_X1_%d", j, i);
parameter_handles.accel_cal_handles[j].x1[i] = param_find(nbuf);
sprintf(nbuf, "TC_A%d_X0_%d", j, i);
parameter_handles.accel_cal_handles[j].x0[i] = param_find(nbuf);
}
sprintf(nbuf, "TC_A%d_TREF", j);
parameter_handles.accel_cal_handles[j].ref_temp = param_find(nbuf);
sprintf(nbuf, "TC_A%d_TMIN", j);
parameter_handles.accel_cal_handles[j].min_temp = param_find(nbuf);
sprintf(nbuf, "TC_A%d_TMAX", j);
parameter_handles.accel_cal_handles[j].max_temp = param_find(nbuf);
}
}
/* barometer calibration parameters */
parameter_handles.baro_tc_enable = param_find("TC_B_ENABLE");
int32_t baro_tc_enabled = 0;
ret = param_get(parameter_handles.baro_tc_enable, &baro_tc_enabled);
if (ret == PX4_OK && baro_tc_enabled) {
for (unsigned j = 0; j < BARO_COUNT_MAX; j++) {
sprintf(nbuf, "TC_B%d_ID", j);
parameter_handles.baro_cal_handles[j].ID = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X5", j);
parameter_handles.baro_cal_handles[j].x5 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X4", j);
parameter_handles.baro_cal_handles[j].x4 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X3", j);
parameter_handles.baro_cal_handles[j].x3 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X2", j);
parameter_handles.baro_cal_handles[j].x2 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X1", j);
parameter_handles.baro_cal_handles[j].x1 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_X0", j);
parameter_handles.baro_cal_handles[j].x0 = param_find(nbuf);
sprintf(nbuf, "TC_B%d_TREF", j);
parameter_handles.baro_cal_handles[j].ref_temp = param_find(nbuf);
sprintf(nbuf, "TC_B%d_TMIN", j);
parameter_handles.baro_cal_handles[j].min_temp = param_find(nbuf);
sprintf(nbuf, "TC_B%d_TMAX", j);
parameter_handles.baro_cal_handles[j].max_temp = param_find(nbuf);
}
}
return PX4_OK;
}
int TemperatureCompensation::parameters_update()
{
ParameterHandles parameter_handles;
int ret = initialize_parameter_handles(parameter_handles);
if (ret != 0) {
return ret;
}
/* rate gyro calibration parameters */
param_get(parameter_handles.gyro_tc_enable, &_parameters.gyro_tc_enable);
if (_parameters.gyro_tc_enable == 1) {
for (unsigned j = 0; j < GYRO_COUNT_MAX; j++) {
if (param_get(parameter_handles.gyro_cal_handles[j].ID, &(_parameters.gyro_cal_data[j].ID)) == PX4_OK) {
param_get(parameter_handles.gyro_cal_handles[j].ref_temp, &(_parameters.gyro_cal_data[j].ref_temp));
param_get(parameter_handles.gyro_cal_handles[j].min_temp, &(_parameters.gyro_cal_data[j].min_temp));
param_get(parameter_handles.gyro_cal_handles[j].max_temp, &(_parameters.gyro_cal_data[j].max_temp));
for (unsigned int i = 0; i < 3; i++) {
param_get(parameter_handles.gyro_cal_handles[j].x3[i], &(_parameters.gyro_cal_data[j].x3[i]));
param_get(parameter_handles.gyro_cal_handles[j].x2[i], &(_parameters.gyro_cal_data[j].x2[i]));
param_get(parameter_handles.gyro_cal_handles[j].x1[i], &(_parameters.gyro_cal_data[j].x1[i]));
param_get(parameter_handles.gyro_cal_handles[j].x0[i], &(_parameters.gyro_cal_data[j].x0[i]));
}
} else {
// Set all cal values to zero
memset(&_parameters.gyro_cal_data[j], 0, sizeof(_parameters.gyro_cal_data[j]));
PX4_WARN("FAIL GYRO %d CAL PARAM LOAD - USING DEFAULTS", j);
ret = PX4_ERROR;
}
}
}
/* accelerometer calibration parameters */
param_get(parameter_handles.accel_tc_enable, &_parameters.accel_tc_enable);
if (_parameters.accel_tc_enable == 1) {
for (unsigned j = 0; j < ACCEL_COUNT_MAX; j++) {
if (param_get(parameter_handles.accel_cal_handles[j].ID, &(_parameters.accel_cal_data[j].ID)) == PX4_OK) {
param_get(parameter_handles.accel_cal_handles[j].ref_temp, &(_parameters.accel_cal_data[j].ref_temp));
param_get(parameter_handles.accel_cal_handles[j].min_temp, &(_parameters.accel_cal_data[j].min_temp));
param_get(parameter_handles.accel_cal_handles[j].max_temp, &(_parameters.accel_cal_data[j].max_temp));
for (unsigned int i = 0; i < 3; i++) {
param_get(parameter_handles.accel_cal_handles[j].x3[i], &(_parameters.accel_cal_data[j].x3[i]));
param_get(parameter_handles.accel_cal_handles[j].x2[i], &(_parameters.accel_cal_data[j].x2[i]));
param_get(parameter_handles.accel_cal_handles[j].x1[i], &(_parameters.accel_cal_data[j].x1[i]));
param_get(parameter_handles.accel_cal_handles[j].x0[i], &(_parameters.accel_cal_data[j].x0[i]));
}
} else {
// Set all cal values to zero
memset(&_parameters.accel_cal_data[j], 0, sizeof(_parameters.accel_cal_data[j]));
PX4_WARN("FAIL ACCEL %d CAL PARAM LOAD - USING DEFAULTS", j);
ret = PX4_ERROR;
}
}
}
/* barometer calibration parameters */
param_get(parameter_handles.baro_tc_enable, &_parameters.baro_tc_enable);
if (_parameters.baro_tc_enable == 1) {
for (unsigned j = 0; j < BARO_COUNT_MAX; j++) {
if (param_get(parameter_handles.baro_cal_handles[j].ID, &(_parameters.baro_cal_data[j].ID)) == PX4_OK) {
param_get(parameter_handles.baro_cal_handles[j].ref_temp, &(_parameters.baro_cal_data[j].ref_temp));
param_get(parameter_handles.baro_cal_handles[j].min_temp, &(_parameters.baro_cal_data[j].min_temp));
param_get(parameter_handles.baro_cal_handles[j].max_temp, &(_parameters.baro_cal_data[j].max_temp));
param_get(parameter_handles.baro_cal_handles[j].x5, &(_parameters.baro_cal_data[j].x5));
param_get(parameter_handles.baro_cal_handles[j].x4, &(_parameters.baro_cal_data[j].x4));
param_get(parameter_handles.baro_cal_handles[j].x3, &(_parameters.baro_cal_data[j].x3));
param_get(parameter_handles.baro_cal_handles[j].x2, &(_parameters.baro_cal_data[j].x2));
param_get(parameter_handles.baro_cal_handles[j].x1, &(_parameters.baro_cal_data[j].x1));
param_get(parameter_handles.baro_cal_handles[j].x0, &(_parameters.baro_cal_data[j].x0));
} else {
// Set all cal values to zero
memset(&_parameters.baro_cal_data[j], 0, sizeof(_parameters.baro_cal_data[j]));
PX4_WARN("FAIL BARO %d CAL PARAM LOAD - USING DEFAULTS", j);
ret = PX4_ERROR;
}
}
}
/* the offsets might have changed, so make sure to report that change later when applying the
* next corrections
*/
_gyro_data.reset_temperature();
_accel_data.reset_temperature();
_baro_data.reset_temperature();
return ret;
}
bool TemperatureCompensation::calc_thermal_offsets_1D(SensorCalData1D &coef, float measured_temp, float &offset)
{
bool ret = true;
// clip the measured temperature to remain within the calibration range
float delta_temp;
if (measured_temp > coef.max_temp) {
delta_temp = coef.max_temp - coef.ref_temp;
ret = false;
} else if (measured_temp < coef.min_temp) {
delta_temp = coef.min_temp - coef.ref_temp;
ret = false;
} else {
delta_temp = measured_temp - coef.ref_temp;
}
// calulate the offset
float temp_var = delta_temp;
offset = coef.x0 + coef.x1 * temp_var;
temp_var *= delta_temp;
offset += coef.x2 * temp_var;
temp_var *= delta_temp;
offset += coef.x3 * temp_var;
temp_var *= delta_temp;
offset += coef.x4 * temp_var;
temp_var *= delta_temp;
offset += coef.x5 * temp_var;
return ret;
}
bool TemperatureCompensation::calc_thermal_offsets_3D(const SensorCalData3D &coef, float measured_temp, float offset[])
{
bool ret = true;
// clip the measured temperature to remain within the calibration range
float delta_temp;
if (measured_temp > coef.max_temp) {
delta_temp = coef.max_temp - coef.ref_temp;
ret = false;
} else if (measured_temp < coef.min_temp) {
delta_temp = coef.min_temp - coef.ref_temp;
ret = false;
} else {
delta_temp = measured_temp - coef.ref_temp;
}
// calulate the offsets
float delta_temp_2 = delta_temp * delta_temp;
float delta_temp_3 = delta_temp_2 * delta_temp;
for (uint8_t i = 0; i < 3; i++) {
offset[i] = coef.x0[i] + coef.x1[i] * delta_temp + coef.x2[i] * delta_temp_2 + coef.x3[i] * delta_temp_3;
}
return ret;
}
int TemperatureCompensation::set_sensor_id_gyro(uint32_t device_id, int topic_instance)
{
if (_parameters.gyro_tc_enable != 1) {
return 0;
}
return set_sensor_id(device_id, topic_instance, _gyro_data, _parameters.gyro_cal_data, GYRO_COUNT_MAX);
}
int TemperatureCompensation::set_sensor_id_accel(uint32_t device_id, int topic_instance)
{
if (_parameters.accel_tc_enable != 1) {
return 0;
}
return set_sensor_id(device_id, topic_instance, _accel_data, _parameters.accel_cal_data, ACCEL_COUNT_MAX);
}
int TemperatureCompensation::set_sensor_id_baro(uint32_t device_id, int topic_instance)
{
if (_parameters.baro_tc_enable != 1) {
return 0;
}
return set_sensor_id(device_id, topic_instance, _baro_data, _parameters.baro_cal_data, BARO_COUNT_MAX);
}
template<typename T>
int TemperatureCompensation::set_sensor_id(uint32_t device_id, int topic_instance, PerSensorData &sensor_data,
const T *sensor_cal_data, uint8_t sensor_count_max)
{
for (int i = 0; i < sensor_count_max; ++i) {
if (device_id == (uint32_t)sensor_cal_data[i].ID) {
sensor_data.device_mapping[topic_instance] = i;
return i;
}
}
return -1;
}
int TemperatureCompensation::update_offsets_gyro(int topic_instance, float temperature, float *offsets)
{
// Check if temperature compensation is enabled
if (_parameters.gyro_tc_enable != 1) {
return 0;
}
// Map device ID to uORB topic instance
uint8_t mapping = _gyro_data.device_mapping[topic_instance];
if (mapping == 255) {
return -1;
}
// Calculate and update the offsets
calc_thermal_offsets_3D(_parameters.gyro_cal_data[mapping], temperature, offsets);
// Check if temperature delta is large enough to warrant a new publication
if (fabsf(temperature - _gyro_data.last_temperature[topic_instance]) > 1.0f) {
_gyro_data.last_temperature[topic_instance] = temperature;
return 2;
}
return 1;
}
int TemperatureCompensation::update_offsets_accel(int topic_instance, float temperature, float *offsets)
{
// Check if temperature compensation is enabled
if (_parameters.accel_tc_enable != 1) {
return 0;
}
// Map device ID to uORB topic instance
uint8_t mapping = _accel_data.device_mapping[topic_instance];
if (mapping == 255) {
return -1;
}
// Calculate and update the offsets
calc_thermal_offsets_3D(_parameters.accel_cal_data[mapping], temperature, offsets);
// Check if temperature delta is large enough to warrant a new publication
if (fabsf(temperature - _accel_data.last_temperature[topic_instance]) > 1.0f) {
_accel_data.last_temperature[topic_instance] = temperature;
return 2;
}
return 1;
}
int TemperatureCompensation::update_offsets_baro(int topic_instance, float temperature, float *offsets)
{
// Check if temperature compensation is enabled
if (_parameters.baro_tc_enable != 1) {
return 0;
}
// Map device ID to uORB topic instance
uint8_t mapping = _baro_data.device_mapping[topic_instance];
if (mapping == 255) {
return -1;
}
// Calculate and update the offsets
calc_thermal_offsets_1D(_parameters.baro_cal_data[mapping], temperature, *offsets);
// Check if temperature delta is large enough to warrant a new publication
if (fabsf(temperature - _baro_data.last_temperature[topic_instance]) > 1.0f) {
_baro_data.last_temperature[topic_instance] = temperature;
return 2;
}
return 1;
}
void TemperatureCompensation::print_status()
{
PX4_INFO("Temperature Compensation:");
PX4_INFO(" gyro: enabled: %i", _parameters.gyro_tc_enable);
if (_parameters.gyro_tc_enable == 1) {
for (int i = 0; i < GYRO_COUNT_MAX; ++i) {
uint8_t mapping = _gyro_data.device_mapping[i];
if (_gyro_data.device_mapping[i] != 255) {
PX4_INFO(" using device ID %i for topic instance %i", _parameters.gyro_cal_data[mapping].ID, i);
}
}
}
PX4_INFO(" accel: enabled: %i", _parameters.accel_tc_enable);
if (_parameters.accel_tc_enable == 1) {
for (int i = 0; i < ACCEL_COUNT_MAX; ++i) {
uint8_t mapping = _accel_data.device_mapping[i];
if (_accel_data.device_mapping[i] != 255) {
PX4_INFO(" using device ID %i for topic instance %i", _parameters.accel_cal_data[mapping].ID, i);
}
}
}
PX4_INFO(" baro: enabled: %i", _parameters.baro_tc_enable);
if (_parameters.baro_tc_enable == 1) {
for (int i = 0; i < BARO_COUNT_MAX; ++i) {
uint8_t mapping = _baro_data.device_mapping[i];
if (_baro_data.device_mapping[i] != 255) {
PX4_INFO(" using device ID %i for topic instance %i", _parameters.baro_cal_data[mapping].ID, i);
}
}
}
}
} // namespace temperature_compensation