VehicleIMU.cpp
19.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/****************************************************************************
*
* Copyright (c) 2020-2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "VehicleIMU.hpp"
#include <px4_platform_common/log.h>
#include <lib/systemlib/mavlink_log.h>
#include <float.h>
using namespace matrix;
using math::constrain;
namespace sensors
{
VehicleIMU::VehicleIMU(int instance, uint8_t accel_index, uint8_t gyro_index, const px4::wq_config_t &config) :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, config),
_sensor_accel_sub(ORB_ID(sensor_accel), accel_index),
_sensor_gyro_sub(this, ORB_ID(sensor_gyro), gyro_index),
_instance(instance)
{
_imu_integration_interval_us = 1e6f / _param_imu_integ_rate.get();
_accel_integrator.set_reset_interval(_imu_integration_interval_us);
_accel_integrator.set_reset_samples(sensor_accel_s::ORB_QUEUE_LENGTH);
_gyro_integrator.set_reset_interval(_imu_integration_interval_us);
_gyro_integrator.set_reset_samples(sensor_gyro_s::ORB_QUEUE_LENGTH);
#if defined(ENABLE_LOCKSTEP_SCHEDULER)
// currently with lockstep every raw sample needs a corresponding vehicle_imu publication
_sensor_gyro_sub.set_required_updates(1);
#else
// schedule conservatively until the actual accel & gyro rates are known
_sensor_gyro_sub.set_required_updates(sensor_gyro_s::ORB_QUEUE_LENGTH / 2);
#endif
// advertise immediately to ensure consistent ordering
_vehicle_imu_pub.advertise();
_vehicle_imu_status_pub.advertise();
}
VehicleIMU::~VehicleIMU()
{
Stop();
perf_free(_accel_generation_gap_perf);
perf_free(_gyro_generation_gap_perf);
_vehicle_imu_pub.unadvertise();
_vehicle_imu_status_pub.unadvertise();
}
bool VehicleIMU::Start()
{
// force initial updates
ParametersUpdate(true);
_sensor_gyro_sub.registerCallback();
ScheduleNow();
return true;
}
void VehicleIMU::Stop()
{
// clear all registered callbacks
_sensor_gyro_sub.unregisterCallback();
Deinit();
}
void VehicleIMU::ParametersUpdate(bool force)
{
// Check if parameters have changed
if (_parameter_update_sub.updated() || force) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
const auto imu_integ_rate_prev = _param_imu_integ_rate.get();
updateParams();
_accel_calibration.ParametersUpdate();
_gyro_calibration.ParametersUpdate();
// constrain IMU integration time 1-10 milliseconds (100-1000 Hz)
int32_t imu_integration_rate_hz = constrain(_param_imu_integ_rate.get(),
100, math::max(_param_imu_gyro_ratemax.get(), 1000));
if (imu_integration_rate_hz != _param_imu_integ_rate.get()) {
PX4_WARN("IMU_INTEG_RATE updated %d -> %d", _param_imu_integ_rate.get(), imu_integration_rate_hz);
_param_imu_integ_rate.set(imu_integration_rate_hz);
_param_imu_integ_rate.commit_no_notification();
}
_imu_integration_interval_us = 1e6f / imu_integration_rate_hz;
if (_param_imu_integ_rate.get() != imu_integ_rate_prev) {
// force update
_update_integrator_config = true;
}
}
}
void VehicleIMU::Run()
{
const hrt_abstime now_us = hrt_absolute_time();
// backup schedule
ScheduleDelayed(_backup_schedule_timeout_us);
ParametersUpdate();
if (!_accel_calibration.enabled() || !_gyro_calibration.enabled()) {
return;
}
// reset data gap monitor
_data_gap = false;
while (_sensor_gyro_sub.updated() || _sensor_accel_sub.updated()) {
bool updated = false;
bool consume_all_gyro = !_intervals_configured || _data_gap;
// monitor scheduling latency and force catch up with latest gyro if falling behind
if (_sensor_gyro_sub.updated() && _gyro_update_latency_mean.valid()
&& (_gyro_update_latency_mean.mean()(1) > (1.5f * _gyro_interval_us * 1e-6f))) {
PX4_DEBUG("gyro update mean sample latency: %.6f, publish latency %.6f us",
(double)_gyro_update_latency_mean.mean()(0),
(double)_gyro_update_latency_mean.mean()(1));
consume_all_gyro = true;
}
// update gyro until integrator ready and not falling behind
if (!_gyro_integrator.integral_ready() || consume_all_gyro) {
if (UpdateGyro()) {
updated = true;
}
}
bool consume_all_accel = !_intervals_configured || _data_gap
|| (_accel_timestamp_sample_last < (_gyro_timestamp_sample_last - 0.5f * _accel_interval_us));
// update accel until integrator ready and caught up to gyro
if (!_accel_integrator.integral_ready() || consume_all_accel) {
if (UpdateAccel()) {
updated = true;
}
}
// reconfigure integrators if calculated sensor intervals have changed
if (_update_integrator_config || !_intervals_configured) {
UpdateIntegratorConfiguration();
}
// check for additional updates and that we're fully caught up before publishing
if ((consume_all_gyro && _sensor_gyro_sub.updated()) || (consume_all_accel && _sensor_accel_sub.updated())) {
continue;
}
if (_intervals_configured) {
if (Publish()) {
// record gyro publication latency and integrated samples
if (_gyro_update_latency_mean.count() > 10000) {
// reset periodically to avoid numerical issues
_gyro_update_latency_mean.reset();
}
const float time_run_s = now_us * 1e-6f;
const float time_gyro_timestamp_last_s = _gyro_timestamp_last * 1e-6f;
const float time_gyro_timestamp_sample_last_s = _gyro_timestamp_sample_last * 1e-6f;
_gyro_update_latency_mean.update(Vector2f{time_run_s - time_gyro_timestamp_sample_last_s, time_run_s - time_gyro_timestamp_last_s});
return;
}
}
// finish if there are no more updates, but didn't publish
if (!updated) {
return;
}
}
}
bool VehicleIMU::UpdateAccel()
{
bool updated = false;
// integrate queued accel
sensor_accel_s accel;
if (_sensor_accel_sub.update(&accel)) {
if (_sensor_accel_sub.get_last_generation() != _accel_last_generation + 1) {
_data_gap = true;
perf_count(_accel_generation_gap_perf);
// reset average sample measurement
_accel_interval_mean.reset();
} else {
// collect sample interval average for filters
if (_accel_timestamp_sample_last != 0) {
float interval_us = accel.timestamp_sample - _accel_timestamp_sample_last;
_accel_interval_mean.update(Vector2f{interval_us, interval_us / accel.samples});
}
if (_accel_interval_mean.valid()
&& ((_accel_interval_mean.variance()(0) < _accel_interval_best_variance) || (_accel_interval_mean.count() > 1000))) {
// update sample rate if previously invalid or changed
const float interval_delta_us = fabsf(_accel_interval_mean.mean()(0) - _accel_interval_us);
const float percent_changed = interval_delta_us / _accel_interval_us;
if (!PX4_ISFINITE(_accel_interval_us) || (percent_changed > 0.001f)) {
// update integrator configuration if interval has changed by more than 10%
if (interval_delta_us > 0.1f * _accel_interval_us) {
_update_integrator_config = true;
}
_accel_interval_us = _accel_interval_mean.mean()(0);
_accel_interval_best_variance = _accel_interval_mean.variance()(0);
_status.accel_rate_hz = 1e6f / _accel_interval_mean.mean()(0);
_status.accel_raw_rate_hz = 1e6f / _accel_interval_mean.mean()(1); // FIFO
_publish_status = true;
}
if (_accel_interval_mean.count() > 10000) {
// reset periodically to prevent numerical issues
_accel_interval_mean.reset();
}
}
}
_accel_last_generation = _sensor_accel_sub.get_last_generation();
_accel_calibration.set_device_id(accel.device_id);
if (accel.error_count != _status.accel_error_count) {
_publish_status = true;
_status.accel_error_count = accel.error_count;
}
const Vector3f accel_raw{accel.x, accel.y, accel.z};
_accel_sum += accel_raw;
_accel_temperature += accel.temperature;
_accel_sum_count++;
const float dt = (accel.timestamp_sample - _accel_timestamp_sample_last) * 1e-6f;
_accel_timestamp_sample_last = accel.timestamp_sample;
_accel_integrator.put(accel_raw, dt);
updated = true;
if (accel.clip_counter[0] > 0 || accel.clip_counter[1] > 0 || accel.clip_counter[2] > 0) {
// rotate sensor clip counts into vehicle body frame
const Vector3f clipping{_accel_calibration.rotation() *
Vector3f{(float)accel.clip_counter[0], (float)accel.clip_counter[1], (float)accel.clip_counter[2]}};
// round to get reasonble clip counts per axis (after board rotation)
const uint8_t clip_x = roundf(fabsf(clipping(0)));
const uint8_t clip_y = roundf(fabsf(clipping(1)));
const uint8_t clip_z = roundf(fabsf(clipping(2)));
_status.accel_clipping[0] += clip_x;
_status.accel_clipping[1] += clip_y;
_status.accel_clipping[2] += clip_z;
if (clip_x > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_X;
}
if (clip_y > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Y;
}
if (clip_z > 0) {
_delta_velocity_clipping |= vehicle_imu_s::CLIPPING_Z;
}
_publish_status = true;
if (_accel_calibration.enabled() && (hrt_elapsed_time(&_last_clipping_notify_time) > 3_s)) {
// start notifying the user periodically if there's significant continuous clipping
const uint64_t clipping_total = _status.accel_clipping[0] + _status.accel_clipping[1] + _status.accel_clipping[2];
if (clipping_total > _last_clipping_notify_total_count + 1000) {
mavlink_log_critical(&_mavlink_log_pub, "Accel %d clipping, not safe to fly!", _instance);
_last_clipping_notify_time = accel.timestamp_sample;
_last_clipping_notify_total_count = clipping_total;
}
}
}
}
return updated;
}
bool VehicleIMU::UpdateGyro()
{
bool updated = false;
// integrate queued gyro
sensor_gyro_s gyro;
while (_sensor_gyro_sub.update(&gyro)) {
if (_sensor_gyro_sub.get_last_generation() != _gyro_last_generation + 1) {
_data_gap = true;
perf_count(_gyro_generation_gap_perf);
// reset average sample measurement
_gyro_interval_mean.reset();
} else {
// collect sample interval average for filters
if (_gyro_timestamp_sample_last != 0) {
float interval_us = gyro.timestamp_sample - _gyro_timestamp_sample_last;
_gyro_interval_mean.update(Vector2f{interval_us, interval_us / gyro.samples});
}
if (_gyro_interval_mean.valid()
&& ((_gyro_interval_mean.variance()(0) < _gyro_interval_best_variance) || (_gyro_interval_mean.count() > 1000))) {
// update sample rate if previously invalid or changed
const float interval_delta_us = fabsf(_gyro_interval_mean.mean()(0) - _gyro_interval_us);
const float percent_changed = interval_delta_us / _gyro_interval_us;
if (!PX4_ISFINITE(_gyro_interval_us) || (percent_changed > 0.001f)) {
// update integrator configuration if interval has changed by more than 10%
if (interval_delta_us > 0.1f * _gyro_interval_us) {
_update_integrator_config = true;
}
_gyro_interval_us = _gyro_interval_mean.mean()(0);
_gyro_interval_best_variance = _gyro_interval_mean.variance()(0);
_status.gyro_rate_hz = 1e6f / _gyro_interval_mean.mean()(0);
_status.gyro_raw_rate_hz = 1e6f / _gyro_interval_mean.mean()(1); // FIFO
_publish_status = true;
}
if (_gyro_interval_mean.count() > 10000) {
// reset periodically to prevent numerical issues
_gyro_interval_mean.reset();
}
}
}
_gyro_last_generation = _sensor_gyro_sub.get_last_generation();
_gyro_timestamp_last = gyro.timestamp;
_gyro_calibration.set_device_id(gyro.device_id);
if (gyro.error_count != _status.gyro_error_count) {
_publish_status = true;
_status.gyro_error_count = gyro.error_count;
}
const Vector3f gyro_raw{gyro.x, gyro.y, gyro.z};
_gyro_sum += gyro_raw;
_gyro_temperature += gyro.temperature;
_gyro_sum_count++;
const float dt = (gyro.timestamp_sample - _gyro_timestamp_sample_last) * 1e-6f;
_gyro_timestamp_sample_last = gyro.timestamp_sample;
_gyro_integrator.put(gyro_raw, dt);
updated = true;
}
return updated;
}
bool VehicleIMU::Publish()
{
bool updated = false;
// publish if both accel & gyro integrators are ready
if (_accel_integrator.integral_ready() && _gyro_integrator.integral_ready()) {
uint32_t accel_integral_dt;
uint32_t gyro_integral_dt;
Vector3f delta_angle;
Vector3f delta_velocity;
if (_accel_integrator.reset(delta_velocity, accel_integral_dt)
&& _gyro_integrator.reset(delta_angle, gyro_integral_dt)) {
if (_accel_calibration.enabled() && _gyro_calibration.enabled()) {
// delta angle: apply offsets, scale, and board rotation
_gyro_calibration.SensorCorrectionsUpdate();
const float gyro_dt_inv = 1.e6f / gyro_integral_dt;
const Vector3f delta_angle_corrected{_gyro_calibration.Correct(delta_angle * gyro_dt_inv) / gyro_dt_inv};
// delta velocity: apply offsets, scale, and board rotation
_accel_calibration.SensorCorrectionsUpdate();
const float accel_dt_inv = 1.e6f / accel_integral_dt;
Vector3f delta_velocity_corrected{_accel_calibration.Correct(delta_velocity * accel_dt_inv) / accel_dt_inv};
UpdateAccelVibrationMetrics(delta_velocity_corrected);
UpdateGyroVibrationMetrics(delta_angle_corrected);
// vehicle_imu_status
// publish before vehicle_imu so that error counts are available synchronously if needed
if (_publish_status || (hrt_elapsed_time(&_status.timestamp) >= 100_ms)) {
_status.accel_device_id = _accel_calibration.device_id();
_status.gyro_device_id = _gyro_calibration.device_id();
// mean accel
const Vector3f accel_mean{_accel_calibration.Correct(_accel_sum / _accel_sum_count)};
accel_mean.copyTo(_status.mean_accel);
_status.temperature_accel = _accel_temperature / _accel_sum_count;
_accel_sum.zero();
_accel_temperature = 0;
_accel_sum_count = 0;
// mean gyro
const Vector3f gyro_mean{_gyro_calibration.Correct(_gyro_sum / _gyro_sum_count)};
gyro_mean.copyTo(_status.mean_gyro);
_status.temperature_gyro = _gyro_temperature / _gyro_sum_count;
_gyro_sum.zero();
_gyro_temperature = 0;
_gyro_sum_count = 0;
_status.timestamp = hrt_absolute_time();
_vehicle_imu_status_pub.publish(_status);
_publish_status = false;
}
// publish vehicle_imu
vehicle_imu_s imu;
imu.timestamp_sample = _gyro_timestamp_sample_last;
imu.accel_device_id = _accel_calibration.device_id();
imu.gyro_device_id = _gyro_calibration.device_id();
delta_angle_corrected.copyTo(imu.delta_angle);
delta_velocity_corrected.copyTo(imu.delta_velocity);
imu.delta_angle_dt = gyro_integral_dt;
imu.delta_velocity_dt = accel_integral_dt;
imu.delta_velocity_clipping = _delta_velocity_clipping;
imu.calibration_count = _accel_calibration.calibration_count() + _gyro_calibration.calibration_count();
imu.timestamp = hrt_absolute_time();
_vehicle_imu_pub.publish(imu);
updated = true;
}
// reset clip counts
_delta_velocity_clipping = 0;
}
}
return updated;
}
void VehicleIMU::UpdateIntegratorConfiguration()
{
if (PX4_ISFINITE(_accel_interval_us) && PX4_ISFINITE(_gyro_interval_us)) {
// determine number of sensor samples that will get closest to the desired integration interval
uint8_t gyro_integral_samples = math::max(1, (int)roundf(_imu_integration_interval_us / _gyro_interval_us));
// if gyro samples exceeds queue depth, instead round to nearest even integer to improve scheduling options
if (gyro_integral_samples > sensor_gyro_s::ORB_QUEUE_LENGTH) {
gyro_integral_samples = math::max(1, (int)roundf(_imu_integration_interval_us / _gyro_interval_us / 2) * 2);
}
uint32_t integration_interval_us = roundf(gyro_integral_samples * _gyro_interval_us);
// accel follows gyro as closely as possible
uint8_t accel_integral_samples = math::max(1, (int)roundf(integration_interval_us / _accel_interval_us));
// let the gyro set the configuration and scheduling
// relaxed minimum integration time required
_accel_integrator.set_reset_interval(roundf((accel_integral_samples - 0.5f) * _accel_interval_us));
_accel_integrator.set_reset_samples(accel_integral_samples);
_backup_schedule_timeout_us = sensor_accel_s::ORB_QUEUE_LENGTH * _accel_interval_us;
_gyro_integrator.set_reset_interval(roundf((gyro_integral_samples - 0.5f) * _gyro_interval_us));
_gyro_integrator.set_reset_samples(gyro_integral_samples);
// gyro: find largest integer multiple of gyro_integral_samples
for (int n = sensor_gyro_s::ORB_QUEUE_LENGTH; n > 0; n--) {
if (gyro_integral_samples > sensor_gyro_s::ORB_QUEUE_LENGTH) {
gyro_integral_samples /= 2;
}
if (gyro_integral_samples % n == 0) {
_sensor_gyro_sub.set_required_updates(n);
_intervals_configured = true;
_update_integrator_config = false;
PX4_DEBUG("accel (%d), gyro (%d), accel samples: %d, gyro samples: %d, accel interval: %.1f, gyro interval: %.1f sub samples: %d",
_accel_calibration.device_id(), _gyro_calibration.device_id(), accel_integral_samples, gyro_integral_samples,
(double)_accel_interval_us, (double)_gyro_interval_us, n);
break;
}
}
}
}
void VehicleIMU::UpdateAccelVibrationMetrics(const Vector3f &delta_velocity)
{
// Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
const Vector3f delta_velocity_diff = delta_velocity - _delta_velocity_prev;
_status.accel_vibration_metric = 0.99f * _status.accel_vibration_metric + 0.01f * delta_velocity_diff.norm();
_delta_velocity_prev = delta_velocity;
}
void VehicleIMU::UpdateGyroVibrationMetrics(const Vector3f &delta_angle)
{
// Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
const Vector3f delta_angle_diff = delta_angle - _delta_angle_prev;
_status.gyro_vibration_metric = 0.99f * _status.gyro_vibration_metric + 0.01f * delta_angle_diff.norm();
// Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
const Vector3f coning_metric = delta_angle % _delta_angle_prev;
_status.gyro_coning_vibration = 0.99f * _status.gyro_coning_vibration + 0.01f * coning_metric.norm();
_delta_angle_prev = delta_angle;
}
void VehicleIMU::PrintStatus()
{
PX4_INFO("%d - Accel ID: %d, interval: %.1f us (SD %.1f us), Gyro ID: %d, interval: %.1f us (SD %.1f us)", _instance,
_accel_calibration.device_id(), (double)_accel_interval_us, (double)sqrtf(_accel_interval_best_variance),
_gyro_calibration.device_id(), (double)_gyro_interval_us, (double)sqrtf(_gyro_interval_best_variance));
perf_print_counter(_accel_generation_gap_perf);
perf_print_counter(_gyro_generation_gap_perf);
_accel_calibration.PrintStatus();
_gyro_calibration.PrintStatus();
}
} // namespace sensors