follow_target.cpp
12.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/****************************************************************************
*
* Copyright (c) 2013-2016 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file followme.cpp
*
* Helper class to track and follow a given position
*
* @author Jimmy Johnson <catch22@fastmail.net>
*/
#include "follow_target.h"
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <fcntl.h>
#include <systemlib/err.h>
#include <uORB/uORB.h>
#include <uORB/topics/position_setpoint_triplet.h>
#include <uORB/topics/follow_target.h>
#include <lib/ecl/geo/geo.h>
#include <lib/mathlib/math/Limits.hpp>
#include "navigator.h"
using namespace matrix;
constexpr float FollowTarget::_follow_position_matricies[4][9];
FollowTarget::FollowTarget(Navigator *navigator) :
MissionBlock(navigator),
ModuleParams(navigator)
{
_current_vel.zero();
_step_vel.zero();
_est_target_vel.zero();
_target_distance.zero();
_target_position_offset.zero();
_target_position_delta.zero();
}
void FollowTarget::on_inactive()
{
reset_target_validity();
}
void FollowTarget::on_activation()
{
_follow_offset = _param_nav_ft_dst.get() < 1.0F ? 1.0F : _param_nav_ft_dst.get();
_responsiveness = math::constrain((float) _param_nav_ft_rs.get(), .1F, 1.0F);
_follow_target_position = _param_nav_ft_fs.get();
if ((_follow_target_position > FOLLOW_FROM_LEFT) || (_follow_target_position < FOLLOW_FROM_RIGHT)) {
_follow_target_position = FOLLOW_FROM_BEHIND;
}
_rot_matrix = Dcmf(_follow_position_matricies[_follow_target_position]);
}
void FollowTarget::on_active()
{
struct map_projection_reference_s target_ref;
follow_target_s target_motion_with_offset = {};
uint64_t current_time = hrt_absolute_time();
bool radius_entered = false;
bool radius_exited = false;
bool updated = false;
float dt_ms = 0;
if (_follow_target_sub.updated()) {
updated = true;
follow_target_s target_motion;
_target_updates++;
// save last known motion topic for interpolation later
_previous_target_motion = _current_target_motion;
_follow_target_sub.copy(&target_motion);
if (_current_target_motion.timestamp == 0) {
_current_target_motion = target_motion;
}
_current_target_motion = target_motion;
_current_target_motion.lat = (_current_target_motion.lat * (double)_responsiveness) + target_motion.lat * (double)(
1 - _responsiveness);
_current_target_motion.lon = (_current_target_motion.lon * (double)_responsiveness) + target_motion.lon * (double)(
1 - _responsiveness);
} else if (((current_time - _current_target_motion.timestamp) / 1000) > TARGET_TIMEOUT_MS && target_velocity_valid()) {
reset_target_validity();
}
// update distance to target
if (target_position_valid()) {
// get distance to target
map_projection_init(&target_ref, _navigator->get_global_position()->lat, _navigator->get_global_position()->lon);
map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon, &_target_distance(0),
&_target_distance(1));
}
// update target velocity
if (target_velocity_valid() && updated) {
dt_ms = ((_current_target_motion.timestamp - _previous_target_motion.timestamp) / 1000);
// ignore a small dt
if (dt_ms > 10.0F) {
// get last gps known reference for target
map_projection_init(&target_ref, _previous_target_motion.lat, _previous_target_motion.lon);
// calculate distance the target has moved
map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon,
&(_target_position_delta(0)), &(_target_position_delta(1)));
// update the average velocity of the target based on the position
if (PX4_ISFINITE(_current_target_motion.vx) && PX4_ISFINITE(_current_target_motion.vy)) {
// No need to estimate target velocity if we can take it from the target
_est_target_vel(0) = _current_target_motion.vx;
_est_target_vel(1) = _current_target_motion.vy;
_est_target_vel(2) = 0.0f;
} else {
_est_target_vel = _target_position_delta / (dt_ms / 1000.0f);
}
// if the target is moving add an offset and rotation
if (_est_target_vel.length() > .5F) {
_target_position_offset = _rot_matrix * _est_target_vel.normalized() * _follow_offset;
}
// are we within the target acceptance radius?
// give a buffer to exit/enter the radius to give the velocity controller
// a chance to catch up
radius_exited = ((_target_position_offset + _target_distance).length() > (float) TARGET_ACCEPTANCE_RADIUS_M * 1.5f);
radius_entered = ((_target_position_offset + _target_distance).length() < (float) TARGET_ACCEPTANCE_RADIUS_M);
// to keep the velocity increase/decrease smooth
// calculate how many velocity increments/decrements
// it will take to reach the targets velocity
// with the given amount of steps also add a feed forward input that adjusts the
// velocity as the position gap increases since
// just traveling at the exact velocity of the target will not
// get any closer or farther from the target
_step_vel = (_est_target_vel - _current_vel) + (_target_position_offset + _target_distance) * FF_K;
_step_vel /= (dt_ms / 1000.0F * (float) INTERPOLATION_PNTS);
_step_time_in_ms = (dt_ms / (float) INTERPOLATION_PNTS);
// if we are less than 1 meter from the target don't worry about trying to yaw
// lock the yaw until we are at a distance that makes sense
if ((_target_distance).length() > 1.0F) {
// yaw rate smoothing
// this really needs to control the yaw rate directly in the attitude pid controller
// but seems to work ok for now since the yaw rate cannot be controlled directly in auto mode
_yaw_angle = get_bearing_to_next_waypoint(_navigator->get_global_position()->lat,
_navigator->get_global_position()->lon,
_current_target_motion.lat,
_current_target_motion.lon);
_yaw_rate = wrap_pi((_yaw_angle - _navigator->get_local_position()->heading) / (dt_ms / 1000.0f));
} else {
_yaw_angle = _yaw_rate = NAN;
}
}
// warnx(" _step_vel x %3.6f y %3.6f cur vel %3.6f %3.6f tar vel %3.6f %3.6f dist = %3.6f (%3.6f) mode = %d yaw rate = %3.6f",
// (double) _step_vel(0),
// (double) _step_vel(1),
// (double) _current_vel(0),
// (double) _current_vel(1),
// (double) _est_target_vel(0),
// (double) _est_target_vel(1),
// (double) (_target_distance).length(),
// (double) (_target_position_offset + _target_distance).length(),
// _follow_target_state,
// (double) _yaw_rate);
}
if (target_position_valid()) {
// get the target position using the calculated offset
map_projection_init(&target_ref, _current_target_motion.lat, _current_target_motion.lon);
map_projection_reproject(&target_ref, _target_position_offset(0), _target_position_offset(1),
&target_motion_with_offset.lat, &target_motion_with_offset.lon);
}
// clamp yaw rate smoothing if we are with in
// 3 degrees of facing target
if (PX4_ISFINITE(_yaw_rate)) {
if (fabsf(fabsf(_yaw_angle) - fabsf(_navigator->get_local_position()->heading)) < math::radians(3.0F)) {
_yaw_rate = NAN;
}
}
// update state machine
switch (_follow_target_state) {
case TRACK_POSITION: {
if (radius_entered) {
_follow_target_state = TRACK_VELOCITY;
} else if (target_velocity_valid()) {
set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target_motion_with_offset, _yaw_angle);
// keep the current velocity updated with the target velocity for when it's needed
_current_vel = _est_target_vel;
update_position_sp(true, true, _yaw_rate);
} else {
_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
}
break;
}
case TRACK_VELOCITY: {
if (radius_exited) {
_follow_target_state = TRACK_POSITION;
} else if (target_velocity_valid()) {
if ((float)(current_time - _last_update_time) / 1000.0f >= _step_time_in_ms) {
_current_vel += _step_vel;
_last_update_time = current_time;
}
set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target_motion_with_offset, _yaw_angle);
update_position_sp(true, false, _yaw_rate);
} else {
_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
}
break;
}
case SET_WAIT_FOR_TARGET_POSITION: {
// Climb to the minimum altitude
// and wait until a position is received
follow_target_s target = {};
// for now set the target at the minimum height above the uav
target.lat = _navigator->get_global_position()->lat;
target.lon = _navigator->get_global_position()->lon;
target.alt = 0.0F;
set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target, _yaw_angle);
update_position_sp(false, false, _yaw_rate);
_follow_target_state = WAIT_FOR_TARGET_POSITION;
}
/* FALLTHROUGH */
case WAIT_FOR_TARGET_POSITION: {
if (is_mission_item_reached() && target_velocity_valid()) {
_target_position_offset(0) = _follow_offset;
_follow_target_state = TRACK_POSITION;
}
break;
}
}
}
void FollowTarget::update_position_sp(bool use_velocity, bool use_position, float yaw_rate)
{
// convert mission item to current setpoint
struct position_setpoint_triplet_s *pos_sp_triplet = _navigator->get_position_setpoint_triplet();
// activate line following in pos control if position is valid
pos_sp_triplet->previous.valid = use_position;
pos_sp_triplet->previous = pos_sp_triplet->current;
mission_apply_limitation(_mission_item);
mission_item_to_position_setpoint(_mission_item, &pos_sp_triplet->current);
pos_sp_triplet->current.type = position_setpoint_s::SETPOINT_TYPE_FOLLOW_TARGET;
pos_sp_triplet->current.velocity_valid = use_velocity;
pos_sp_triplet->current.vx = _current_vel(0);
pos_sp_triplet->current.vy = _current_vel(1);
pos_sp_triplet->next.valid = false;
pos_sp_triplet->current.yawspeed_valid = PX4_ISFINITE(yaw_rate);
pos_sp_triplet->current.yawspeed = yaw_rate;
_navigator->set_position_setpoint_triplet_updated();
}
void FollowTarget::reset_target_validity()
{
_yaw_rate = NAN;
_previous_target_motion = {};
_current_target_motion = {};
_target_updates = 0;
_current_vel.zero();
_step_vel.zero();
_est_target_vel.zero();
_target_distance.zero();
_target_position_offset.zero();
reset_mission_item_reached();
_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
}
bool FollowTarget::target_velocity_valid()
{
// need at least 2 continuous data points for velocity estimate
return (_target_updates >= 2);
}
bool FollowTarget::target_position_valid()
{
// need at least 1 continuous data points for position estimate
return (_target_updates >= 1);
}
void
FollowTarget::set_follow_target_item(struct mission_item_s *item, float min_clearance, follow_target_s &target,
float yaw)
{
if (_navigator->get_land_detected()->landed) {
/* landed, don't takeoff, but switch to IDLE mode */
item->nav_cmd = NAV_CMD_IDLE;
} else {
item->nav_cmd = NAV_CMD_DO_FOLLOW_REPOSITION;
/* use current target position */
item->lat = target.lat;
item->lon = target.lon;
item->altitude = _navigator->get_home_position()->alt;
if (min_clearance > 8.0f) {
item->altitude += min_clearance;
} else {
item->altitude += 8.0f; // if min clearance is bad set it to 8.0 meters (well above the average height of a person)
}
}
item->altitude_is_relative = false;
item->yaw = yaw;
item->loiter_radius = _navigator->get_loiter_radius();
item->acceptance_radius = _navigator->get_acceptance_radius();
item->time_inside = 0.0f;
item->autocontinue = false;
item->origin = ORIGIN_ONBOARD;
}