follow_target.cpp 12.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/****************************************************************************
 *
 *   Copyright (c) 2013-2016 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/
/**
 * @file followme.cpp
 *
 * Helper class to track and follow a given position
 *
 * @author Jimmy Johnson <catch22@fastmail.net>
 */

#include "follow_target.h"

#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <fcntl.h>

#include <systemlib/err.h>

#include <uORB/uORB.h>
#include <uORB/topics/position_setpoint_triplet.h>
#include <uORB/topics/follow_target.h>
#include <lib/ecl/geo/geo.h>
#include <lib/mathlib/math/Limits.hpp>

#include "navigator.h"

using namespace matrix;

constexpr float FollowTarget::_follow_position_matricies[4][9];

FollowTarget::FollowTarget(Navigator *navigator) :
	MissionBlock(navigator),
	ModuleParams(navigator)
{
	_current_vel.zero();
	_step_vel.zero();
	_est_target_vel.zero();
	_target_distance.zero();
	_target_position_offset.zero();
	_target_position_delta.zero();
}

void FollowTarget::on_inactive()
{
	reset_target_validity();
}

void FollowTarget::on_activation()
{
	_follow_offset = _param_nav_ft_dst.get() < 1.0F ? 1.0F : _param_nav_ft_dst.get();

	_responsiveness = math::constrain((float) _param_nav_ft_rs.get(), .1F, 1.0F);

	_follow_target_position = _param_nav_ft_fs.get();

	if ((_follow_target_position > FOLLOW_FROM_LEFT) || (_follow_target_position < FOLLOW_FROM_RIGHT)) {
		_follow_target_position = FOLLOW_FROM_BEHIND;
	}

	_rot_matrix = Dcmf(_follow_position_matricies[_follow_target_position]);
}

void FollowTarget::on_active()
{
	struct map_projection_reference_s target_ref;
	follow_target_s target_motion_with_offset = {};
	uint64_t current_time = hrt_absolute_time();
	bool radius_entered = false;
	bool radius_exited = false;
	bool updated = false;
	float dt_ms = 0;

	if (_follow_target_sub.updated()) {
		updated = true;
		follow_target_s target_motion;

		_target_updates++;

		// save last known motion topic for interpolation later

		_previous_target_motion = _current_target_motion;

		_follow_target_sub.copy(&target_motion);

		if (_current_target_motion.timestamp == 0) {
			_current_target_motion = target_motion;
		}

		_current_target_motion = target_motion;
		_current_target_motion.lat = (_current_target_motion.lat * (double)_responsiveness) + target_motion.lat * (double)(
						     1 - _responsiveness);
		_current_target_motion.lon = (_current_target_motion.lon * (double)_responsiveness) + target_motion.lon * (double)(
						     1 - _responsiveness);

	} else if (((current_time - _current_target_motion.timestamp) / 1000) > TARGET_TIMEOUT_MS && target_velocity_valid()) {
		reset_target_validity();
	}

	// update distance to target

	if (target_position_valid()) {

		// get distance to target

		map_projection_init(&target_ref, _navigator->get_global_position()->lat, _navigator->get_global_position()->lon);
		map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon, &_target_distance(0),
				       &_target_distance(1));

	}

	// update target velocity

	if (target_velocity_valid() && updated) {

		dt_ms = ((_current_target_motion.timestamp - _previous_target_motion.timestamp) / 1000);

		// ignore a small dt
		if (dt_ms > 10.0F) {
			// get last gps known reference for target
			map_projection_init(&target_ref, _previous_target_motion.lat, _previous_target_motion.lon);

			// calculate distance the target has moved
			map_projection_project(&target_ref, _current_target_motion.lat, _current_target_motion.lon,
					       &(_target_position_delta(0)), &(_target_position_delta(1)));

			// update the average velocity of the target based on the position
			if (PX4_ISFINITE(_current_target_motion.vx) && PX4_ISFINITE(_current_target_motion.vy)) {
				// No need to estimate target velocity if we can take it from the target
				_est_target_vel(0) = _current_target_motion.vx;
				_est_target_vel(1) = _current_target_motion.vy;
				_est_target_vel(2) = 0.0f;

			} else {
				_est_target_vel = _target_position_delta / (dt_ms / 1000.0f);
			}

			// if the target is moving add an offset and rotation
			if (_est_target_vel.length() > .5F) {
				_target_position_offset = _rot_matrix * _est_target_vel.normalized() * _follow_offset;
			}

			// are we within the target acceptance radius?
			// give a buffer to exit/enter the radius to give the velocity controller
			// a chance to catch up

			radius_exited = ((_target_position_offset + _target_distance).length() > (float) TARGET_ACCEPTANCE_RADIUS_M * 1.5f);
			radius_entered = ((_target_position_offset + _target_distance).length() < (float) TARGET_ACCEPTANCE_RADIUS_M);

			// to keep the velocity increase/decrease smooth
			// calculate how many velocity increments/decrements
			// it will take to reach the targets velocity
			// with the given amount of steps also add a feed forward input that adjusts the
			// velocity as the position gap increases since
			// just traveling at the exact velocity of the target will not
			// get any closer or farther from the target

			_step_vel = (_est_target_vel - _current_vel) + (_target_position_offset + _target_distance) * FF_K;
			_step_vel /= (dt_ms / 1000.0F * (float) INTERPOLATION_PNTS);
			_step_time_in_ms = (dt_ms / (float) INTERPOLATION_PNTS);

			// if we are less than 1 meter from the target don't worry about trying to yaw
			// lock the yaw until we are at a distance that makes sense

			if ((_target_distance).length() > 1.0F) {

				// yaw rate smoothing

				// this really needs to control the yaw rate directly in the attitude pid controller
				// but seems to work ok for now since the yaw rate cannot be controlled directly in auto mode

				_yaw_angle = get_bearing_to_next_waypoint(_navigator->get_global_position()->lat,
						_navigator->get_global_position()->lon,
						_current_target_motion.lat,
						_current_target_motion.lon);

				_yaw_rate = wrap_pi((_yaw_angle - _navigator->get_local_position()->heading) / (dt_ms / 1000.0f));

			} else {
				_yaw_angle = _yaw_rate = NAN;
			}
		}

//		warnx(" _step_vel x %3.6f y %3.6f cur vel %3.6f %3.6f tar vel %3.6f %3.6f dist = %3.6f (%3.6f) mode = %d yaw rate = %3.6f",
//				(double) _step_vel(0),
//				(double) _step_vel(1),
//				(double) _current_vel(0),
//				(double) _current_vel(1),
//				(double) _est_target_vel(0),
//				(double) _est_target_vel(1),
//				(double) (_target_distance).length(),
//				(double) (_target_position_offset + _target_distance).length(),
//				_follow_target_state,
//				(double) _yaw_rate);
	}

	if (target_position_valid()) {

		// get the target position using the calculated offset

		map_projection_init(&target_ref,  _current_target_motion.lat, _current_target_motion.lon);
		map_projection_reproject(&target_ref, _target_position_offset(0), _target_position_offset(1),
					 &target_motion_with_offset.lat, &target_motion_with_offset.lon);
	}

	// clamp yaw rate smoothing if we are with in
	// 3 degrees of facing target

	if (PX4_ISFINITE(_yaw_rate)) {
		if (fabsf(fabsf(_yaw_angle) - fabsf(_navigator->get_local_position()->heading)) < math::radians(3.0F)) {
			_yaw_rate = NAN;
		}
	}

	// update state machine

	switch (_follow_target_state) {

	case TRACK_POSITION: {

			if (radius_entered) {
				_follow_target_state = TRACK_VELOCITY;

			} else if (target_velocity_valid()) {
				set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target_motion_with_offset, _yaw_angle);
				// keep the current velocity updated with the target velocity for when it's needed
				_current_vel = _est_target_vel;

				update_position_sp(true, true, _yaw_rate);

			} else {
				_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
			}

			break;
		}

	case TRACK_VELOCITY: {

			if (radius_exited) {
				_follow_target_state = TRACK_POSITION;

			} else if (target_velocity_valid()) {

				if ((float)(current_time - _last_update_time) / 1000.0f >= _step_time_in_ms) {
					_current_vel += _step_vel;
					_last_update_time = current_time;
				}

				set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target_motion_with_offset, _yaw_angle);

				update_position_sp(true, false, _yaw_rate);

			} else {
				_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
			}

			break;
		}

	case SET_WAIT_FOR_TARGET_POSITION: {

			// Climb to the minimum altitude
			// and wait until a position is received

			follow_target_s target = {};

			// for now set the target at the minimum height above the uav

			target.lat = _navigator->get_global_position()->lat;
			target.lon = _navigator->get_global_position()->lon;
			target.alt = 0.0F;

			set_follow_target_item(&_mission_item, _param_nav_min_ft_ht.get(), target, _yaw_angle);

			update_position_sp(false, false, _yaw_rate);

			_follow_target_state = WAIT_FOR_TARGET_POSITION;
		}

	/* FALLTHROUGH */

	case WAIT_FOR_TARGET_POSITION: {

			if (is_mission_item_reached() && target_velocity_valid()) {
				_target_position_offset(0) = _follow_offset;
				_follow_target_state = TRACK_POSITION;
			}

			break;
		}
	}
}

void FollowTarget::update_position_sp(bool use_velocity, bool use_position, float yaw_rate)
{
	// convert mission item to current setpoint

	struct position_setpoint_triplet_s *pos_sp_triplet = _navigator->get_position_setpoint_triplet();

	// activate line following in pos control if position is valid

	pos_sp_triplet->previous.valid = use_position;
	pos_sp_triplet->previous = pos_sp_triplet->current;
	mission_apply_limitation(_mission_item);
	mission_item_to_position_setpoint(_mission_item, &pos_sp_triplet->current);
	pos_sp_triplet->current.type = position_setpoint_s::SETPOINT_TYPE_FOLLOW_TARGET;
	pos_sp_triplet->current.velocity_valid = use_velocity;
	pos_sp_triplet->current.vx = _current_vel(0);
	pos_sp_triplet->current.vy = _current_vel(1);
	pos_sp_triplet->next.valid = false;
	pos_sp_triplet->current.yawspeed_valid = PX4_ISFINITE(yaw_rate);
	pos_sp_triplet->current.yawspeed = yaw_rate;
	_navigator->set_position_setpoint_triplet_updated();
}

void FollowTarget::reset_target_validity()
{
	_yaw_rate = NAN;
	_previous_target_motion = {};
	_current_target_motion = {};
	_target_updates = 0;
	_current_vel.zero();
	_step_vel.zero();
	_est_target_vel.zero();
	_target_distance.zero();
	_target_position_offset.zero();
	reset_mission_item_reached();
	_follow_target_state = SET_WAIT_FOR_TARGET_POSITION;
}

bool FollowTarget::target_velocity_valid()
{
	// need at least 2 continuous data points for velocity estimate
	return (_target_updates >= 2);
}

bool FollowTarget::target_position_valid()
{
	// need at least 1 continuous data points for position estimate
	return (_target_updates >= 1);
}

void
FollowTarget::set_follow_target_item(struct mission_item_s *item, float min_clearance, follow_target_s &target,
				     float yaw)
{
	if (_navigator->get_land_detected()->landed) {
		/* landed, don't takeoff, but switch to IDLE mode */
		item->nav_cmd = NAV_CMD_IDLE;

	} else {

		item->nav_cmd = NAV_CMD_DO_FOLLOW_REPOSITION;

		/* use current target position */
		item->lat = target.lat;
		item->lon = target.lon;
		item->altitude = _navigator->get_home_position()->alt;

		if (min_clearance > 8.0f) {
			item->altitude += min_clearance;

		} else {
			item->altitude += 8.0f; // if min clearance is bad set it to 8.0 meters (well above the average height of a person)
		}
	}

	item->altitude_is_relative = false;
	item->yaw = yaw;
	item->loiter_radius = _navigator->get_loiter_radius();
	item->acceptance_radius = _navigator->get_acceptance_radius();
	item->time_inside = 0.0f;
	item->autocontinue = false;
	item->origin = ORIGIN_ONBOARD;
}