CollisionPrevention.cpp 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/****************************************************************************
 *
 *   Copyright (c) 2018 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file CollisionPrevention.cpp
 * CollisionPrevention controller.
 *
 */

#include "CollisionPrevention.hpp"

using namespace matrix;
using namespace time_literals;

namespace
{
static constexpr int INTERNAL_MAP_INCREMENT_DEG = 10; //cannot be lower than 5 degrees, should divide 360 evenly
static constexpr int INTERNAL_MAP_USED_BINS = 360 / INTERNAL_MAP_INCREMENT_DEG;

static float wrap_360(float f)
{
	return wrap(f, 0.f, 360.f);
}

static int wrap_bin(int i)
{
	i = i % INTERNAL_MAP_USED_BINS;

	while (i < 0) {
		i += INTERNAL_MAP_USED_BINS;
	}

	return i;
}

} // namespace

CollisionPrevention::CollisionPrevention(ModuleParams *parent) :
	ModuleParams(parent)
{
	static_assert(INTERNAL_MAP_INCREMENT_DEG >= 5, "INTERNAL_MAP_INCREMENT_DEG needs to be at least 5");
	static_assert(360 % INTERNAL_MAP_INCREMENT_DEG == 0, "INTERNAL_MAP_INCREMENT_DEG should divide 360 evenly");

	// initialize internal obstacle map
	_obstacle_map_body_frame.timestamp = getTime();
	_obstacle_map_body_frame.frame = obstacle_distance_s::MAV_FRAME_BODY_FRD;
	_obstacle_map_body_frame.increment = INTERNAL_MAP_INCREMENT_DEG;
	_obstacle_map_body_frame.min_distance = UINT16_MAX;
	_obstacle_map_body_frame.max_distance = 0;
	_obstacle_map_body_frame.angle_offset = 0.f;
	uint32_t internal_bins = sizeof(_obstacle_map_body_frame.distances) / sizeof(_obstacle_map_body_frame.distances[0]);
	uint64_t current_time = getTime();

	for (uint32_t i = 0 ; i < internal_bins; i++) {
		_data_timestamps[i] = current_time;
		_data_maxranges[i] = 0;
		_data_fov[i] = 0;
		_obstacle_map_body_frame.distances[i] = UINT16_MAX;
	}
}

hrt_abstime CollisionPrevention::getTime()
{
	return hrt_absolute_time();
}

hrt_abstime CollisionPrevention::getElapsedTime(const hrt_abstime *ptr)
{
	return hrt_absolute_time() - *ptr;
}

bool CollisionPrevention::is_active()
{
	bool activated = _param_cp_dist.get() > 0;

	if (activated && !_was_active) {
		_time_activated = getTime();
	}

	_was_active = activated;
	return activated;
}

void
CollisionPrevention::_addObstacleSensorData(const obstacle_distance_s &obstacle, const matrix::Quatf &vehicle_attitude)
{
	int msg_index = 0;
	float vehicle_orientation_deg = math::degrees(Eulerf(vehicle_attitude).psi());
	float increment_factor = 1.f / obstacle.increment;

	if (obstacle.frame == obstacle.MAV_FRAME_GLOBAL || obstacle.frame == obstacle.MAV_FRAME_LOCAL_NED) {
		// Obstacle message arrives in local_origin frame (north aligned)
		// corresponding data index (convert to world frame and shift by msg offset)
		for (int i = 0; i < INTERNAL_MAP_USED_BINS; i++) {
			float bin_angle_deg = (float)i * INTERNAL_MAP_INCREMENT_DEG + _obstacle_map_body_frame.angle_offset;
			msg_index = ceil(wrap_360(vehicle_orientation_deg + bin_angle_deg - obstacle.angle_offset) * increment_factor);

			//add all data points inside to FOV
			if (obstacle.distances[msg_index] != UINT16_MAX) {
				if (_enterData(i, obstacle.max_distance * 0.01f, obstacle.distances[msg_index] * 0.01f)) {
					_obstacle_map_body_frame.distances[i] = obstacle.distances[msg_index];
					_data_timestamps[i] = _obstacle_map_body_frame.timestamp;
					_data_maxranges[i] = obstacle.max_distance;
					_data_fov[i] = 1;
				}
			}
		}

	} else if (obstacle.frame == obstacle.MAV_FRAME_BODY_FRD) {
		// Obstacle message arrives in body frame (front aligned)
		// corresponding data index (shift by msg offset)
		for (int i = 0; i < INTERNAL_MAP_USED_BINS; i++) {
			float bin_angle_deg = (float)i * INTERNAL_MAP_INCREMENT_DEG +
					      _obstacle_map_body_frame.angle_offset;
			msg_index = ceil(wrap_360(bin_angle_deg - obstacle.angle_offset) * increment_factor);

			//add all data points inside to FOV
			if (obstacle.distances[msg_index] != UINT16_MAX) {

				if (_enterData(i, obstacle.max_distance * 0.01f, obstacle.distances[msg_index] * 0.01f)) {
					_obstacle_map_body_frame.distances[i] = obstacle.distances[msg_index];
					_data_timestamps[i] = _obstacle_map_body_frame.timestamp;
					_data_maxranges[i] = obstacle.max_distance;
					_data_fov[i] = 1;
				}
			}
		}

	} else {
		mavlink_log_critical(&_mavlink_log_pub, "Obstacle message received in unsupported frame %.0f\n",
				     (double)obstacle.frame);
	}
}

bool
CollisionPrevention::_enterData(int map_index, float sensor_range, float sensor_reading)
{
	//use data from this sensor if:
	//1. this sensor data is in range, the bin contains already valid data and this data is coming from the same or less range sensor
	//2. this sensor data is in range, and the last reading was out of range
	//3. this sensor data is out of range, the last reading was as well and this is the sensor with longest range
	//4. this sensor data is out of range, the last reading was valid and coming from the same sensor

	uint16_t sensor_range_cm = static_cast<uint16_t>(100.0f * sensor_range + 0.5f); //convert to cm

	if (sensor_reading < sensor_range) {
		if ((_obstacle_map_body_frame.distances[map_index] < _data_maxranges[map_index]
		     && sensor_range_cm <= _data_maxranges[map_index])
		    || _obstacle_map_body_frame.distances[map_index] >= _data_maxranges[map_index]) {

			return true;
		}

	} else {
		if ((_obstacle_map_body_frame.distances[map_index] >= _data_maxranges[map_index]
		     && sensor_range_cm >= _data_maxranges[map_index])
		    || (_obstacle_map_body_frame.distances[map_index] < _data_maxranges[map_index]
			&& sensor_range_cm == _data_maxranges[map_index])) {

			return true;
		}
	}

	return false;
}

void
CollisionPrevention::_updateObstacleMap()
{
	_sub_vehicle_attitude.update();

	// add distance sensor data
	for (auto &dist_sens_sub : _distance_sensor_subs) {
		distance_sensor_s distance_sensor;

		if (dist_sens_sub.update(&distance_sensor)) {
			// consider only instances with valid data and orientations useful for collision prevention
			if ((getElapsedTime(&distance_sensor.timestamp) < RANGE_STREAM_TIMEOUT_US) &&
			    (distance_sensor.orientation != distance_sensor_s::ROTATION_DOWNWARD_FACING) &&
			    (distance_sensor.orientation != distance_sensor_s::ROTATION_UPWARD_FACING)) {

				// update message description
				_obstacle_map_body_frame.timestamp = math::max(_obstacle_map_body_frame.timestamp, distance_sensor.timestamp);
				_obstacle_map_body_frame.max_distance = math::max(_obstacle_map_body_frame.max_distance,
									(uint16_t)(distance_sensor.max_distance * 100.0f));
				_obstacle_map_body_frame.min_distance = math::min(_obstacle_map_body_frame.min_distance,
									(uint16_t)(distance_sensor.min_distance * 100.0f));

				_addDistanceSensorData(distance_sensor, Quatf(_sub_vehicle_attitude.get().q));
			}
		}
	}

	// add obstacle distance data
	if (_sub_obstacle_distance.update()) {
		const obstacle_distance_s &obstacle_distance = _sub_obstacle_distance.get();

		// Update map with obstacle data if the data is not stale
		if (getElapsedTime(&obstacle_distance.timestamp) < RANGE_STREAM_TIMEOUT_US && obstacle_distance.increment > 0.f) {
			//update message description
			_obstacle_map_body_frame.timestamp = math::max(_obstacle_map_body_frame.timestamp, obstacle_distance.timestamp);
			_obstacle_map_body_frame.max_distance = math::max(_obstacle_map_body_frame.max_distance,
								obstacle_distance.max_distance);
			_obstacle_map_body_frame.min_distance = math::min(_obstacle_map_body_frame.min_distance,
								obstacle_distance.min_distance);
			_addObstacleSensorData(obstacle_distance, Quatf(_sub_vehicle_attitude.get().q));
		}
	}

	// publish fused obtacle distance message with data from offboard obstacle_distance and distance sensor
	_obstacle_distance_pub.publish(_obstacle_map_body_frame);
}

void
CollisionPrevention::_addDistanceSensorData(distance_sensor_s &distance_sensor, const matrix::Quatf &vehicle_attitude)
{
	// clamp at maximum sensor range
	float distance_reading = math::min(distance_sensor.current_distance, distance_sensor.max_distance);

	// discard values below min range
	if ((distance_reading > distance_sensor.min_distance)) {

		float sensor_yaw_body_rad = _sensorOrientationToYawOffset(distance_sensor, _obstacle_map_body_frame.angle_offset);
		float sensor_yaw_body_deg = math::degrees(wrap_2pi(sensor_yaw_body_rad));

		// calculate the field of view boundary bin indices
		int lower_bound = (int)floor((sensor_yaw_body_deg  - math::degrees(distance_sensor.h_fov / 2.0f)) /
					     INTERNAL_MAP_INCREMENT_DEG);
		int upper_bound = (int)floor((sensor_yaw_body_deg  + math::degrees(distance_sensor.h_fov / 2.0f)) /
					     INTERNAL_MAP_INCREMENT_DEG);

		// floor values above zero, ceil values below zero
		if (lower_bound < 0) { lower_bound++; }

		if (upper_bound < 0) { upper_bound++; }

		// rotate vehicle attitude into the sensor body frame
		matrix::Quatf attitude_sensor_frame = vehicle_attitude;
		attitude_sensor_frame.rotate(Vector3f(0.f, 0.f, sensor_yaw_body_rad));
		float sensor_dist_scale = cosf(Eulerf(attitude_sensor_frame).theta());

		if (distance_reading < distance_sensor.max_distance) {
			distance_reading = distance_reading * sensor_dist_scale;
		}

		uint16_t sensor_range = static_cast<uint16_t>(100.0f * distance_sensor.max_distance + 0.5f); // convert to cm

		for (int bin = lower_bound; bin <= upper_bound; ++bin) {
			int wrapped_bin = wrap_bin(bin);

			if (_enterData(wrapped_bin, distance_sensor.max_distance, distance_reading)) {
				_obstacle_map_body_frame.distances[wrapped_bin] = static_cast<uint16_t>(100.0f * distance_reading + 0.5f);
				_data_timestamps[wrapped_bin] = _obstacle_map_body_frame.timestamp;
				_data_maxranges[wrapped_bin] = sensor_range;
				_data_fov[wrapped_bin] = 1;
			}
		}
	}
}

void
CollisionPrevention::_adaptSetpointDirection(Vector2f &setpoint_dir, int &setpoint_index, float vehicle_yaw_angle_rad)
{
	const float col_prev_d = _param_cp_dist.get();
	const int guidance_bins = floor(_param_cp_guide_ang.get() / INTERNAL_MAP_INCREMENT_DEG);
	const int sp_index_original = setpoint_index;
	float best_cost = 9999.f;
	int new_sp_index = setpoint_index;

	for (int i = sp_index_original - guidance_bins; i <= sp_index_original + guidance_bins; i++) {

		// apply moving average filter to the distance array to be able to center in larger gaps
		const int filter_size = 1;
		float mean_dist = 0;

		for (int j = i - filter_size; j <= i + filter_size; j++) {
			int bin = wrap_bin(j);

			if (_obstacle_map_body_frame.distances[bin] == UINT16_MAX) {
				mean_dist += col_prev_d * 100.f;

			} else {
				mean_dist += _obstacle_map_body_frame.distances[bin];
			}
		}

		const int bin = wrap_bin(i);
		mean_dist = mean_dist / (2.f * filter_size + 1.f);
		const float deviation_cost = col_prev_d * 50.f * abs(i - sp_index_original);
		const float bin_cost = deviation_cost - mean_dist - _obstacle_map_body_frame.distances[bin];

		if (bin_cost < best_cost && _obstacle_map_body_frame.distances[bin] != UINT16_MAX) {
			best_cost = bin_cost;
			new_sp_index = bin;
		}
	}

	//only change setpoint direction if it was moved to a different bin
	if (new_sp_index != setpoint_index) {
		float angle = math::radians((float)new_sp_index * INTERNAL_MAP_INCREMENT_DEG + _obstacle_map_body_frame.angle_offset);
		angle = wrap_2pi(vehicle_yaw_angle_rad + angle);
		setpoint_dir = {cosf(angle), sinf(angle)};
		setpoint_index = new_sp_index;
	}
}

float
CollisionPrevention::_sensorOrientationToYawOffset(const distance_sensor_s &distance_sensor, float angle_offset) const
{
	float offset = angle_offset > 0.0f ? math::radians(angle_offset) : 0.0f;

	switch (distance_sensor.orientation) {
	case distance_sensor_s::ROTATION_YAW_0:
		offset = 0.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_45:
		offset = M_PI_F / 4.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_90:
		offset = M_PI_F / 2.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_135:
		offset = 3.0f * M_PI_F / 4.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_180:
		offset = M_PI_F;
		break;

	case distance_sensor_s::ROTATION_YAW_225:
		offset = -3.0f * M_PI_F / 4.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_270:
		offset = -M_PI_F / 2.0f;
		break;

	case distance_sensor_s::ROTATION_YAW_315:
		offset = -M_PI_F / 4.0f;
		break;

	case distance_sensor_s::ROTATION_CUSTOM:
		offset = matrix::Eulerf(matrix::Quatf(distance_sensor.q)).psi();
		break;
	}

	return offset;
}

void
CollisionPrevention::_calculateConstrainedSetpoint(Vector2f &setpoint, const Vector2f &curr_pos,
		const Vector2f &curr_vel)
{
	_updateObstacleMap();

	// read parameters
	const float col_prev_d = _param_cp_dist.get();
	const float col_prev_dly = _param_cp_delay.get();
	const bool move_no_data = _param_cp_go_nodata.get();
	const float xy_p = _param_mpc_xy_p.get();
	const float max_jerk = _param_mpc_jerk_max.get();
	const float max_accel = _param_mpc_acc_hor.get();
	const matrix::Quatf attitude = Quatf(_sub_vehicle_attitude.get().q);
	const float vehicle_yaw_angle_rad = Eulerf(attitude).psi();

	const float setpoint_length = setpoint.norm();

	const hrt_abstime constrain_time = getTime();
	int num_fov_bins = 0;

	if ((constrain_time - _obstacle_map_body_frame.timestamp) < RANGE_STREAM_TIMEOUT_US) {
		if (setpoint_length > 0.001f) {

			Vector2f setpoint_dir = setpoint / setpoint_length;
			float vel_max = setpoint_length;
			const float min_dist_to_keep = math::max(_obstacle_map_body_frame.min_distance / 100.0f, col_prev_d);

			const float sp_angle_body_frame = atan2f(setpoint_dir(1), setpoint_dir(0)) - vehicle_yaw_angle_rad;
			const float sp_angle_with_offset_deg = wrap_360(math::degrees(sp_angle_body_frame) -
							       _obstacle_map_body_frame.angle_offset);
			int sp_index = floor(sp_angle_with_offset_deg / INTERNAL_MAP_INCREMENT_DEG);

			// change setpoint direction slightly (max by _param_cp_guide_ang degrees) to help guide through narrow gaps
			_adaptSetpointDirection(setpoint_dir, sp_index, vehicle_yaw_angle_rad);

			// limit speed for safe flight
			for (int i = 0; i < INTERNAL_MAP_USED_BINS; i++) { // disregard unused bins at the end of the message

				// delete stale values
				const hrt_abstime data_age = constrain_time - _data_timestamps[i];

				if (data_age > RANGE_STREAM_TIMEOUT_US) {
					_obstacle_map_body_frame.distances[i] = UINT16_MAX;
				}

				const float distance = _obstacle_map_body_frame.distances[i] * 0.01f; // convert to meters
				const float max_range = _data_maxranges[i] * 0.01f; // convert to meters
				float angle = math::radians((float)i * INTERNAL_MAP_INCREMENT_DEG + _obstacle_map_body_frame.angle_offset);

				// convert from body to local frame in the range [0, 2*pi]
				angle = wrap_2pi(vehicle_yaw_angle_rad + angle);

				// get direction of current bin
				const Vector2f bin_direction = {cosf(angle), sinf(angle)};

				//count number of bins in the field of valid_new
				if (_obstacle_map_body_frame.distances[i] < UINT16_MAX) {
					num_fov_bins ++;
				}

				if (_obstacle_map_body_frame.distances[i] > _obstacle_map_body_frame.min_distance
				    && _obstacle_map_body_frame.distances[i] < UINT16_MAX) {

					if (setpoint_dir.dot(bin_direction) > 0) {
						// calculate max allowed velocity with a P-controller (same gain as in the position controller)
						const float curr_vel_parallel = math::max(0.f, curr_vel.dot(bin_direction));
						float delay_distance = curr_vel_parallel * col_prev_dly;

						if (distance < max_range) {
							delay_distance += curr_vel_parallel * (data_age * 1e-6f);
						}

						const float stop_distance = math::max(0.f, distance - min_dist_to_keep - delay_distance);
						const float vel_max_posctrl = xy_p * stop_distance;

						const float vel_max_smooth = math::trajectory::computeMaxSpeedFromDistance(max_jerk, max_accel, stop_distance, 0.f);
						const float projection = bin_direction.dot(setpoint_dir);
						float vel_max_bin = vel_max;

						if (projection > 0.01f) {
							vel_max_bin = math::min(vel_max_posctrl, vel_max_smooth) / projection;
						}

						// constrain the velocity
						if (vel_max_bin >= 0) {
							vel_max = math::min(vel_max, vel_max_bin);
						}
					}

				} else if (_obstacle_map_body_frame.distances[i] == UINT16_MAX && i == sp_index) {
					if (!move_no_data || (move_no_data && _data_fov[i])) {
						vel_max = 0.f;
					}
				}
			}

			//if the sensor field of view is zero, never allow to move (even if move_no_data=1)
			if (num_fov_bins == 0) {
				vel_max = 0.f;
			}

			setpoint = setpoint_dir * vel_max;
		}

	} else {
		//allow no movement
		float vel_max = 0.f;
		setpoint = setpoint * vel_max;

		// if distance data is stale, switch to Loiter
		if (getElapsedTime(&_last_timeout_warning) > 1_s && getElapsedTime(&_time_activated) > 1_s) {

			if ((constrain_time - _obstacle_map_body_frame.timestamp) > TIMEOUT_HOLD_US
			    && getElapsedTime(&_time_activated) > TIMEOUT_HOLD_US) {
				_publishVehicleCmdDoLoiter();
			}

			_last_timeout_warning = getTime();
		}


	}
}

void
CollisionPrevention::modifySetpoint(Vector2f &original_setpoint, const float max_speed, const Vector2f &curr_pos,
				    const Vector2f &curr_vel)
{
	//calculate movement constraints based on range data
	Vector2f new_setpoint = original_setpoint;
	_calculateConstrainedSetpoint(new_setpoint, curr_pos, curr_vel);

	//warn user if collision prevention starts to interfere
	bool currently_interfering = (new_setpoint(0) < original_setpoint(0) - 0.05f * max_speed
				      || new_setpoint(0) > original_setpoint(0) + 0.05f * max_speed
				      || new_setpoint(1) < original_setpoint(1) - 0.05f * max_speed
				      || new_setpoint(1) > original_setpoint(1) + 0.05f * max_speed);

	_interfering = currently_interfering;

	// publish constraints
	collision_constraints_s	constraints{};
	constraints.timestamp = getTime();
	original_setpoint.copyTo(constraints.original_setpoint);
	new_setpoint.copyTo(constraints.adapted_setpoint);
	_constraints_pub.publish(constraints);

	original_setpoint = new_setpoint;
}

void CollisionPrevention::_publishVehicleCmdDoLoiter()
{
	vehicle_command_s command{};
	command.timestamp = getTime();
	command.command = vehicle_command_s::VEHICLE_CMD_DO_SET_MODE;
	command.param1 = (float)1; // base mode
	command.param3 = (float)0; // sub mode
	command.target_system = 1;
	command.target_component = 1;
	command.source_system = 1;
	command.source_component = 1;
	command.confirmation = false;
	command.from_external = false;
	command.param2 = (float)PX4_CUSTOM_MAIN_MODE_AUTO;
	command.param3 = (float)PX4_CUSTOM_SUB_MODE_AUTO_LOITER;

	// publish the vehicle command
	_vehicle_command_pub.publish(command);
}