BezierN.cpp
4.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file BezierN.cpp
* Bezier function
*
* @author Julian Kent <julian@auterion.com>
*/
#include <bezier/BezierN.hpp>
#include <matrix/Dual.hpp>
namespace
{
/*
* Generic in-place bezier implementation. Leaves result in first element.
*
*/
template <typename Scalar, size_t D>
void calculateBezier(matrix::Vector<Scalar, D> *positions, int N, Scalar t, Scalar one_minus_t)
{
for (int bezier_order = 1; bezier_order < N; bezier_order++) {
for (int i = 0; i < N - bezier_order; i++) {
positions[i] = positions[i] * one_minus_t + positions[i + 1] * t;
}
}
}
}
namespace bezier
{
bool calculateBezierPosVel(const matrix::Vector3f *positions, int N, float t,
matrix::Vector3f &position, matrix::Vector3f &velocity)
{
if (positions == nullptr || N == 0 || t < 0 || t > 1) {
return false;
}
using Df = matrix::Dual<float, 1>;
using Vector3Df = matrix::Vector3<Df>;
Vector3Df intermediates[N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < 3; j++) {
intermediates[i](j) = positions[i](j);
}
}
Df dual_t(t, 0); // derivative with respect to time
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t);
position = matrix::collectReals(intermediates[0]);
velocity = matrix::collectDerivatives(intermediates[0]);
return true;
}
bool calculateBezierPosVelAcc(const matrix::Vector3f *positions, int N, float t,
matrix::Vector3f &position, matrix::Vector3f &velocity, matrix::Vector3f &acceleration)
{
if (positions == nullptr || N == 0 || t < 0 || t > 1) {
return false;
}
using Df = matrix::Dual<float, 1>;
using DDf = matrix::Dual<Df, 1>;
using Vector3DDf = matrix::Vector3<DDf>;
Vector3DDf intermediates[N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < 3; j++) {
intermediates[i](j) = Df(positions[i](j));
}
}
DDf dual_t(Df(t, 0), 0); // 1st and 2nd derivative with respect to time
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t);
position = matrix::collectReals(matrix::collectReals(intermediates[0]));
velocity = matrix::collectReals(matrix::collectDerivatives(intermediates[0]));
acceleration = matrix::collectDerivatives(matrix::collectDerivatives(intermediates[0]));
return true;
}
bool calculateBezierYaw(const float *setpoints, int N, float t, float &yaw_setpoint, float &yaw_vel_setpoint)
{
if (setpoints == nullptr || N == 0 || t < 0 || t > 1) {
return false;
}
using Df = matrix::Dual<float, 1>;
using Vector1Df = matrix::Vector<Df, 1>;
Vector1Df intermediates[N];
// all yaw setpoints are wrapped relative to the starting yaw
const float offset = setpoints[0];
for (int i = 0; i < N; i++) {
intermediates[i](0) = matrix::wrap_pi(setpoints[i] - offset);
}
Df dual_t (t, 0); // derivative with respect to time
calculateBezier(intermediates, N, dual_t, Df(1) - dual_t);
Df result = intermediates[0](0);
yaw_setpoint = matrix::wrap_pi(result.value + offset);
yaw_vel_setpoint = result.derivative(0);
return true;
}
bool calculateT(int64_t start_time, int64_t end_time, int64_t now, float &T)
{
if (now < start_time || end_time < now) {
return false;
}
int64_t total_duration = end_time - start_time;
int64_t elapsed_duration = now - start_time;
T = (float) elapsed_duration / (float) total_duration;
return true;
}
}