AirspeedValidator.cpp
8.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file AirspeedValidator.cpp
* Estimates airspeed scale error (from indicated to calibrated airspeed), performes
* checks on airspeed measurement input and reports airspeed valid or invalid.
*/
#include "AirspeedValidator.hpp"
void
AirspeedValidator::update_airspeed_validator(const airspeed_validator_update_data &input_data)
{
// get indicated airspeed from input data (raw airspeed)
_IAS = input_data.airspeed_indicated_raw;
update_CAS_scale();
update_CAS_TAS(input_data.air_pressure_pa, input_data.air_temperature_celsius);
update_wind_estimator(input_data.timestamp, input_data.airspeed_true_raw, input_data.lpos_valid, input_data.lpos_vx,
input_data.lpos_vy,
input_data.lpos_vz, input_data.lpos_evh, input_data.lpos_evv, input_data.att_q);
update_in_fixed_wing_flight(input_data.in_fixed_wing_flight);
check_airspeed_innovation(input_data.timestamp, input_data.vel_test_ratio, input_data.mag_test_ratio);
check_load_factor(input_data.accel_z);
update_airspeed_valid_status(input_data.timestamp);
}
void
AirspeedValidator::reset_airspeed_to_invalid(const uint64_t timestamp)
{
_airspeed_valid = false;
_time_checks_failed = timestamp;
}
void
AirspeedValidator::update_wind_estimator(const uint64_t time_now_usec, float airspeed_true_raw, bool lpos_valid,
float lpos_vx, float lpos_vy,
float lpos_vz, float lpos_evh, float lpos_evv, const float att_q[4])
{
_wind_estimator.update(time_now_usec);
if (lpos_valid && _in_fixed_wing_flight) {
Vector3f vI(lpos_vx, lpos_vy, lpos_vz);
Quatf q(att_q);
// airspeed fusion (with raw TAS)
const Vector3f vel_var{Dcmf(q) *Vector3f{lpos_evh, lpos_evh, lpos_evv}};
_wind_estimator.fuse_airspeed(time_now_usec, airspeed_true_raw, vI, Vector2f{vel_var(0), vel_var(1)});
// sideslip fusion
_wind_estimator.fuse_beta(time_now_usec, vI, q);
}
}
// this function returns the current states of the wind estimator to be published in the airspeed module
airspeed_wind_s
AirspeedValidator::get_wind_estimator_states(uint64_t timestamp)
{
airspeed_wind_s wind_est = {};
wind_est.timestamp = timestamp;
float wind[2];
_wind_estimator.get_wind(wind);
wind_est.windspeed_north = wind[0];
wind_est.windspeed_east = wind[1];
float wind_cov[2];
_wind_estimator.get_wind_var(wind_cov);
wind_est.variance_north = wind_cov[0];
wind_est.variance_east = wind_cov[1];
wind_est.tas_innov = _wind_estimator.get_tas_innov();
wind_est.tas_innov_var = _wind_estimator.get_tas_innov_var();
wind_est.beta_innov = _wind_estimator.get_beta_innov();
wind_est.beta_innov_var = _wind_estimator.get_beta_innov_var();
wind_est.tas_scale = _wind_estimator.get_tas_scale();
return wind_est;
}
void
AirspeedValidator::set_airspeed_scale_manual(float airspeed_scale_manual)
{
_airspeed_scale_manual = airspeed_scale_manual;
_wind_estimator.enforce_airspeed_scale(1.0f / airspeed_scale_manual); // scale is inverted inside the wind estimator
}
void
AirspeedValidator::update_CAS_scale()
{
if (_wind_estimator.is_estimate_valid()) {
_CAS_scale = 1.0f / math::constrain(_wind_estimator.get_tas_scale(), 0.5f, 2.0f);
} else {
_CAS_scale = _airspeed_scale_manual;
}
}
void
AirspeedValidator::update_CAS_TAS(float air_pressure_pa, float air_temperature_celsius)
{
_CAS = calc_CAS_from_IAS(_IAS, _CAS_scale);
_TAS = calc_TAS_from_CAS(_CAS, air_pressure_pa, air_temperature_celsius);
}
void
AirspeedValidator::check_airspeed_innovation(uint64_t time_now, float estimator_status_vel_test_ratio,
float estimator_status_mag_test_ratio)
{
// Check normalised innovation levels with requirement for continuous data and use of hysteresis
// to prevent false triggering.
if (_wind_estimator.get_wind_estimator_reset()) {
_time_wind_estimator_initialized = time_now;
}
// reset states if we are not flying or wind estimator was just initialized/reset
if (!_in_fixed_wing_flight || (time_now - _time_wind_estimator_initialized) < 10_s) {
_innovations_check_failed = false;
_time_last_tas_pass = time_now;
} else {
const float dt_s = math::constrain((time_now - _time_last_aspd_innov_check) / 1e6f, 0.01f, 0.2f); // limit to [100,5] Hz
if ((estimator_status_vel_test_ratio < 1.f) && (estimator_status_mag_test_ratio < 1.f)) {
// nav velocity data is likely good so airspeed innovations are able to be used
// compute the ratio of innovation to gate size
const float tas_test_ratio = _wind_estimator.get_tas_innov() * _wind_estimator.get_tas_innov()
/ (fmaxf(_tas_gate, 1.0f) * fmaxf(_tas_gate, 1.f) * _wind_estimator.get_tas_innov_var());
if (tas_test_ratio > _tas_innov_threshold) {
_apsd_innov_integ_state += dt_s * (tas_test_ratio - _tas_innov_threshold); // integrate exceedance
} else {
// reset integrator used to trigger and record pass if integrator check is disabled
_apsd_innov_integ_state = 0.f;
if (_tas_innov_integ_threshold <= 0.f) {
_time_last_tas_pass = time_now;
}
}
if (_tas_innov_integ_threshold > 0.f && _apsd_innov_integ_state < _tas_innov_integ_threshold) {
_time_last_tas_pass = time_now;
}
}
_innovations_check_failed = (time_now - _time_last_tas_pass) > TAS_INNOV_FAIL_DELAY;
}
_time_last_aspd_innov_check = time_now;
}
void
AirspeedValidator::check_load_factor(float accel_z)
{
// Check if the airpeed reading is lower than physically possible given the load factor
if (_in_fixed_wing_flight) {
float max_lift_ratio = fmaxf(_CAS, 0.7f) / fmaxf(_airspeed_stall, 1.0f);
max_lift_ratio *= max_lift_ratio;
_load_factor_ratio = 0.95f * _load_factor_ratio + 0.05f * (fabsf(accel_z) / 9.81f) / max_lift_ratio;
_load_factor_ratio = math::constrain(_load_factor_ratio, 0.25f, 2.0f);
_load_factor_check_failed = (_load_factor_ratio > 1.1f);
} else {
_load_factor_ratio = 0.5f; // reset if not in fixed-wing flight (and not in takeoff condition)
}
}
void
AirspeedValidator::update_airspeed_valid_status(const uint64_t timestamp)
{
if (_innovations_check_failed || _load_factor_check_failed) {
// either innovation or load factor check failed, so record timestamp
_time_checks_failed = timestamp;
} else if (!_innovations_check_failed && !_load_factor_check_failed) {
// both innovation or load factor checks must pass to declare airspeed good
_time_checks_passed = timestamp;
}
if (_airspeed_valid) {
// A simultaneous load factor and innovaton check fail makes it more likely that a large
// airspeed measurement fault has developed, so a fault should be declared immediately
const bool both_checks_failed = (_innovations_check_failed && _load_factor_check_failed);
// Because the innovation and load factor checks are subject to short duration false positives
// a timeout period is applied.
const bool single_check_fail_timeout = (timestamp - _time_checks_passed) > _checks_fail_delay * 1_s;
if (both_checks_failed || single_check_fail_timeout) {
_airspeed_valid = false;
}
} else if (_checks_clear_delay > 0.f && (timestamp - _time_checks_failed) > _checks_clear_delay * 1_s) {
// disable the re-enabling if the clear delay is negative
_airspeed_valid = true;
}
}