RoboClaw.cpp
17.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/****************************************************************************
*
* Copyright (c) 2013 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file RoboClaw.cpp
*
* RoboClaw Motor Driver
*
* references:
* http://downloads.orionrobotics.com/downloads/datasheets/motor_controller_robo_claw_R0401.pdf
*
*/
#include "RoboClaw.hpp"
#include <poll.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#include <termios.h>
#include <systemlib/err.h>
#include <systemlib/mavlink_log.h>
#include <uORB/Publication.hpp>
#include <drivers/drv_hrt.h>
#include <math.h>
// The RoboClaw has a serial communication timeout of 10ms.
// Add a little extra to account for timing inaccuracy
#define TIMEOUT_US 10500
// If a timeout occurs during serial communication, it will immediately try again this many times
#define TIMEOUT_RETRIES 1
// If a timeout occurs while disarmed, it will try again this many times. This should be a higher number,
// because stopping when disarmed is pretty important.
#define STOP_RETRIES 10
// Number of bytes returned by the Roboclaw when sending command 78, read both encoders
#define ENCODER_MESSAGE_SIZE 10
// Number of bytes for commands 18 and 19, read speeds.
#define ENCODER_SPEED_MESSAGE_SIZE 7
bool RoboClaw::taskShouldExit = false;
RoboClaw::RoboClaw(const char *deviceName, const char *baudRateParam):
_uart(0),
_uart_set(),
_uart_timeout{.tv_sec = 0, .tv_usec = TIMEOUT_US},
_actuatorsSub(-1),
_lastEncoderCount{0, 0},
_encoderCounts{0, 0},
_motorSpeeds{0, 0}
{
_param_handles.actuator_write_period_ms = param_find("RBCLW_WRITE_PER");
_param_handles.encoder_read_period_ms = param_find("RBCLW_READ_PER");
_param_handles.counts_per_rev = param_find("RBCLW_COUNTS_REV");
_param_handles.serial_baud_rate = param_find(baudRateParam);
_param_handles.address = param_find("RBCLW_ADDRESS");
_parameters_update();
// start serial port
_uart = open(deviceName, O_RDWR | O_NOCTTY);
if (_uart < 0) { err(1, "could not open %s", deviceName); }
int ret = 0;
struct termios uart_config {};
ret = tcgetattr(_uart, &uart_config);
if (ret < 0) { err(1, "failed to get attr"); }
uart_config.c_oflag &= ~ONLCR; // no CR for every LF
ret = cfsetispeed(&uart_config, _parameters.serial_baud_rate);
if (ret < 0) { err(1, "failed to set input speed"); }
ret = cfsetospeed(&uart_config, _parameters.serial_baud_rate);
if (ret < 0) { err(1, "failed to set output speed"); }
ret = tcsetattr(_uart, TCSANOW, &uart_config);
if (ret < 0) { err(1, "failed to set attr"); }
FD_ZERO(&_uart_set);
// setup default settings, reset encoders
resetEncoders();
}
RoboClaw::~RoboClaw()
{
setMotorDutyCycle(MOTOR_1, 0.0);
setMotorDutyCycle(MOTOR_2, 0.0);
close(_uart);
}
void RoboClaw::taskMain()
{
// Make sure the Roboclaw is actually connected, so I don't just spam errors if it's not.
uint8_t rbuff[4];
int err_code = _transaction(CMD_READ_STATUS, nullptr, 0, &rbuff[0], sizeof(rbuff), false, true);
if (err_code <= 0) {
PX4_ERR("Unable to connect to Roboclaw. Shutting down Roboclaw driver.");
return;
}
// This main loop performs two different tasks, asynchronously:
// - Send actuator_controls_0 to the Roboclaw as soon as they are available
// - Read the encoder values at a constant rate
// To do this, the timeout on the poll() function is used.
// waitTime is the amount of time left (int microseconds) until the next time I should read from the encoders.
// It is updated at the end of every loop. Sometimes, if the actuator_controls_0 message came in right before
// I should have read the encoders, waitTime will be 0. This is fine. When waitTime is 0, poll() will return
// immediately with a timeout. (Or possibly with a message, if one happened to be available at that exact moment)
uint64_t encoderTaskLastRun = 0;
int waitTime = 0;
uint64_t actuatorsLastWritten = 0;
_actuatorsSub = orb_subscribe(ORB_ID(actuator_controls_0));
orb_set_interval(_actuatorsSub, _parameters.actuator_write_period_ms);
_armedSub = orb_subscribe(ORB_ID(actuator_armed));
_paramSub = orb_subscribe(ORB_ID(parameter_update));
pollfd fds[3];
fds[0].fd = _paramSub;
fds[0].events = POLLIN;
fds[1].fd = _actuatorsSub;
fds[1].events = POLLIN;
fds[2].fd = _armedSub;
fds[2].events = POLLIN;
memset((void *) &_wheelEncoderMsg[0], 0, sizeof(_wheelEncoderMsg));
_wheelEncoderMsg[0].pulses_per_rev = _parameters.counts_per_rev;
_wheelEncoderMsg[1].pulses_per_rev = _parameters.counts_per_rev;
while (!taskShouldExit) {
int pret = poll(fds, sizeof(fds) / sizeof(pollfd), waitTime / 1000);
bool actuators_timeout = int(hrt_absolute_time() - actuatorsLastWritten) > 2000 * _parameters.actuator_write_period_ms;
if (fds[0].revents & POLLIN) {
orb_copy(ORB_ID(parameter_update), _paramSub, &_paramUpdate);
_parameters_update();
}
// No timeout, update on either the actuator controls or the armed state
if (pret > 0 && (fds[1].revents & POLLIN || fds[2].revents & POLLIN || actuators_timeout)) {
orb_copy(ORB_ID(actuator_controls_0), _actuatorsSub, &_actuatorControls);
orb_copy(ORB_ID(actuator_armed), _armedSub, &_actuatorArmed);
int drive_ret = 0, turn_ret = 0;
const bool disarmed = !_actuatorArmed.armed || _actuatorArmed.lockdown || _actuatorArmed.manual_lockdown
|| _actuatorArmed.force_failsafe || actuators_timeout;
if (disarmed) {
// If disarmed, I want to be certain that the stop command gets through.
int tries = 0;
while (tries < STOP_RETRIES && ((drive_ret = drive(0.0)) <= 0 || (turn_ret = turn(0.0)) <= 0)) {
PX4_ERR("Error trying to stop: Drive: %d, Turn: %d", drive_ret, turn_ret);
tries++;
px4_usleep(TIMEOUT_US);
}
} else {
drive_ret = drive(_actuatorControls.control[actuator_controls_s::INDEX_THROTTLE]);
turn_ret = turn(_actuatorControls.control[actuator_controls_s::INDEX_YAW]);
if (drive_ret <= 0 || turn_ret <= 0) {
PX4_ERR("Error controlling RoboClaw. Drive err: %d. Turn err: %d", drive_ret, turn_ret);
}
}
actuatorsLastWritten = hrt_absolute_time();
} else {
// A timeout occurred, which means that it's time to update the encoders
encoderTaskLastRun = hrt_absolute_time();
if (readEncoder() > 0) {
for (int i = 0; i < 2; i++) {
_wheelEncoderMsg[i].timestamp = encoderTaskLastRun;
_wheelEncoderMsg[i].encoder_position = _encoderCounts[i];
_wheelEncoderMsg[i].speed = _motorSpeeds[i];
_wheelEncodersAdv[i].publish(_wheelEncoderMsg[i]);
}
} else {
PX4_ERR("Error reading encoders");
}
}
waitTime = _parameters.encoder_read_period_ms * 1000 - (hrt_absolute_time() - encoderTaskLastRun);
waitTime = waitTime < 0 ? 0 : waitTime;
}
orb_unsubscribe(_actuatorsSub);
orb_unsubscribe(_armedSub);
orb_unsubscribe(_paramSub);
}
int RoboClaw::readEncoder()
{
uint8_t rbuff_pos[ENCODER_MESSAGE_SIZE];
// I am saving space by overlapping the two separate motor speeds, so that the final buffer will look like:
// [<speed 1> <speed 2> <status 2> <checksum 2>]
// And I just ignore all of the statuses and checksums. (The _transaction() function internally handles the
// checksum)
uint8_t rbuff_speed[ENCODER_SPEED_MESSAGE_SIZE + 4];
bool success = false;
for (int retry = 0; retry < TIMEOUT_RETRIES && !success; retry++) {
success = _transaction(CMD_READ_BOTH_ENCODERS, nullptr, 0, &rbuff_pos[0], ENCODER_MESSAGE_SIZE, false,
true) == ENCODER_MESSAGE_SIZE;
success = success && _transaction(CMD_READ_SPEED_1, nullptr, 0, &rbuff_speed[0], ENCODER_SPEED_MESSAGE_SIZE, false,
true) == ENCODER_SPEED_MESSAGE_SIZE;
success = success && _transaction(CMD_READ_SPEED_2, nullptr, 0, &rbuff_speed[4], ENCODER_SPEED_MESSAGE_SIZE, false,
true) == ENCODER_SPEED_MESSAGE_SIZE;
}
if (!success) {
PX4_ERR("Error reading encoders");
return -1;
}
uint32_t count;
uint32_t speed;
uint8_t *count_bytes;
uint8_t *speed_bytes;
for (int motor = 0; motor <= 1; motor++) {
count = 0;
speed = 0;
count_bytes = &rbuff_pos[motor * 4];
speed_bytes = &rbuff_speed[motor * 4];
// Data from the roboclaw is big-endian. This converts the bytes to an integer, regardless of the
// endianness of the system this code is running on.
for (int byte = 0; byte < 4; byte++) {
count = (count << 8) + count_bytes[byte];
speed = (speed << 8) + speed_bytes[byte];
}
// The Roboclaw stores encoder counts as unsigned 32-bit ints. This can overflow, especially when starting
// at 0 and moving backward. The Roboclaw has overflow flags for this, but in my testing, they don't seem
// to work. This code detects overflow manually.
// These diffs are the difference between the count I just read from the Roboclaw and the last
// count that was read from the roboclaw for this motor. fwd_diff assumes that the wheel moved forward,
// and rev_diff assumes it moved backward. If the motor actually moved forward, then rev_diff will be close
// to 2^32 (UINT32_MAX). If the motor actually moved backward, then fwd_diff will be close to 2^32.
// To detect and account for overflow, I just assume that the smaller diff is correct.
// Strictly speaking, if the wheel rotated more than 2^31 encoder counts since the last time I checked, this
// will be wrong. But that's 1.7 million revolutions, so it probably won't come up.
uint32_t fwd_diff = count - _lastEncoderCount[motor];
uint32_t rev_diff = _lastEncoderCount[motor] - count;
// At this point, abs(diff) is always <= 2^31, so this cast from unsigned to signed is safe.
int32_t diff = fwd_diff <= rev_diff ? fwd_diff : -int32_t(rev_diff);
_encoderCounts[motor] += diff;
_lastEncoderCount[motor] = count;
_motorSpeeds[motor] = speed;
}
return 1;
}
void RoboClaw::printStatus(char *string, size_t n)
{
snprintf(string, n, "pos1,spd1,pos2,spd2: %10.2f %10.2f %10.2f %10.2f\n",
double(getMotorPosition(MOTOR_1)),
double(getMotorSpeed(MOTOR_1)),
double(getMotorPosition(MOTOR_2)),
double(getMotorSpeed(MOTOR_2)));
}
float RoboClaw::getMotorPosition(e_motor motor)
{
if (motor == MOTOR_1) {
return _encoderCounts[0];
} else if (motor == MOTOR_2) {
return _encoderCounts[1];
} else {
warnx("Unknown motor value passed to RoboClaw::getMotorPosition");
return NAN;
}
}
float RoboClaw::getMotorSpeed(e_motor motor)
{
if (motor == MOTOR_1) {
return _motorSpeeds[0];
} else if (motor == MOTOR_2) {
return _motorSpeeds[1];
} else {
warnx("Unknown motor value passed to RoboClaw::getMotorPosition");
return NAN;
}
}
int RoboClaw::setMotorSpeed(e_motor motor, float value)
{
e_command command;
// send command
if (motor == MOTOR_1) {
if (value > 0) {
command = CMD_DRIVE_FWD_1;
} else {
command = CMD_DRIVE_REV_1;
}
} else if (motor == MOTOR_2) {
if (value > 0) {
command = CMD_DRIVE_FWD_2;
} else {
command = CMD_DRIVE_REV_2;
}
} else {
return -1;
}
return _sendUnsigned7Bit(command, value);
}
int RoboClaw::setMotorDutyCycle(e_motor motor, float value)
{
e_command command;
// send command
if (motor == MOTOR_1) {
command = CMD_SIGNED_DUTYCYCLE_1;
} else if (motor == MOTOR_2) {
command = CMD_SIGNED_DUTYCYCLE_2;
} else {
return -1;
}
return _sendSigned16Bit(command, value);
}
int RoboClaw::drive(float value)
{
e_command command = value >= 0 ? CMD_DRIVE_FWD_MIX : CMD_DRIVE_REV_MIX;
return _sendUnsigned7Bit(command, value);
}
int RoboClaw::turn(float value)
{
e_command command = value >= 0 ? CMD_TURN_LEFT : CMD_TURN_RIGHT;
return _sendUnsigned7Bit(command, value);
}
int RoboClaw::resetEncoders()
{
return _sendNothing(CMD_RESET_ENCODERS);
}
int RoboClaw::_sendUnsigned7Bit(e_command command, float data)
{
data = fabs(data);
if (data > 1.0f) {
data = 1.0f;
}
auto byte = (uint8_t)(data * INT8_MAX);
uint8_t recv_byte;
return _transaction(command, &byte, 1, &recv_byte, 1);
}
int RoboClaw::_sendSigned16Bit(e_command command, float data)
{
if (data > 1.0f) {
data = 1.0f;
} else if (data < -1.0f) {
data = -1.0f;
}
auto buff = (uint16_t)(data * INT16_MAX);
uint8_t recv_buff;
return _transaction(command, (uint8_t *) &buff, 2, &recv_buff, 1);
}
int RoboClaw::_sendNothing(e_command command)
{
uint8_t recv_buff;
return _transaction(command, nullptr, 0, &recv_buff, 1);
}
uint16_t RoboClaw::_calcCRC(const uint8_t *buf, size_t n, uint16_t init)
{
uint16_t crc = init;
for (size_t byte = 0; byte < n; byte++) {
crc = crc ^ (((uint16_t) buf[byte]) << 8);
for (uint8_t bit = 0; bit < 8; bit++) {
if (crc & 0x8000) {
crc = (crc << 1) ^ 0x1021;
} else {
crc = crc << 1;
}
}
}
return crc;
}
int RoboClaw::_transaction(e_command cmd, uint8_t *wbuff, size_t wbytes,
uint8_t *rbuff, size_t rbytes, bool send_checksum, bool recv_checksum)
{
int err_code = 0;
// WRITE
tcflush(_uart, TCIOFLUSH); // flush buffers
uint8_t buf[wbytes + 4];
buf[0] = (uint8_t) _parameters.address;
buf[1] = cmd;
if (wbuff) {
memcpy(&buf[2], wbuff, wbytes);
}
wbytes = wbytes + (send_checksum ? 4 : 2);
if (send_checksum) {
uint16_t sum = _calcCRC(buf, wbytes - 2);
buf[wbytes - 2] = (sum >> 8) & 0xFF;
buf[wbytes - 1] = sum & 0xFFu;
}
int count = write(_uart, buf, wbytes);
if (count < (int) wbytes) { // Did not successfully send all bytes.
PX4_ERR("Only wrote %d out of %d bytes", count, (int) wbytes);
return -1;
}
// READ
FD_ZERO(&_uart_set);
FD_SET(_uart, &_uart_set);
uint8_t *rbuff_curr = rbuff;
size_t bytes_read = 0;
// select(...) returns as soon as even 1 byte is available. read(...) returns immediately, no matter how many
// bytes are available. I need to keep reading until I get the number of bytes I expect.
while (bytes_read < rbytes) {
// select(...) may change this timeout struct (because it is not const). So I reset it every time.
_uart_timeout.tv_sec = 0;
_uart_timeout.tv_usec = TIMEOUT_US;
err_code = select(_uart + 1, &_uart_set, nullptr, nullptr, &_uart_timeout);
// An error code of 0 means that select timed out, which is how the Roboclaw indicates an error.
if (err_code <= 0) {
return err_code;
}
err_code = read(_uart, rbuff_curr, rbytes - bytes_read);
if (err_code <= 0) {
return err_code;
} else {
bytes_read += err_code;
rbuff_curr += err_code;
}
}
//TODO: Clean up this mess of IFs and returns
if (recv_checksum) {
if (bytes_read < 2) {
return -1;
}
// The checksum sent back by the roboclaw is calculated based on the address and command bytes as well
// as the data returned.
uint16_t checksum_calc = _calcCRC(buf, 2);
checksum_calc = _calcCRC(rbuff, bytes_read - 2, checksum_calc);
uint16_t checksum_recv = (rbuff[bytes_read - 2] << 8) + rbuff[bytes_read - 1];
if (checksum_calc == checksum_recv) {
return bytes_read;
} else {
return -10;
}
} else {
if (bytes_read == 1 && rbuff[0] == 0xFF) {
return 1;
} else {
return -11;
}
}
}
void RoboClaw::_parameters_update()
{
param_get(_param_handles.counts_per_rev, &_parameters.counts_per_rev);
param_get(_param_handles.encoder_read_period_ms, &_parameters.encoder_read_period_ms);
param_get(_param_handles.actuator_write_period_ms, &_parameters.actuator_write_period_ms);
param_get(_param_handles.address, &_parameters.address);
if (_actuatorsSub > 0) {
orb_set_interval(_actuatorsSub, _parameters.actuator_write_period_ms);
}
int baudRate;
param_get(_param_handles.serial_baud_rate, &baudRate);
switch (baudRate) {
case 2400:
_parameters.serial_baud_rate = B2400;
break;
case 9600:
_parameters.serial_baud_rate = B9600;
break;
case 19200:
_parameters.serial_baud_rate = B19200;
break;
case 38400:
_parameters.serial_baud_rate = B38400;
break;
case 57600:
_parameters.serial_baud_rate = B57600;
break;
case 115200:
_parameters.serial_baud_rate = B115200;
break;
case 230400:
_parameters.serial_baud_rate = B230400;
break;
case 460800:
_parameters.serial_baud_rate = B460800;
break;
default:
_parameters.serial_baud_rate = B2400;
}
}