px4flow.cpp
12.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/****************************************************************************
*
* Copyright (c) 2013-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file px4flow.cpp
* @author Dominik Honegger
* @author Ban Siesta <bansiesta@gmail.com>
*
* Driver for the PX4FLOW module connected via I2C.
*/
#include <drivers/device/i2c.h>
#include <drivers/drv_hrt.h>
#include <lib/conversion/rotation.h>
#include <lib/parameters/param.h>
#include <lib/perf/perf_counter.h>
#include <px4_platform_common/px4_config.h>
#include <px4_platform_common/defines.h>
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/i2c_spi_buses.h>
#include <px4_platform_common/module.h>
#include <uORB/PublicationMulti.hpp>
#include <uORB/topics/distance_sensor.h>
#include <uORB/topics/optical_flow.h>
/* Configuration Constants */
#define I2C_FLOW_ADDRESS_DEFAULT 0x42 ///< 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49
#define I2C_FLOW_ADDRESS_MIN 0x42 ///< 7-bit address.
#define I2C_FLOW_ADDRESS_MAX 0x49 ///< 7-bit address.
/* PX4FLOW Registers addresses */
#define PX4FLOW_REG 0x16 ///< Measure Register 22
#define PX4FLOW_CONVERSION_INTERVAL_DEFAULT 100000 ///< in microseconds! = 10Hz
#define PX4FLOW_CONVERSION_INTERVAL_MIN 10000 ///< in microseconds! = 100 Hz
#define PX4FLOW_CONVERSION_INTERVAL_MAX 1000000 ///< in microseconds! = 1 Hz
#define PX4FLOW_I2C_MAX_BUS_SPEED 400000 ///< 400 KHz maximum speed
#define PX4FLOW_MAX_DISTANCE 5.0f
#define PX4FLOW_MIN_DISTANCE 0.3f
#include "i2c_frame.h"
class PX4FLOW: public device::I2C, public I2CSPIDriver<PX4FLOW>
{
public:
PX4FLOW(I2CSPIBusOption bus_option, int bus, int address, uint8_t sonar_rotation, int bus_frequency,
int conversion_interval = PX4FLOW_CONVERSION_INTERVAL_DEFAULT, enum Rotation rotation = ROTATION_NONE);
virtual ~PX4FLOW();
static I2CSPIDriverBase *instantiate(const BusCLIArguments &cli, const BusInstanceIterator &iterator,
int runtime_instance);
static void print_usage();
int init() override;
void print_status();
/**
* Perform a poll cycle; collect from the previous measurement
* and start a new one.
*/
void RunImpl();
protected:
int probe() override;
private:
uint8_t _sonar_rotation;
bool _sensor_ok{false};
bool _collect_phase{false};
uORB::PublicationMulti<optical_flow_s> _px4flow_topic{ORB_ID(optical_flow)};
uORB::PublicationMulti<distance_sensor_s> _distance_sensor_topic{ORB_ID(distance_sensor)};
perf_counter_t _sample_perf;
perf_counter_t _comms_errors;
enum Rotation _sensor_rotation;
float _sensor_min_range{0.0f};
float _sensor_max_range{0.0f};
float _sensor_max_flow_rate{0.0f};
i2c_frame _frame;
i2c_integral_frame _frame_integral;
/**
* Test whether the device supported by the driver is present at a
* specific address.
*
* @param address The I2C bus address to probe.
* @return True if the device is present.
*/
int probe_address(uint8_t address);
/**
* Initialise the automatic measurement state machine and start it.
*
* @note This function is called at open and error time. It might make sense
* to make it more aggressive about resetting the bus in case of errors.
*/
void start();
int measure();
int collect();
};
extern "C" __EXPORT int px4flow_main(int argc, char *argv[]);
PX4FLOW::PX4FLOW(I2CSPIBusOption bus_option, int bus, int address, uint8_t sonar_rotation, int bus_frequency,
int conversion_interval, enum Rotation rotation) :
I2C(DRV_FLOW_DEVTYPE_PX4FLOW, MODULE_NAME, bus, address, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus, address),
_sonar_rotation(sonar_rotation),
_sample_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": read")),
_comms_errors(perf_alloc(PC_COUNT, MODULE_NAME": com_err")),
_sensor_rotation(rotation)
{
}
PX4FLOW::~PX4FLOW()
{
perf_free(_sample_perf);
perf_free(_comms_errors);
}
int
PX4FLOW::init()
{
int ret = PX4_ERROR;
/* do I2C init (and probe) first */
if (I2C::init() != OK) {
return ret;
}
ret = OK;
/* sensor is ok, but we don't really know if it is within range */
_sensor_ok = true;
/* get yaw rotation from sensor frame to body frame */
param_t rot = param_find("SENS_FLOW_ROT");
if (rot != PARAM_INVALID) {
int32_t val = 6; // the recommended installation for the flow sensor is with the Y sensor axis forward
param_get(rot, &val);
_sensor_rotation = (enum Rotation)val;
}
/* get operational limits of the sensor */
param_t hmin = param_find("SENS_FLOW_MINHGT");
if (hmin != PARAM_INVALID) {
float val = 0.7;
param_get(hmin, &val);
_sensor_min_range = val;
}
param_t hmax = param_find("SENS_FLOW_MAXHGT");
if (hmax != PARAM_INVALID) {
float val = 3.0;
param_get(hmax, &val);
_sensor_max_range = val;
}
param_t ratemax = param_find("SENS_FLOW_MAXR");
if (ratemax != PARAM_INVALID) {
float val = 2.5;
param_get(ratemax, &val);
_sensor_max_flow_rate = val;
}
start();
return ret;
}
int
PX4FLOW::probe()
{
uint8_t val[I2C_FRAME_SIZE] {};
// to be sure this is not a ll40ls Lidar (which can also be on
// 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address
// 0. The ll40ls gives an error for that, whereas the flow
// happily returns some data
if (transfer(nullptr, 0, &val[0], 22) != OK) {
return -EIO;
}
// that worked, so start a measurement cycle
return measure();
}
int
PX4FLOW::measure()
{
/*
* Send the command to begin a measurement.
*/
uint8_t cmd = PX4FLOW_REG;
int ret = transfer(&cmd, 1, nullptr, 0);
if (OK != ret) {
perf_count(_comms_errors);
DEVICE_DEBUG("i2c::transfer returned %d", ret);
return ret;
}
return PX4_OK;
}
int
PX4FLOW::collect()
{
int ret = -EIO;
/* read from the sensor */
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { };
perf_begin(_sample_perf);
if (PX4FLOW_REG == 0x00) {
ret = transfer(nullptr, 0, &val[0], I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE);
}
if (PX4FLOW_REG == 0x16) {
ret = transfer(nullptr, 0, &val[0], I2C_INTEGRAL_FRAME_SIZE);
}
if (ret < 0) {
DEVICE_DEBUG("error reading from sensor: %d", ret);
perf_count(_comms_errors);
perf_end(_sample_perf);
return ret;
}
if (PX4FLOW_REG == 0) {
memcpy(&_frame, val, I2C_FRAME_SIZE);
memcpy(&_frame_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE);
}
if (PX4FLOW_REG == 0x16) {
memcpy(&_frame_integral, val, I2C_INTEGRAL_FRAME_SIZE);
}
optical_flow_s report{};
report.timestamp = hrt_absolute_time();
report.pixel_flow_x_integral = static_cast<float>(_frame_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians
report.pixel_flow_y_integral = static_cast<float>(_frame_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians
report.frame_count_since_last_readout = _frame_integral.frame_count_since_last_readout;
report.ground_distance_m = static_cast<float>(_frame_integral.ground_distance) / 1000.0f;//convert to meters
report.quality = _frame_integral.qual; //0:bad ; 255 max quality
report.gyro_x_rate_integral = static_cast<float>(_frame_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians
report.gyro_y_rate_integral = static_cast<float>(_frame_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians
report.gyro_z_rate_integral = static_cast<float>(_frame_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians
report.integration_timespan = _frame_integral.integration_timespan; //microseconds
report.time_since_last_sonar_update = _frame_integral.sonar_timestamp;//microseconds
report.gyro_temperature = _frame_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius
report.sensor_id = 0;
report.max_flow_rate = _sensor_max_flow_rate;
report.min_ground_distance = _sensor_min_range;
report.max_ground_distance = _sensor_max_range;
/* rotate measurements in yaw from sensor frame to body frame according to parameter SENS_FLOW_ROT */
float zeroval = 0.0f;
rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval);
rotate_3f(_sensor_rotation, report.gyro_x_rate_integral, report.gyro_y_rate_integral, report.gyro_z_rate_integral);
_px4flow_topic.publish(report);
/* publish to the distance_sensor topic as well */
if (_distance_sensor_topic.get_instance() == 0) {
distance_sensor_s distance_report{};
DeviceId device_id;
device_id.devid = get_device_id();
device_id.devid_s.devtype = DRV_DIST_DEVTYPE_PX4FLOW;
distance_report.timestamp = report.timestamp;
distance_report.min_distance = PX4FLOW_MIN_DISTANCE;
distance_report.max_distance = PX4FLOW_MAX_DISTANCE;
distance_report.current_distance = report.ground_distance_m;
distance_report.variance = 0.0f;
distance_report.signal_quality = -1;
distance_report.type = distance_sensor_s::MAV_DISTANCE_SENSOR_ULTRASOUND;
distance_report.device_id = device_id.devid;
distance_report.orientation = _sonar_rotation;
_distance_sensor_topic.publish(distance_report);
}
perf_end(_sample_perf);
return PX4_OK;
}
void
PX4FLOW::start()
{
/* reset the report ring and state machine */
_collect_phase = false;
/* schedule a cycle to start things */
ScheduleNow();
}
void
PX4FLOW::RunImpl()
{
if (OK != measure()) {
DEVICE_DEBUG("measure error");
}
/* perform collection */
if (OK != collect()) {
DEVICE_DEBUG("collection error");
/* restart the measurement state machine */
start();
return;
}
ScheduleDelayed(PX4FLOW_CONVERSION_INTERVAL_DEFAULT);
}
void
PX4FLOW::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_sample_perf);
perf_print_counter(_comms_errors);
}
void
PX4FLOW::print_usage()
{
PRINT_MODULE_USAGE_NAME("px4flow", "driver");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAMS_I2C_SPI_DRIVER(true, false);
PRINT_MODULE_USAGE_PARAMS_I2C_ADDRESS(0x42);
PRINT_MODULE_USAGE_PARAM_INT('R', 25, 0, 35, "Rotation (default=downwards)", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
}
I2CSPIDriverBase *PX4FLOW::instantiate(const BusCLIArguments &cli, const BusInstanceIterator &iterator,
int runtime_instance)
{
PX4FLOW *instance = new PX4FLOW(iterator.configuredBusOption(), iterator.bus(), cli.i2c_address, cli.orientation,
cli.bus_frequency);
if (!instance) {
PX4_ERR("alloc failed");
return nullptr;
}
if (OK != instance->init()) {
delete instance;
return nullptr;
}
return instance;
}
int
px4flow_main(int argc, char *argv[])
{
int ch;
using ThisDriver = PX4FLOW;
BusCLIArguments cli{true, false};
cli.default_i2c_frequency = PX4FLOW_I2C_MAX_BUS_SPEED;
cli.orientation = distance_sensor_s::ROTATION_DOWNWARD_FACING;
cli.i2c_address = I2C_FLOW_ADDRESS_DEFAULT;
while ((ch = cli.getopt(argc, argv, "R:")) != EOF) {
switch (ch) {
case 'R':
cli.orientation = atoi(cli.optarg());
break;
}
}
const char *verb = cli.optarg();
if (!verb) {
ThisDriver::print_usage();
return -1;
}
BusInstanceIterator iterator(MODULE_NAME, cli, DRV_FLOW_DEVTYPE_PX4FLOW);
if (!strcmp(verb, "start")) {
return ThisDriver::module_start(cli, iterator);
}
if (!strcmp(verb, "stop")) {
return ThisDriver::module_stop(iterator);
}
if (!strcmp(verb, "status")) {
return ThisDriver::module_status(iterator);
}
ThisDriver::print_usage();
return -1;
}