LSM9DS1.cpp
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "LSM9DS1.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
LSM9DS1::LSM9DS1(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation, int bus_frequency,
spi_mode_e spi_mode) :
SPI(DRV_IMU_DEVTYPE_ST_LSM9DS1_AG, MODULE_NAME, bus, device, spi_mode, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_px4_accel(get_device_id(), rotation),
_px4_gyro(get_device_id(), rotation)
{
ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
}
LSM9DS1::~LSM9DS1()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
}
int LSM9DS1::init()
{
int ret = SPI::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("SPI::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool LSM9DS1::Reset()
{
_state = STATE::RESET;
ScheduleClear();
ScheduleNow();
return true;
}
void LSM9DS1::exit_and_cleanup()
{
I2CSPIDriverBase::exit_and_cleanup();
}
void LSM9DS1::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
}
int LSM9DS1::probe()
{
const uint8_t whoami = RegisterRead(Register::WHO_AM_I);
if (whoami != WHO_AM_I_ID) {
DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
return PX4_ERROR;
}
return PX4_OK;
}
void LSM9DS1::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::RESET:
// PWR_MGMT_1: Device Reset
RegisterWrite(Register::CTRL_REG8, CTRL_REG8_BIT::SW_RESET);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(100_ms);
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::WHO_AM_I) == WHO_AM_I_ID)) {
// Disable I2C, wakeup, and reset digital signal path
RegisterWrite(Register::CTRL_REG9, CTRL_REG9_BIT::I2C_DISABLE); // set immediately to prevent switching into I2C mode
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(100_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
// always check current FIFO count
bool success = false;
// Number of unread words (16-bit axes) stored in FIFO.
const uint8_t FIFO_SRC = RegisterRead(Register::FIFO_SRC);
const uint8_t samples = FIFO_SRC & static_cast<uint8_t>(FIFO_SRC_BIT::FSS);
if (FIFO_SRC & FIFO_SRC_BIT::OVRN) {
// overflow
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if (samples == 0) {
perf_count(_fifo_empty_perf);
} else {
if (samples > FIFO_MAX_SAMPLES) {
// not technically an overflow, but more samples than we expected or can publish
FIFOReset();
perf_count(_fifo_overflow_perf);
} else if (samples >= 1) {
if (FIFORead(now, samples)) {
success = true;
if (_failure_count > 0) {
_failure_count--;
}
}
}
}
if (!success) {
_failure_count++;
// full reset if things are failing consistently
if (_failure_count > 10) {
Reset();
return;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_cfg[_checked_register])) {
_last_config_check_timestamp = now;
_checked_register = (_checked_register + 1) % size_register_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
}
} else {
// periodically update temperature (~1 Hz)
if (hrt_elapsed_time(&_temperature_update_timestamp) >= 1_s) {
UpdateTemperature();
_temperature_update_timestamp = now;
}
}
}
break;
}
}
void LSM9DS1::ConfigureSampleRate(int sample_rate)
{
// round down to nearest FIFO sample dt
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));
// recompute FIFO empty interval (us) with actual gyro sample limit
_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
}
bool LSM9DS1::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
// Gyroscope configuration 2000 degrees/second
_px4_gyro.set_scale(math::radians(70.f / 1000.f)); // 70 mdps/LSB
_px4_gyro.set_range(math::radians(2000.f));
// Accelerometer configuration 16 G range
_px4_accel.set_scale(0.732f * (CONSTANTS_ONE_G / 1000.f)); // 0.732 mg/LSB
_px4_accel.set_range(16.f * CONSTANTS_ONE_G);
return success;
}
bool LSM9DS1::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
uint8_t LSM9DS1::RegisterRead(Register reg)
{
uint8_t cmd[2] {};
cmd[0] = static_cast<uint8_t>(reg) | DIR_READ;
transfer(cmd, cmd, sizeof(cmd));
return cmd[1];
}
void LSM9DS1::RegisterWrite(Register reg, uint8_t value)
{
uint8_t cmd[2] { (uint8_t)reg, value };
transfer(cmd, cmd, sizeof(cmd));
}
void LSM9DS1::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
bool LSM9DS1::FIFORead(const hrt_abstime ×tamp_sample, uint8_t samples)
{
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = 0;
gyro.dt = FIFO_SAMPLE_DT;
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT;
for (int i = 0; i < samples; i++) {
{
struct GyroTransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::OUT_X_L_G) | DIR_READ};
uint8_t OUT_X_L_G{0};
uint8_t OUT_X_H_G{0};
uint8_t OUT_Y_L_G{0};
uint8_t OUT_Y_H_G{0};
uint8_t OUT_Z_L_G{0};
uint8_t OUT_Z_H_G{0};
} buffer{};
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, sizeof(buffer)) == PX4_OK) {
const int16_t gyro_x = combine(buffer.OUT_X_H_G, buffer.OUT_X_L_G);
const int16_t gyro_y = combine(buffer.OUT_Y_H_G, buffer.OUT_Y_L_G);
const int16_t gyro_z = combine(buffer.OUT_Z_H_G, buffer.OUT_Z_L_G);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[gyro.samples] = gyro_x;
gyro.y[gyro.samples] = gyro_y;
gyro.z[gyro.samples] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
gyro.samples++;
} else {
perf_count(_bad_transfer_perf);
}
}
{
struct AccelTransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::OUT_X_L_XL) | DIR_READ};
uint8_t OUT_X_L_XL{0};
uint8_t OUT_X_H_XL{0};
uint8_t OUT_Y_L_XL{0};
uint8_t OUT_Y_H_XL{0};
uint8_t OUT_Z_L_XL{0};
uint8_t OUT_Z_H_XL{0};
} buffer{};
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, sizeof(buffer)) == PX4_OK) {
const int16_t accel_x = combine(buffer.OUT_X_H_XL, buffer.OUT_X_L_XL);
const int16_t accel_y = combine(buffer.OUT_Y_H_XL, buffer.OUT_Y_L_XL);
const int16_t accel_z = combine(buffer.OUT_Z_H_XL, buffer.OUT_Z_L_XL);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel.samples] = accel_x;
accel.y[accel.samples] = accel_y;
accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel.samples++;
} else {
perf_count(_bad_transfer_perf);
}
}
}
if (gyro.samples > 0) {
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
_px4_gyro.updateFIFO(gyro);
}
if (accel.samples > 0) {
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
_px4_accel.updateFIFO(accel);
}
return (accel.samples > 0) && (gyro.samples > 0);
}
void LSM9DS1::FIFOReset()
{
perf_count(_fifo_reset_perf);
// FIFO_CTRL: to reset FIFO content, Bypass mode (0) should be selected
RegisterWrite(Register::FIFO_CTRL, 0);
// After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL (2Eh) (FMODE [2:0]) to '001'.
for (auto &r : _register_cfg) {
if ((r.reg == Register::CTRL_REG8) || (r.reg == Register::CTRL_REG9) || (r.reg == Register::FIFO_CTRL)) {
RegisterSetAndClearBits(r.reg, r.set_bits, r.clear_bits);
}
}
}
void LSM9DS1::UpdateTemperature()
{
// read current temperature
struct TransferBuffer {
uint8_t cmd{static_cast<uint8_t>(Register::OUT_TEMP_L) | DIR_READ};
uint8_t OUT_TEMP_L{0};
uint8_t OUT_TEMP_H{0};
} buffer{};
if (transfer((uint8_t *)&buffer, (uint8_t *)&buffer, sizeof(buffer)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
// 16 bits in two’s complement format with a sensitivity of 256 LSB/°C. The output zero level corresponds to 25 °C.
const int16_t OUT_TEMP = combine(buffer.OUT_TEMP_H, buffer.OUT_TEMP_L);
const float temperature = (OUT_TEMP / 256.0f) + 25.0f;
if (PX4_ISFINITE(temperature)) {
_px4_accel.set_temperature(temperature);
_px4_gyro.set_temperature(temperature);
}
}