MPU9250_I2C.cpp 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/****************************************************************************
 *
 *   Copyright (c) 2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "MPU9250_I2C.hpp"

using namespace time_literals;

static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
	return (msb << 8u) | lsb;
}

MPU9250_I2C::MPU9250_I2C(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation,
			 int bus_frequency, int address, spi_drdy_gpio_t drdy_gpio) :
	I2C(DRV_IMU_DEVTYPE_MPU9250, MODULE_NAME, bus, address, bus_frequency),
	I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
	_drdy_gpio(drdy_gpio),
	_px4_accel(get_device_id(), rotation),
	_px4_gyro(get_device_id(), rotation)
{
	if (drdy_gpio != 0) {
		_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME": DRDY missed");
	}

	ConfigureSampleRate(_px4_gyro.get_max_rate_hz());
}

MPU9250_I2C::~MPU9250_I2C()
{
	perf_free(_bad_register_perf);
	perf_free(_bad_transfer_perf);
	perf_free(_fifo_empty_perf);
	perf_free(_fifo_overflow_perf);
	perf_free(_fifo_reset_perf);
	perf_free(_drdy_missed_perf);
}

int MPU9250_I2C::init()
{
	int ret = I2C::init();

	if (ret != PX4_OK) {
		DEVICE_DEBUG("I2C::init failed (%i)", ret);
		return ret;
	}

	return Reset() ? 0 : -1;
}

bool MPU9250_I2C::Reset()
{
	_state = STATE::RESET;
	DataReadyInterruptDisable();
	ScheduleClear();
	ScheduleNow();
	return true;
}

void MPU9250_I2C::exit_and_cleanup()
{
	DataReadyInterruptDisable();
	I2CSPIDriverBase::exit_and_cleanup();
}

void MPU9250_I2C::print_status()
{
	I2CSPIDriverBase::print_status();

	PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);

	perf_print_counter(_bad_register_perf);
	perf_print_counter(_bad_transfer_perf);
	perf_print_counter(_fifo_empty_perf);
	perf_print_counter(_fifo_overflow_perf);
	perf_print_counter(_fifo_reset_perf);
	perf_print_counter(_drdy_missed_perf);
}

int MPU9250_I2C::probe()
{
	const uint8_t whoami = RegisterRead(Register::WHO_AM_I);

	if (whoami != WHOAMI) {
		DEVICE_DEBUG("unexpected WHO_AM_I 0x%02x", whoami);
		return PX4_ERROR;
	}

	return PX4_OK;
}

void MPU9250_I2C::RunImpl()
{
	const hrt_abstime now = hrt_absolute_time();

	switch (_state) {
	case STATE::RESET:
		// PWR_MGMT_1: Device Reset
		RegisterWrite(Register::PWR_MGMT_1, PWR_MGMT_1_BIT::H_RESET);
		_reset_timestamp = now;
		_failure_count = 0;
		_state = STATE::WAIT_FOR_RESET;
		ScheduleDelayed(100_ms);
		break;

	case STATE::WAIT_FOR_RESET:

		// The reset value is 0x00 for all registers other than the registers below
		//  Document Number: RM-MPU-9250A-00 Page 9 of 55
		if ((RegisterRead(Register::WHO_AM_I) == WHOAMI)
		    && (RegisterRead(Register::PWR_MGMT_1) == 0x01)) {

			// Wakeup and reset digital signal path
			RegisterWrite(Register::PWR_MGMT_1, PWR_MGMT_1_BIT::CLKSEL_0);
			RegisterWrite(Register::SIGNAL_PATH_RESET,
				      SIGNAL_PATH_RESET_BIT::GYRO_RESET | SIGNAL_PATH_RESET_BIT::ACCEL_RESET | SIGNAL_PATH_RESET_BIT::TEMP_RESET);
			RegisterWrite(Register::USER_CTRL, USER_CTRL_BIT::SIG_COND_RST);

			// if reset succeeded then configure
			_state = STATE::CONFIGURE;
			ScheduleDelayed(100_ms);

		} else {
			// RESET not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Reset failed, retrying");
				_state = STATE::RESET;
				ScheduleDelayed(100_ms);

			} else {
				PX4_DEBUG("Reset not complete, check again in 10 ms");
				ScheduleDelayed(10_ms);
			}
		}

		break;

	case STATE::CONFIGURE:
		if (Configure()) {
			// if configure succeeded then start reading from FIFO
			_state = STATE::FIFO_READ;

			if (DataReadyInterruptConfigure()) {
				_data_ready_interrupt_enabled = true;

				// backup schedule as a watchdog timeout
				ScheduleDelayed(100_ms);

			} else {
				_data_ready_interrupt_enabled = false;
				ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
			}

			FIFOReset();

		} else {
			// CONFIGURE not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Configure failed, resetting");
				_state = STATE::RESET;

			} else {
				PX4_DEBUG("Configure failed, retrying");
			}

			ScheduleDelayed(100_ms);
		}

		break;

	case STATE::FIFO_READ: {
			if (_data_ready_interrupt_enabled) {
				// scheduled from interrupt if _drdy_fifo_read_samples was set
				if (_drdy_fifo_read_samples.fetch_and(0) != _fifo_gyro_samples) {
					perf_count(_drdy_missed_perf);
				}

				// push backup schedule back
				ScheduleDelayed(_fifo_empty_interval_us * 2);
			}

			// always check current FIFO count
			bool success = false;
			const uint16_t fifo_count = FIFOReadCount();

			if (fifo_count >= FIFO::SIZE) {
				FIFOReset();
				perf_count(_fifo_overflow_perf);

			} else if (fifo_count == 0) {
				perf_count(_fifo_empty_perf);

			} else {
				// FIFO count (size in bytes) should be a multiple of the FIFO::DATA structure
				const uint8_t samples = (fifo_count / sizeof(FIFO::DATA) / SAMPLES_PER_TRANSFER) *
							SAMPLES_PER_TRANSFER; // round down to nearest

				if (samples > FIFO_MAX_SAMPLES) {
					// not technically an overflow, but more samples than we expected or can publish
					FIFOReset();
					perf_count(_fifo_overflow_perf);

				} else if (samples >= 1) {
					if (FIFORead(now, samples)) {
						success = true;

						if (_failure_count > 0) {
							_failure_count--;
						}
					}
				}
			}

			if (!success) {
				_failure_count++;

				// full reset if things are failing consistently
				if (_failure_count > 10) {
					Reset();
					return;
				}
			}

			if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
				// check configuration registers periodically or immediately following any failure
				if (RegisterCheck(_register_cfg[_checked_register])) {
					_last_config_check_timestamp = now;
					_checked_register = (_checked_register + 1) % size_register_cfg;

				} else {
					// register check failed, force reset
					perf_count(_bad_register_perf);
					Reset();
				}

			} else {
				// periodically update temperature (~1 Hz)
				if (hrt_elapsed_time(&_temperature_update_timestamp) >= 1_s) {
					UpdateTemperature();
					_temperature_update_timestamp = now;
				}
			}
		}

		break;
	}
}

void MPU9250_I2C::ConfigureAccel()
{
	const uint8_t ACCEL_FS_SEL = RegisterRead(Register::ACCEL_CONFIG) & (Bit4 | Bit3); // [4:3] ACCEL_FS_SEL[1:0]

	switch (ACCEL_FS_SEL) {
	case ACCEL_FS_SEL_2G:
		_px4_accel.set_scale(CONSTANTS_ONE_G / 16384.f);
		_px4_accel.set_range(2.f * CONSTANTS_ONE_G);
		break;

	case ACCEL_FS_SEL_4G:
		_px4_accel.set_scale(CONSTANTS_ONE_G / 8192.f);
		_px4_accel.set_range(4.f * CONSTANTS_ONE_G);
		break;

	case ACCEL_FS_SEL_8G:
		_px4_accel.set_scale(CONSTANTS_ONE_G / 4096.f);
		_px4_accel.set_range(8.f * CONSTANTS_ONE_G);
		break;

	case ACCEL_FS_SEL_16G:
		_px4_accel.set_scale(CONSTANTS_ONE_G / 2048.f);
		_px4_accel.set_range(16.f * CONSTANTS_ONE_G);
		break;
	}
}

void MPU9250_I2C::ConfigureGyro()
{
	const uint8_t GYRO_FS_SEL = RegisterRead(Register::GYRO_CONFIG) & (Bit4 | Bit3); // [4:3] GYRO_FS_SEL[1:0]

	float range_dps = 0.f;

	switch (GYRO_FS_SEL) {
	case GYRO_FS_SEL_250_DPS:
		range_dps = 250.f;
		break;

	case GYRO_FS_SEL_500_DPS:
		range_dps = 500.f;
		break;

	case GYRO_FS_SEL_1000_DPS:
		range_dps = 1000.f;
		break;

	case GYRO_FS_SEL_2000_DPS:
		range_dps = 2000.f;
		break;
	}

	_px4_gyro.set_scale(math::radians(range_dps / 32768.f));
	_px4_gyro.set_range(math::radians(range_dps));
}

void MPU9250_I2C::ConfigureSampleRate(int sample_rate)
{
	// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
	const float min_interval = FIFO_SAMPLE_DT * SAMPLES_PER_TRANSFER;
	_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);

	_fifo_gyro_samples = roundf(math::min((float)_fifo_empty_interval_us / (1e6f / GYRO_RATE), (float)FIFO_MAX_SAMPLES));

	// recompute FIFO empty interval (us) with actual gyro sample limit
	_fifo_empty_interval_us = _fifo_gyro_samples * (1e6f / GYRO_RATE);
}

bool MPU9250_I2C::Configure()
{
	// first set and clear all configured register bits
	for (const auto &reg_cfg : _register_cfg) {
		RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
	}

	// now check that all are configured
	bool success = true;

	for (const auto &reg_cfg : _register_cfg) {
		if (!RegisterCheck(reg_cfg)) {
			success = false;
		}
	}

	ConfigureAccel();
	ConfigureGyro();

	return success;
}

int MPU9250_I2C::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
	static_cast<MPU9250_I2C *>(arg)->DataReady();
	return 0;
}

void MPU9250_I2C::DataReady()
{
	uint32_t expected = 0;

	// at least the required number of samples in the FIFO
	if (((_drdy_count.fetch_add(1) + 1) >= _fifo_gyro_samples)
	    && _drdy_fifo_read_samples.compare_exchange(&expected, _fifo_gyro_samples)) {

		_drdy_count.store(0);
		ScheduleNow();
	}
}

bool MPU9250_I2C::DataReadyInterruptConfigure()
{
	// TODO
	return false;

	if (_drdy_gpio == 0) {
		return false;
	}

	// Setup data ready on falling edge
	return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}

bool MPU9250_I2C::DataReadyInterruptDisable()
{
	if (_drdy_gpio == 0) {
		return false;
	}

	return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}

bool MPU9250_I2C::RegisterCheck(const register_config_t &reg_cfg)
{
	bool success = true;

	const uint8_t reg_value = RegisterRead(reg_cfg.reg);

	if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
		success = false;
	}

	if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
		success = false;
	}

	return success;
}

uint8_t MPU9250_I2C::RegisterRead(Register reg)
{
	uint8_t cmd = static_cast<uint8_t>(reg);
	uint8_t value = 0;
	//set_frequency(SPI_SPEED); // low speed for regular registers
	transfer(&cmd, 1, &value, 1);
	return value;
}

void MPU9250_I2C::RegisterWrite(Register reg, uint8_t value)
{
	uint8_t cmd[2];
	cmd[0] = static_cast<uint8_t>(reg);
	cmd[1] = value;
	//set_frequency(SPI_SPEED); // low speed for regular registers
	transfer(cmd, sizeof(cmd), nullptr, 0);
}

void MPU9250_I2C::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
	const uint8_t orig_val = RegisterRead(reg);

	uint8_t val = (orig_val & ~clearbits) | setbits;

	if (orig_val != val) {
		RegisterWrite(reg, val);
	}
}

uint16_t MPU9250_I2C::FIFOReadCount()
{
	// read FIFO count
	uint8_t cmd = static_cast<uint8_t>(Register::FIFO_COUNTH);
	uint8_t fifo_count_buf[2] {};
	//set_frequency(SPI_SPEED_SENSOR);

	if (transfer(&cmd, 1, fifo_count_buf, 2) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return 0;
	}

	return combine(fifo_count_buf[0], fifo_count_buf[1]);
}

bool MPU9250_I2C::FIFORead(const hrt_abstime &timestamp_sample, uint8_t samples)
{
	uint8_t cmd = static_cast<uint8_t>(Register::FIFO_R_W);
	FIFOTransferBuffer buffer{};
	const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA), FIFO::SIZE);
	//set_frequency(SPI_SPEED_SENSOR);

	if (transfer(&cmd, 1, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return false;
	}


	ProcessGyro(timestamp_sample, buffer.f, samples);
	return ProcessAccel(timestamp_sample, buffer.f, samples);
}

void MPU9250_I2C::FIFOReset()
{
	perf_count(_fifo_reset_perf);

	// FIFO_EN: disable FIFO
	RegisterWrite(Register::FIFO_EN, 0);

	// USER_CTRL: reset FIFO
	RegisterSetAndClearBits(Register::USER_CTRL, USER_CTRL_BIT::FIFO_RST, USER_CTRL_BIT::FIFO_EN);

	// reset while FIFO is disabled
	_drdy_count.store(0);
	_drdy_fifo_read_samples.store(0);

	// FIFO_EN: enable both gyro and accel
	// USER_CTRL: re-enable FIFO
	for (const auto &r : _register_cfg) {
		if ((r.reg == Register::FIFO_EN) || (r.reg == Register::USER_CTRL)) {
			RegisterSetAndClearBits(r.reg, r.set_bits, r.clear_bits);
		}
	}
}

bool MPU9250_I2C::ProcessAccel(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
	sensor_accel_fifo_s accel{};
	accel.timestamp_sample = timestamp_sample;
	accel.samples = 0;
	accel.dt = FIFO_SAMPLE_DT * SAMPLES_PER_TRANSFER;

	bool bad_data = false;

	for (int i = 0; i < samples; i = i + SAMPLES_PER_TRANSFER) {
		int16_t accel_x = combine(fifo[i].ACCEL_XOUT_H, fifo[i].ACCEL_XOUT_L);
		int16_t accel_y = combine(fifo[i].ACCEL_YOUT_H, fifo[i].ACCEL_YOUT_L);
		int16_t accel_z = combine(fifo[i].ACCEL_ZOUT_H, fifo[i].ACCEL_ZOUT_L);

		// sensor's frame is +x forward, +y left, +z up
		//  flip y & z to publish right handed with z down (x forward, y right, z down)
		accel.x[accel.samples] = accel_x;
		accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
		accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
		accel.samples++;
	}

	_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
				   perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));

	if (accel.samples > 0) {
		_px4_accel.updateFIFO(accel);
	}

	return !bad_data;
}

void MPU9250_I2C::ProcessGyro(const hrt_abstime &timestamp_sample, const FIFO::DATA fifo[], const uint8_t samples)
{
	sensor_gyro_fifo_s gyro{};
	gyro.timestamp_sample = timestamp_sample;
	gyro.samples = samples;
	gyro.dt = FIFO_SAMPLE_DT;

	for (int i = 0; i < samples; i++) {
		const int16_t gyro_x = combine(fifo[i].GYRO_XOUT_H, fifo[i].GYRO_XOUT_L);
		const int16_t gyro_y = combine(fifo[i].GYRO_YOUT_H, fifo[i].GYRO_YOUT_L);
		const int16_t gyro_z = combine(fifo[i].GYRO_ZOUT_H, fifo[i].GYRO_ZOUT_L);

		// sensor's frame is +x forward, +y left, +z up
		//  flip y & z to publish right handed with z down (x forward, y right, z down)
		gyro.x[i] = gyro_x;
		gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
		gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
	}

	_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
				  perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));

	_px4_gyro.updateFIFO(gyro);
}

void MPU9250_I2C::UpdateTemperature()
{
	// read current temperature
	uint8_t cmd = static_cast<uint8_t>(Register::TEMP_OUT_H);
	uint8_t temperature_buf[2] {};
	//set_frequency(SPI_SPEED_SENSOR);

	if (transfer(&cmd, 1, temperature_buf, 2) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return;
	}

	const int16_t TEMP_OUT = combine(temperature_buf[0], temperature_buf[1]);
	const float TEMP_degC = (TEMP_OUT / TEMPERATURE_SENSITIVITY) + TEMPERATURE_OFFSET;

	if (PX4_ISFINITE(TEMP_degC)) {
		_px4_accel.set_temperature(TEMP_degC);
		_px4_gyro.set_temperature(TEMP_degC);
	}
}