FXOS8701CQ.cpp 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/****************************************************************************
 *
 *   Copyright (c) 2017-2019 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file fxos8701cq.cpp
 * Driver for the NXP FXOS8701CQ 6-axis sensor with integrated linear accelerometer and
 * magnetometer connected via SPI.
 */

#include "FXOS8701CQ.hpp"

using namespace time_literals;

/*
  list of registers that will be checked in check_registers(). Note
  that ADDR_WHO_AM_I must be first in the list.
 */
const uint8_t FXOS8701CQ::_checked_registers[FXOS8701C_NUM_CHECKED_REGISTERS] = {
	FXOS8701CQ_WHOAMI,
	FXOS8701CQ_XYZ_DATA_CFG,
	FXOS8701CQ_CTRL_REG1,
	FXOS8701CQ_M_CTRL_REG1,
	FXOS8701CQ_M_CTRL_REG2,
};

FXOS8701CQ::FXOS8701CQ(device::Device *interface, I2CSPIBusOption bus_option, int bus, enum Rotation rotation,
		       int i2c_address) :
	I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(interface->get_device_id()), bus_option, bus, i2c_address),
	_interface(interface),
	_px4_accel(interface->get_device_id(), rotation),
#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)
	_px4_mag(interface->get_device_id(), rotation),
	_mag_sample_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": mag read")),
#endif
	_accel_sample_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": acc read")),
	_bad_registers(perf_alloc(PC_COUNT, MODULE_NAME": bad reg")),
	_accel_duplicates(perf_alloc(PC_COUNT, MODULE_NAME": acc dupe"))
{
#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)
	_px4_mag.set_scale(0.001f);
#endif
}

FXOS8701CQ::~FXOS8701CQ()
{
#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)
	perf_free(_mag_sample_perf);
#endif

	// delete the perf counter
	perf_free(_accel_sample_perf);
	perf_free(_bad_registers);
	perf_free(_accel_duplicates);
}

int
FXOS8701CQ::init()
{
	// do SPI/I2C init (and probe) first
	int ret = _interface->init();

	if (ret != OK) {
		PX4_ERR("SPI/I2C interface init failed");
		return ret;
	}

	// There are 2 possible WHOAMI return values,
	// so probe here again to set proper _checked_values[0]
	ret = probe();

	if (ret != OK) {
		PX4_ERR("FXOS8701CQ::probe() failed");
		return ret;
	}

	reset();

	start();

	return PX4_OK;
}

void
FXOS8701CQ::reset()
{
	// enable accel set it To Standby
	write_checked_reg(FXOS8701CQ_CTRL_REG1, 0);
	write_checked_reg(FXOS8701CQ_XYZ_DATA_CFG, 0);

	// Use hybird mode to read Accel and Mag
	write_checked_reg(FXOS8701CQ_M_CTRL_REG1, M_CTRL_REG1_HMS_AM | M_CTRL_REG1_OS(7));

	// Use the hybird auto increment mode  to read all the data at the same time
	write_checked_reg(FXOS8701CQ_M_CTRL_REG2, CTRL_REG2_AUTO_INC);

	accel_set_range(FXOS8701C_ACCEL_DEFAULT_RANGE_G);
	accel_set_samplerate(FXOS8701C_ACCEL_DEFAULT_RATE);

	// enable  set it To Standby mode at 800 Hz which becomes 400 Hz due to hybird mode
	write_checked_reg(FXOS8701CQ_CTRL_REG1, CTRL_REG1_DR(0) | CTRL_REG1_ACTIVE);
}

int
FXOS8701CQ::probe()
{
	// verify that the device is attached and functioning
	uint8_t whoami = read_reg(FXOS8701CQ_WHOAMI);
	bool success = (whoami == FXOS8700CQ_WHOAMI_VAL) || (whoami == FXOS8701CQ_WHOAMI_VAL);

	if (success) {
		_checked_values[0] = whoami;
		return OK;
	}

	return -EIO;
}

void
FXOS8701CQ::write_checked_reg(unsigned reg, uint8_t value)
{
	write_reg(reg, value);

	for (uint8_t i = 0; i < FXOS8701C_NUM_CHECKED_REGISTERS; i++) {
		if (reg == _checked_registers[i]) {
			_checked_values[i] = value;
		}
	}
}

void
FXOS8701CQ::modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits)
{
	uint8_t	val = read_reg(reg);
	val &= ~clearbits;
	val |= setbits;
	write_checked_reg(reg, val);
}

int
FXOS8701CQ::accel_set_range(unsigned max_g)
{
	uint8_t setbits = 0;
	float lsb_per_g;

	if (max_g == 0 || max_g > 8) {
		max_g = 8;
	}

	if (max_g > 4) { //  8g
		setbits = XYZ_DATA_CFG_FS_8G;
		lsb_per_g = 1024;
		//max_accel_g = 8;

	} else if (max_g > 2) { //  4g
		setbits = XYZ_DATA_CFG_FS_4G;
		lsb_per_g = 2048;
		//max_accel_g = 4;

	} else {                //  2g
		setbits = XYZ_DATA_CFG_FS_2G;
		lsb_per_g = 4096;
		//max_accel_g = 2;
	}

	float accel_range_scale = (CONSTANTS_ONE_G / lsb_per_g);

	modify_reg(FXOS8701CQ_XYZ_DATA_CFG, XYZ_DATA_CFG_FS_MASK, setbits);

	_px4_accel.set_scale(accel_range_scale);

	return OK;
}

#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)
int
FXOS8701CQ::mag_set_range(unsigned max_ga)
{
	// mag_range_ga = 12;
	float mag_range_scale = 0.001f;

	_px4_mag.set_scale(mag_range_scale);

	return OK;
}
#endif

int
FXOS8701CQ::accel_set_samplerate(unsigned frequency)
{
	uint8_t setbits = 0;

	// The selected ODR is reduced by a factor of two when the device is operated in hybrid mode.
	uint8_t active = read_reg(FXOS8701CQ_CTRL_REG1) & CTRL_REG1_ACTIVE;

	if (frequency == 0) {
		frequency = FXOS8701C_ACCEL_DEFAULT_RATE;
	}

	if (frequency <= 25) {
		setbits = CTRL_REG1_DR(4); // Use 50 as it is 50 / 2
		_accel_samplerate = 25;

	} else if (frequency <= 50) {
		setbits = CTRL_REG1_DR(3); // Use 100 as it is 100 / 2
		_accel_samplerate = 50;

	} else if (frequency <= 100) {
		setbits = CTRL_REG1_DR(2); // Use 200 as it is 200 / 2
		_accel_samplerate = 100;

	} else if (frequency <= 200) {
		setbits = CTRL_REG1_DR(1); // Use 400 as it is 400 / 2;
		_accel_samplerate = 200;

	} else if (frequency <= 400) {
		setbits = CTRL_REG1_DR(0); // Use 800 as it is 800 / 2;
		_accel_samplerate = 400;

	} else {
		return -EINVAL;
	}

	modify_reg(FXOS8701CQ_CTRL_REG1, CTRL_REG1_ACTIVE, 0);
	modify_reg(FXOS8701CQ_CTRL_REG1, CTRL_REG1_DR_MASK, setbits);
	modify_reg(FXOS8701CQ_CTRL_REG1, 0, active);

	return OK;
}

void FXOS8701CQ::start()
{
	// start polling at the specified rate
	ScheduleOnInterval((1_s / FXOS8701C_ACCEL_DEFAULT_RATE) / 2);
}

void FXOS8701CQ::check_registers()
{
	uint8_t v;

	if ((v = read_reg(_checked_registers[_checked_next])) != _checked_values[_checked_next]) {
		/*
		  if we get the wrong value then we know the SPI bus
		  or sensor is very sick. We set _register_wait to 20
		  and wait until we have seen 20 good values in a row
		  before we consider the sensor to be OK again.
		 */
		perf_count(_bad_registers);

		/*
		  try to fix the bad register value. We only try to
		  fix one per loop to prevent a bad sensor hogging the
		  bus. We skip zero as that is the WHO_AM_I, which
		  is not writeable
		 */
		if (_checked_next != 0) {
			write_reg(_checked_registers[_checked_next], _checked_values[_checked_next]);
		}

		_register_wait = 20;
	}

	_checked_next = (_checked_next + 1) % FXOS8701C_NUM_CHECKED_REGISTERS;
}

void FXOS8701CQ::RunImpl()
{
	// start the performance counter
	perf_begin(_accel_sample_perf);

	check_registers();

	if (_register_wait != 0) {
		// we are waiting for some good transfers before using
		// the sensor again.
		_register_wait--;
		perf_end(_accel_sample_perf);
		return;
	}

	/* fetch data from the sensor */
	RawAccelMagReport raw_accel_mag_report{};
	const hrt_abstime timestamp_sample = hrt_absolute_time();

	_interface->read(FXOS8701CQ_DR_STATUS, (uint8_t *)&raw_accel_mag_report, sizeof(raw_accel_mag_report));

	if (!(raw_accel_mag_report.status & DR_STATUS_ZYXDR)) {
		perf_end(_accel_sample_perf);
		perf_count(_accel_duplicates);
		return;
	}

	int16_t x = swap16RightJustify14(raw_accel_mag_report.x);
	int16_t y = swap16RightJustify14(raw_accel_mag_report.y);
	int16_t z = swap16RightJustify14(raw_accel_mag_report.z);

	// don't publish duplicated reads
	if ((x == _accel_prev[0]) && (y == _accel_prev[1]) && (z == _accel_prev[2])) {
		perf_count(_accel_duplicates);
		perf_end(_accel_sample_perf);
		return;

	} else {
		_accel_prev[0] = x;
		_accel_prev[1] = y;
		_accel_prev[2] = z;
	}

	// report the error count as the sum of the number of bad register reads and bad values.
	_px4_accel.set_error_count(perf_event_count(_bad_registers));
	_px4_accel.update(timestamp_sample, x, y, z);

	if (hrt_elapsed_time(&_last_temperature_update) > 100_ms) {
		/*
		 * Eight-bit 2’s complement sensor temperature value with 0.96 °C/LSB sensitivity.
		 * Temperature data is only valid between –40 °C and 125 °C. The temperature sensor
		 * output is only valid when M_CTRL_REG1[m_hms] > 0b00. Please note that the
		 * temperature sensor is uncalibrated and its output for a given temperature will vary from
		 * one device to the next
		 */
		_last_temperature_update = timestamp_sample;
		float temperature = (read_reg(FXOS8701CQ_TEMP)) * 0.96f;

		_px4_accel.set_temperature(temperature);
	}


#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)

	if (hrt_elapsed_time(&_mag_last_measure) >= 10_ms) {
		int16_t mag_x = swap16(raw_accel_mag_report.mx);
		int16_t mag_y = swap16(raw_accel_mag_report.my);
		int16_t mag_z = swap16(raw_accel_mag_report.mz);
		_px4_mag.update(timestamp_sample, mag_x, mag_y, mag_z);
	}

#endif

	// stop the perf counter
	perf_end(_accel_sample_perf);
}

void
FXOS8701CQ::print_status()
{
	I2CSPIDriverBase::print_status();
	perf_print_counter(_accel_sample_perf);

#if !defined(BOARD_HAS_NOISY_FXOS8700_MAG)
	perf_print_counter(_mag_sample_perf);
#endif
	perf_print_counter(_bad_registers);
	perf_print_counter(_accel_duplicates);

	::printf("checked_next: %u\n", _checked_next);

	for (uint8_t i = 0; i < FXOS8701C_NUM_CHECKED_REGISTERS; i++) {
		uint8_t v = read_reg(_checked_registers[i]);

		if (v != _checked_values[i]) {
			::printf("reg %02x:%02x should be %02x\n",
				 (unsigned)_checked_registers[i],
				 (unsigned)v,
				 (unsigned)_checked_values[i]);
		}
	}
}

void
FXOS8701CQ::print_registers()
{
	const struct {
		uint8_t reg;
		const char *name;
	} regmap[] = {
		DEF_REG(FXOS8701CQ_DR_STATUS),
		DEF_REG(FXOS8701CQ_OUT_X_MSB),
		DEF_REG(FXOS8701CQ_XYZ_DATA_CFG),
		DEF_REG(FXOS8701CQ_WHOAMI),
		DEF_REG(FXOS8701CQ_CTRL_REG1),
		DEF_REG(FXOS8701CQ_CTRL_REG2),
		DEF_REG(FXOS8701CQ_M_DR_STATUS),
		DEF_REG(FXOS8701CQ_M_OUT_X_MSB),
		DEF_REG(FXOS8701CQ_M_CTRL_REG1),
		DEF_REG(FXOS8701CQ_M_CTRL_REG2),
		DEF_REG(FXOS8701CQ_M_CTRL_REG3),
	};

	for (uint8_t i = 0; i < sizeof(regmap) / sizeof(regmap[0]); i++) {
		printf("0x%02x %s\n", read_reg(regmap[i].reg), regmap[i].name);
	}
}

void
FXOS8701CQ::test_error()
{
	// trigger an error
	write_reg(FXOS8701CQ_CTRL_REG1, 0);
}