LidarLiteI2C.cpp
13.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/****************************************************************************
*
* Copyright (c) 2014-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file LidarLiteI2C.cpp
* @author Allyson Kreft
*
* Driver for the PulsedLight Lidar-Lite range finders connected via I2C.
*/
#include "LidarLiteI2C.h"
LidarLiteI2C::LidarLiteI2C(I2CSPIBusOption bus_option, const int bus, const uint8_t orientation, int bus_frequency,
const int address) :
I2C(DRV_RNG_DEVTYPE_LL40LS, MODULE_NAME, bus, address, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_px4_rangefinder(get_device_id(), orientation)
{
_px4_rangefinder.set_min_distance(LL40LS_MIN_DISTANCE);
_px4_rangefinder.set_max_distance(LL40LS_MAX_DISTANCE);
_px4_rangefinder.set_fov(0.008); // Divergence 8 mRadian
// up the retries since the device misses the first measure attempts
_retries = 3;
_px4_rangefinder.set_device_type(DRV_DIST_DEVTYPE_LL40LS); /// TODO
}
LidarLiteI2C::~LidarLiteI2C()
{
perf_free(_sample_perf);
perf_free(_comms_errors);
perf_free(_sensor_resets);
perf_free(_sensor_zero_resets);
}
int
LidarLiteI2C::init()
{
// Perform I2C init (and probe) first.
if (I2C::init() != PX4_OK) {
return PX4_ERROR;
}
return PX4_OK;
}
void
LidarLiteI2C::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_sample_perf);
perf_print_counter(_comms_errors);
perf_print_counter(_sensor_resets);
perf_print_counter(_sensor_zero_resets);
printf("poll interval: %u \n", get_measure_interval());
}
int
LidarLiteI2C::read_reg(const uint8_t reg, uint8_t &val)
{
return lidar_transfer(®, 1, &val, 1);
}
int
LidarLiteI2C::write_reg(const uint8_t reg, const uint8_t &val)
{
const uint8_t cmd[2] = { reg, val };
return transfer(&cmd[0], 2, nullptr, 0);
}
int
LidarLiteI2C::lidar_transfer(const uint8_t *send, const unsigned send_len, uint8_t *recv, const unsigned recv_len)
{
if (send != nullptr && send_len > 0) {
int ret = transfer(send, send_len, nullptr, 0);
if (ret != PX4_OK) {
return ret;
}
}
if (recv != nullptr && recv_len > 0) {
return transfer(nullptr, 0, recv, recv_len);
}
return PX4_ERROR;
}
int
LidarLiteI2C::probe()
{
// cope with both old and new I2C bus address
const uint8_t addresses[2] = { LL40LS_BASEADDR, LL40LS_BASEADDR_OLD };
uint8_t id_high = 0;
uint8_t id_low = 0;
// more retries for detection
_retries = 10;
for (uint8_t i = 0; i < sizeof(addresses); i++) {
set_device_address(addresses[i]);
/**
* The probing is divided into different cases. One to detect v2, one for v3 and v1 and one for v3HP.
* The reason for this is that registers are not consistent between different versions.
* The v3HP doesn't have the HW VERSION (or at least no version is specified),
* v1 and v3 don't have the unit id register while v2 has both.
* It would be better if we had a proper WHOAMI register.
*/
if ((read_reg(LL40LS_HW_VERSION, _hw_version) == OK) &&
(read_reg(LL40LS_SW_VERSION, _sw_version) == OK)) {
if (read_reg(LL40LS_UNIT_ID_HIGH, id_high) == OK &&
read_reg(LL40LS_UNIT_ID_LOW, id_low) == OK) {
_unit_id = (uint16_t)((id_high << 8) | id_low) & 0xFFFF;
}
if (_hw_version > 0) {
if (_unit_id > 0) {
// v2
PX4_INFO("probe success - hw: %u, sw:%u, id: %u", _hw_version, _sw_version, _unit_id);
_px4_rangefinder.set_max_distance(LL40LS_MAX_DISTANCE_V2);
} else {
// v1 and v3
PX4_INFO("probe success - hw: %u, sw:%u", _hw_version, _sw_version);
}
} else {
if (_unit_id > 0) {
// v3hp
_is_v3hp = true;
PX4_INFO("probe success - id: %u", _unit_id);
}
}
_retries = 3;
return OK;
}
PX4_DEBUG("probe failed unit_id=0x%02x hw_version=0x%02x sw_version=0x%02x",
(unsigned)_unit_id,
(unsigned)_hw_version,
(unsigned)_sw_version);
}
// not found on any address
return -EIO;
}
int
LidarLiteI2C::measure()
{
if (_pause_measurements) {
// we are in print_registers() and need to avoid
// acquisition to keep the I2C peripheral on the
// sensor active
return OK;
}
// Send the command to begin a measurement.
int ret = write_reg(LL40LS_MEASURE_REG, LL40LS_MSRREG_ACQUIRE);
if (ret != PX4_OK) {
perf_count(_comms_errors);
PX4_DEBUG("i2c::transfer returned %d", ret);
// if we are getting lots of I2C transfer errors try
// resetting the sensor
if (perf_event_count(_comms_errors) % 10 == 0) {
perf_count(_sensor_resets);
reset_sensor();
}
return ret;
}
// remember when we sent the acquire so we can know when the
// acquisition has timed out
_acquire_time_usec = hrt_absolute_time();
return OK;
}
int
LidarLiteI2C::reset_sensor()
{
px4_usleep(15_ms);
int ret = write_reg(LL40LS_SIG_COUNT_VAL_REG, LL40LS_SIG_COUNT_VAL_MAX);
if (ret != PX4_OK) {
return ret;
}
px4_usleep(15_ms);
ret = write_reg(LL40LS_MEASURE_REG, LL40LS_MSRREG_RESET);
if (ret != PX4_OK) {
uint8_t sig_cnt;
px4_usleep(15_ms);
ret = read_reg(LL40LS_SIG_COUNT_VAL_REG, sig_cnt);
if ((ret != PX4_OK) || (sig_cnt != LL40LS_SIG_COUNT_VAL_DEFAULT)) {
PX4_INFO("Error: ll40ls reset failure. Exiting!\n");
return ret;
}
}
// wait for sensor reset to complete
px4_usleep(50_ms);
ret = write_reg(LL40LS_SIG_COUNT_VAL_REG, LL40LS_SIG_COUNT_VAL_MAX);
if (ret != PX4_OK) {
return ret;
}
// wait for register write to complete
px4_usleep(1_ms);
return OK;
}
void
LidarLiteI2C::print_registers()
{
_pause_measurements = true;
PX4_INFO("registers");
// wait for a while to ensure the lidar is in a ready state
px4_usleep(50_ms);
for (uint8_t reg = 0; reg <= 0x67; reg++) {
uint8_t val = 0;
int ret = lidar_transfer(®, 1, &val, 1);
if (ret != OK) {
printf("%02x:XX ", (unsigned)reg);
} else {
printf("%02x:%02x ", (unsigned)reg, (unsigned)val);
}
if (reg % 16 == 15) {
printf("\n");
}
}
printf("\n");
_pause_measurements = false;
}
int
LidarLiteI2C::collect()
{
// read from the sensor
uint8_t val[2] {};
perf_begin(_sample_perf);
// read the high and low byte distance registers
uint8_t distance_reg = LL40LS_DISTHIGH_REG | LL40LS_AUTO_INCREMENT;
int ret = lidar_transfer(&distance_reg, 1, &val[0], sizeof(val));
// if the transfer failed or if the high bit of distance is
// set then the distance is invalid
if (ret < 0 || (val[0] & 0x80)) {
if (hrt_absolute_time() - _acquire_time_usec > LL40LS_CONVERSION_TIMEOUT) {
/*
NACKs from the sensor are expected when we
read before it is ready, so only consider it
an error if more than 100ms has elapsed.
*/
PX4_DEBUG("error reading from sensor: %d", ret);
perf_count(_comms_errors);
if (perf_event_count(_comms_errors) % 10 == 0) {
perf_count(_sensor_resets);
reset_sensor();
}
}
perf_end(_sample_perf);
// if we are getting lots of I2C transfer errors try
// resetting the sensor
return ret;
}
uint16_t distance_cm = (val[0] << 8) | val[1];
const float distance_m = float(distance_cm) * 1e-2f;
if (distance_cm == 0) {
_zero_counter++;
if (_zero_counter == 20) {
/* we have had 20 zeros in a row - reset the
sensor. This is a known bad state of the
sensor where it returns 16 bits of zero for
the distance with a trailing NACK, and
keeps doing that even when the target comes
into a valid range.
*/
_zero_counter = 0;
perf_end(_sample_perf);
perf_count(_sensor_zero_resets);
return reset_sensor();
}
} else {
_zero_counter = 0;
}
// this should be fairly close to the end of the measurement, so the best approximation of the time
const hrt_abstime timestamp_sample = hrt_absolute_time();
// Relative signal strength measurement, i.e. the strength of
// the main signal peak compared to the general noise level.
uint8_t signal_strength_reg = LL40LS_SIGNAL_STRENGTH_REG;
ret = lidar_transfer(&signal_strength_reg, 1, &val[0], 1);
// check if the transfer failed
if (ret < 0) {
if (hrt_elapsed_time(&_acquire_time_usec) > LL40LS_CONVERSION_TIMEOUT) {
/*
NACKs from the sensor are expected when we
read before it is ready, so only consider it
an error if more than 100ms has elapsed.
*/
PX4_INFO("signal strength read failed");
DEVICE_DEBUG("error reading signal strength from sensor: %d", ret);
perf_count(_comms_errors);
if (perf_event_count(_comms_errors) % 10 == 0) {
perf_count(_sensor_resets);
reset_sensor();
}
}
perf_end(_sample_perf);
// if we are getting lots of I2C transfer errors try
// resetting the sensor
return ret;
}
uint8_t ll40ls_signal_strength = val[0];
uint8_t signal_quality;
// We detect if V3HP is being used
if (_is_v3hp) {
//Normalize signal strength to 0...100 percent using the absolute signal strength.
signal_quality = 100 * math::max(ll40ls_signal_strength - LL40LS_SIGNAL_STRENGTH_MIN_V3HP, 0) /
(LL40LS_SIGNAL_STRENGTH_MAX_V3HP - LL40LS_SIGNAL_STRENGTH_MIN_V3HP);
} else {
// Absolute peak strength measurement, i.e. absolute strength of main signal peak.
uint8_t peak_strength_reg = LL40LS_PEAK_STRENGTH_REG;
ret = lidar_transfer(&peak_strength_reg, 1, &val[0], 1);
// check if the transfer failed
if (ret < 0) {
if (hrt_elapsed_time(&_acquire_time_usec) > LL40LS_CONVERSION_TIMEOUT) {
/*
NACKs from the sensor are expected when we
read before it is ready, so only consider it
an error if more than 100ms has elapsed.
*/
PX4_INFO("peak strength read failed");
DEVICE_DEBUG("error reading peak strength from sensor: %d", ret);
perf_count(_comms_errors);
if (perf_event_count(_comms_errors) % 10 == 0) {
perf_count(_sensor_resets);
reset_sensor();
}
}
perf_end(_sample_perf);
// if we are getting lots of I2C transfer errors try
// resetting the sensor
return ret;
}
uint8_t ll40ls_peak_strength = val[0];
// For v2 and v3 use ll40ls_signal_strength (a relative measure, i.e. peak strength to noise!) to reject potentially ambiguous measurements
if (ll40ls_signal_strength <= LL40LS_SIGNAL_STRENGTH_LOW || distance_m < LL40LS_MIN_DISTANCE) {
signal_quality = 0;
} else {
//Normalize signal strength to 0...100 percent using the absolute signal peak strength.
signal_quality = 100 * math::max(ll40ls_peak_strength - LL40LS_PEAK_STRENGTH_LOW, 0) /
(LL40LS_PEAK_STRENGTH_HIGH - LL40LS_PEAK_STRENGTH_LOW);
}
}
_px4_rangefinder.update(timestamp_sample, distance_m, signal_quality);
perf_end(_sample_perf);
return OK;
}
void LidarLiteI2C::start()
{
// reset the report ring and state machine
_collect_phase = false;
// schedule a cycle to start things
ScheduleNow();
}
void LidarLiteI2C::RunImpl()
{
/* collection phase? */
if (_collect_phase) {
/* try a collection */
if (OK != collect()) {
PX4_DEBUG("collection error");
/* if we've been waiting more than 200ms then
send a new acquire */
if (hrt_elapsed_time(&_acquire_time_usec) > (LL40LS_CONVERSION_TIMEOUT * 2)) {
_collect_phase = false;
}
} else {
/* next phase is measurement */
_collect_phase = false;
/*
* Is there a collect->measure gap?
*/
if (get_measure_interval() > LL40LS_CONVERSION_INTERVAL) {
/* schedule a fresh cycle call when we are ready to measure again */
ScheduleDelayed(get_measure_interval() - LL40LS_CONVERSION_INTERVAL);
return;
}
}
}
if (_collect_phase == false) {
/* measurement phase */
if (OK != measure()) {
PX4_DEBUG("measure error");
} else {
/* next phase is collection. Don't switch to
collection phase until we have a successful
acquire request I2C transfer */
_collect_phase = true;
}
}
/* schedule a fresh cycle call when the measurement is done */
ScheduleDelayed(LL40LS_CONVERSION_INTERVAL);
}