LidarLiteI2C.cpp 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/****************************************************************************
 *
 *   Copyright (c) 2014-2019 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/


/**
 * @file LidarLiteI2C.cpp
 * @author Allyson Kreft
 *
 * Driver for the PulsedLight Lidar-Lite range finders connected via I2C.
 */

#include "LidarLiteI2C.h"

LidarLiteI2C::LidarLiteI2C(I2CSPIBusOption bus_option, const int bus, const uint8_t orientation, int bus_frequency,
			   const int address) :
	I2C(DRV_RNG_DEVTYPE_LL40LS, MODULE_NAME, bus, address, bus_frequency),
	I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
	_px4_rangefinder(get_device_id(), orientation)
{
	_px4_rangefinder.set_min_distance(LL40LS_MIN_DISTANCE);
	_px4_rangefinder.set_max_distance(LL40LS_MAX_DISTANCE);
	_px4_rangefinder.set_fov(0.008); // Divergence 8 mRadian
	// up the retries since the device misses the first measure attempts
	_retries = 3;

	_px4_rangefinder.set_device_type(DRV_DIST_DEVTYPE_LL40LS); /// TODO
}

LidarLiteI2C::~LidarLiteI2C()
{
	perf_free(_sample_perf);
	perf_free(_comms_errors);
	perf_free(_sensor_resets);
	perf_free(_sensor_zero_resets);
}

int
LidarLiteI2C::init()
{
	// Perform I2C init (and probe) first.
	if (I2C::init() != PX4_OK) {
		return PX4_ERROR;
	}

	return PX4_OK;
}

void
LidarLiteI2C::print_status()
{
	I2CSPIDriverBase::print_status();
	perf_print_counter(_sample_perf);
	perf_print_counter(_comms_errors);
	perf_print_counter(_sensor_resets);
	perf_print_counter(_sensor_zero_resets);
	printf("poll interval:  %u \n", get_measure_interval());
}

int
LidarLiteI2C::read_reg(const uint8_t reg, uint8_t &val)
{
	return lidar_transfer(&reg, 1, &val, 1);
}

int
LidarLiteI2C::write_reg(const uint8_t reg, const uint8_t &val)
{
	const uint8_t cmd[2] = { reg, val };
	return transfer(&cmd[0], 2, nullptr, 0);
}

int
LidarLiteI2C::lidar_transfer(const uint8_t *send, const unsigned send_len, uint8_t *recv, const unsigned recv_len)
{
	if (send != nullptr && send_len > 0) {
		int ret = transfer(send, send_len, nullptr, 0);

		if (ret != PX4_OK) {
			return ret;
		}
	}

	if (recv != nullptr && recv_len > 0) {
		return transfer(nullptr, 0, recv, recv_len);
	}

	return PX4_ERROR;
}

int
LidarLiteI2C::probe()
{
	// cope with both old and new I2C bus address
	const uint8_t addresses[2] = { LL40LS_BASEADDR, LL40LS_BASEADDR_OLD };

	uint8_t id_high = 0;
	uint8_t id_low = 0;

	// more retries for detection
	_retries = 10;

	for (uint8_t i = 0; i < sizeof(addresses); i++) {

		set_device_address(addresses[i]);

		/**
		 * The probing is divided into different cases. One to detect v2, one for v3 and v1 and one for v3HP.
		 * The reason for this is that registers are not consistent between different versions.
		 * The v3HP doesn't have the HW VERSION (or at least no version is specified),
		 * v1 and v3 don't have the unit id register while v2 has both.
		 * It would be better if we had a proper WHOAMI register.
		 */
		if ((read_reg(LL40LS_HW_VERSION, _hw_version) == OK) &&
		    (read_reg(LL40LS_SW_VERSION, _sw_version) == OK)) {

			if (read_reg(LL40LS_UNIT_ID_HIGH, id_high) == OK &&
			    read_reg(LL40LS_UNIT_ID_LOW, id_low) == OK) {
				_unit_id = (uint16_t)((id_high << 8) | id_low) & 0xFFFF;
			}

			if (_hw_version > 0) {

				if (_unit_id > 0) {
					// v2
					PX4_INFO("probe success - hw: %u, sw:%u, id: %u", _hw_version, _sw_version, _unit_id);
					_px4_rangefinder.set_max_distance(LL40LS_MAX_DISTANCE_V2);

				} else {
					// v1 and v3
					PX4_INFO("probe success - hw: %u, sw:%u", _hw_version, _sw_version);
				}

			} else {

				if (_unit_id > 0) {
					// v3hp
					_is_v3hp = true;
					PX4_INFO("probe success - id: %u", _unit_id);
				}
			}

			_retries = 3;
			return OK;
		}

		PX4_DEBUG("probe failed unit_id=0x%02x hw_version=0x%02x sw_version=0x%02x",
			  (unsigned)_unit_id,
			  (unsigned)_hw_version,
			  (unsigned)_sw_version);

	}

	// not found on any address
	return -EIO;
}

int
LidarLiteI2C::measure()
{
	if (_pause_measurements) {
		// we are in print_registers() and need to avoid
		// acquisition to keep the I2C peripheral on the
		// sensor active
		return OK;
	}

	// Send the command to begin a measurement.
	int ret = write_reg(LL40LS_MEASURE_REG, LL40LS_MSRREG_ACQUIRE);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		PX4_DEBUG("i2c::transfer returned %d", ret);

		// if we are getting lots of I2C transfer errors try
		// resetting the sensor
		if (perf_event_count(_comms_errors) % 10 == 0) {
			perf_count(_sensor_resets);
			reset_sensor();
		}

		return ret;
	}

	// remember when we sent the acquire so we can know when the
	// acquisition has timed out
	_acquire_time_usec = hrt_absolute_time();

	return OK;
}

int
LidarLiteI2C::reset_sensor()
{
	px4_usleep(15_ms);

	int ret = write_reg(LL40LS_SIG_COUNT_VAL_REG, LL40LS_SIG_COUNT_VAL_MAX);

	if (ret != PX4_OK) {
		return ret;
	}

	px4_usleep(15_ms);
	ret = write_reg(LL40LS_MEASURE_REG, LL40LS_MSRREG_RESET);


	if (ret != PX4_OK) {
		uint8_t sig_cnt;

		px4_usleep(15_ms);
		ret = read_reg(LL40LS_SIG_COUNT_VAL_REG, sig_cnt);

		if ((ret != PX4_OK) || (sig_cnt != LL40LS_SIG_COUNT_VAL_DEFAULT)) {
			PX4_INFO("Error: ll40ls reset failure. Exiting!\n");
			return ret;

		}
	}

	// wait for sensor reset to complete
	px4_usleep(50_ms);
	ret = write_reg(LL40LS_SIG_COUNT_VAL_REG, LL40LS_SIG_COUNT_VAL_MAX);

	if (ret != PX4_OK) {
		return ret;
	}

	// wait for register write to complete
	px4_usleep(1_ms);

	return OK;
}

void
LidarLiteI2C::print_registers()
{
	_pause_measurements = true;
	PX4_INFO("registers");
	// wait for a while to ensure the lidar is in a ready state
	px4_usleep(50_ms);

	for (uint8_t reg = 0; reg <= 0x67; reg++) {
		uint8_t val = 0;
		int ret = lidar_transfer(&reg, 1, &val, 1);

		if (ret != OK) {
			printf("%02x:XX ", (unsigned)reg);

		} else {
			printf("%02x:%02x ", (unsigned)reg, (unsigned)val);
		}

		if (reg % 16 == 15) {
			printf("\n");
		}
	}

	printf("\n");
	_pause_measurements = false;
}

int
LidarLiteI2C::collect()
{
	// read from the sensor
	uint8_t val[2] {};

	perf_begin(_sample_perf);

	// read the high and low byte distance registers
	uint8_t distance_reg = LL40LS_DISTHIGH_REG | LL40LS_AUTO_INCREMENT;
	int ret = lidar_transfer(&distance_reg, 1, &val[0], sizeof(val));

	// if the transfer failed or if the high bit of distance is
	// set then the distance is invalid
	if (ret < 0 || (val[0] & 0x80)) {
		if (hrt_absolute_time() - _acquire_time_usec > LL40LS_CONVERSION_TIMEOUT) {
			/*
			  NACKs from the sensor are expected when we
			  read before it is ready, so only consider it
			  an error if more than 100ms has elapsed.
			 */
			PX4_DEBUG("error reading from sensor: %d", ret);
			perf_count(_comms_errors);

			if (perf_event_count(_comms_errors) % 10 == 0) {
				perf_count(_sensor_resets);
				reset_sensor();
			}
		}

		perf_end(_sample_perf);
		// if we are getting lots of I2C transfer errors try
		// resetting the sensor
		return ret;
	}

	uint16_t distance_cm = (val[0] << 8) | val[1];
	const float distance_m = float(distance_cm) * 1e-2f;

	if (distance_cm == 0) {
		_zero_counter++;

		if (_zero_counter == 20) {
			/* we have had 20 zeros in a row - reset the
			   sensor. This is a known bad state of the
			   sensor where it returns 16 bits of zero for
			   the distance with a trailing NACK, and
			   keeps doing that even when the target comes
			   into a valid range.
			*/
			_zero_counter = 0;
			perf_end(_sample_perf);
			perf_count(_sensor_zero_resets);
			return reset_sensor();
		}

	} else {
		_zero_counter = 0;
	}

	// this should be fairly close to the end of the measurement, so the best approximation of the time
	const hrt_abstime timestamp_sample = hrt_absolute_time();

	// Relative signal strength measurement, i.e. the strength of
	// the main signal peak compared to the general noise level.
	uint8_t signal_strength_reg = LL40LS_SIGNAL_STRENGTH_REG;
	ret = lidar_transfer(&signal_strength_reg, 1, &val[0], 1);

	// check if the transfer failed
	if (ret < 0) {
		if (hrt_elapsed_time(&_acquire_time_usec) > LL40LS_CONVERSION_TIMEOUT) {
			/*
			  NACKs from the sensor are expected when we
			  read before it is ready, so only consider it
			  an error if more than 100ms has elapsed.
			 */
			PX4_INFO("signal strength read failed");

			DEVICE_DEBUG("error reading signal strength from sensor: %d", ret);
			perf_count(_comms_errors);

			if (perf_event_count(_comms_errors) % 10 == 0) {
				perf_count(_sensor_resets);
				reset_sensor();
			}
		}

		perf_end(_sample_perf);
		// if we are getting lots of I2C transfer errors try
		// resetting the sensor
		return ret;
	}

	uint8_t ll40ls_signal_strength = val[0];
	uint8_t signal_quality;

	// We detect if V3HP is being used
	if (_is_v3hp) {
		//Normalize signal strength to 0...100 percent using the absolute signal strength.
		signal_quality = 100 * math::max(ll40ls_signal_strength - LL40LS_SIGNAL_STRENGTH_MIN_V3HP, 0) /
				 (LL40LS_SIGNAL_STRENGTH_MAX_V3HP - LL40LS_SIGNAL_STRENGTH_MIN_V3HP);

	} else {
		// Absolute peak strength measurement, i.e. absolute strength of main signal peak.
		uint8_t peak_strength_reg = LL40LS_PEAK_STRENGTH_REG;
		ret = lidar_transfer(&peak_strength_reg, 1, &val[0], 1);

		// check if the transfer failed
		if (ret < 0) {
			if (hrt_elapsed_time(&_acquire_time_usec) > LL40LS_CONVERSION_TIMEOUT) {
				/*
				NACKs from the sensor are expected when we
				read before it is ready, so only consider it
				an error if more than 100ms has elapsed.
				*/
				PX4_INFO("peak strength read failed");

				DEVICE_DEBUG("error reading peak strength from sensor: %d", ret);
				perf_count(_comms_errors);

				if (perf_event_count(_comms_errors) % 10 == 0) {
					perf_count(_sensor_resets);
					reset_sensor();
				}
			}

			perf_end(_sample_perf);
			// if we are getting lots of I2C transfer errors try
			// resetting the sensor
			return ret;
		}

		uint8_t ll40ls_peak_strength = val[0];

		// For v2 and v3 use ll40ls_signal_strength (a relative measure, i.e. peak strength to noise!) to reject potentially ambiguous measurements
		if (ll40ls_signal_strength <= LL40LS_SIGNAL_STRENGTH_LOW || distance_m < LL40LS_MIN_DISTANCE) {
			signal_quality = 0;

		} else {
			//Normalize signal strength to 0...100 percent using the absolute signal peak strength.
			signal_quality = 100 * math::max(ll40ls_peak_strength - LL40LS_PEAK_STRENGTH_LOW, 0) /
					 (LL40LS_PEAK_STRENGTH_HIGH - LL40LS_PEAK_STRENGTH_LOW);

		}
	}

	_px4_rangefinder.update(timestamp_sample, distance_m, signal_quality);

	perf_end(_sample_perf);
	return OK;
}

void LidarLiteI2C::start()
{
	// reset the report ring and state machine
	_collect_phase = false;

	// schedule a cycle to start things
	ScheduleNow();
}

void LidarLiteI2C::RunImpl()
{
	/* collection phase? */
	if (_collect_phase) {

		/* try a collection */
		if (OK != collect()) {
			PX4_DEBUG("collection error");

			/* if we've been waiting more than 200ms then
			   send a new acquire */
			if (hrt_elapsed_time(&_acquire_time_usec) > (LL40LS_CONVERSION_TIMEOUT * 2)) {
				_collect_phase = false;
			}

		} else {
			/* next phase is measurement */
			_collect_phase = false;

			/*
			 * Is there a collect->measure gap?
			 */
			if (get_measure_interval() > LL40LS_CONVERSION_INTERVAL) {

				/* schedule a fresh cycle call when we are ready to measure again */
				ScheduleDelayed(get_measure_interval() - LL40LS_CONVERSION_INTERVAL);

				return;
			}
		}
	}

	if (_collect_phase == false) {
		/* measurement phase */
		if (OK != measure()) {
			PX4_DEBUG("measure error");

		} else {
			/* next phase is collection. Don't switch to
			   collection phase until we have a successful
			   acquire request I2C transfer */
			_collect_phase = true;
		}
	}

	/* schedule a fresh cycle call when the measurement is done */
	ScheduleDelayed(LL40LS_CONVERSION_INTERVAL);
}