MS5525.cpp
7.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/****************************************************************************
*
* Copyright (c) 2017 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "MS5525.hpp"
int
MS5525::measure()
{
int ret = PX4_ERROR;
if (_inited) {
// send the command to begin a conversion.
uint8_t cmd = _current_cmd;
ret = transfer(&cmd, 1, nullptr, 0);
if (ret != PX4_OK) {
perf_count(_comms_errors);
}
} else {
_inited = init_ms5525();
if (_inited) {
ret = PX4_OK;
}
}
return ret;
}
bool
MS5525::init_ms5525()
{
// Step 1 - reset
uint8_t cmd = CMD_RESET;
int ret = transfer(&cmd, 1, nullptr, 0);
if (ret != PX4_OK) {
perf_count(_comms_errors);
return false;
}
px4_usleep(3000);
// Step 2 - read calibration coefficients from prom
// prom layout
// 0 factory data and the setup
// 1-6 calibration coefficients
// 7 serial code and CRC
uint16_t prom[8];
for (uint8_t i = 0; i < 8; i++) {
cmd = CMD_PROM_START + i * 2;
// request PROM value
ret = transfer(&cmd, 1, nullptr, 0);
if (ret != PX4_OK) {
perf_count(_comms_errors);
return false;
}
// read 2 byte value
uint8_t val[2];
ret = transfer(nullptr, 0, &val[0], 2);
if (ret == PX4_OK) {
prom[i] = (val[0] << 8) | val[1];
} else {
perf_count(_comms_errors);
return false;
}
}
// Step 3 - check CRC
const uint8_t crc = prom_crc4(prom);
const uint8_t onboard_crc = prom[7] & 0xF;
if (crc == onboard_crc) {
// store valid calibration coefficients
C1 = prom[1];
C2 = prom[2];
C3 = prom[3];
C4 = prom[4];
C5 = prom[5];
C6 = prom[6];
Tref = int64_t(C5) * (1UL << Q5);
_device_id.devid_s.devtype = DRV_DIFF_PRESS_DEVTYPE_MS5525;
return true;
} else {
PX4_ERR("CRC mismatch");
return false;
}
}
uint8_t
MS5525::prom_crc4(uint16_t n_prom[]) const
{
// see Measurement Specialties AN520
// crc remainder
unsigned int n_rem = 0x00;
// original value of the crc
unsigned int crc_read = n_prom[7]; // save read CRC
n_prom[7] = (0xFF00 & (n_prom[7])); // CRC byte is replaced by 0
// operation is performed on bytes
for (int cnt = 0; cnt < 16; cnt++) {
// choose LSB or MSB
if (cnt % 2 == 1) {
n_rem ^= (unsigned short)((n_prom[cnt >> 1]) & 0x00FF);
} else {
n_rem ^= (unsigned short)(n_prom[cnt >> 1] >> 8);
}
for (uint8_t n_bit = 8; n_bit > 0; n_bit--) {
if (n_rem & (0x8000)) {
n_rem = (n_rem << 1) ^ 0x3000;
} else {
n_rem = (n_rem << 1);
}
}
}
n_rem = (0x000F & (n_rem >> 12)); // final 4-bit reminder is CRC code
n_prom[7] = crc_read; // restore the crc_read to its original place
return (n_rem ^ 0x00);
}
int
MS5525::collect()
{
perf_begin(_sample_perf);
// read ADC
uint8_t cmd = CMD_ADC_READ;
int ret = transfer(&cmd, 1, nullptr, 0);
if (ret != PX4_OK) {
perf_count(_comms_errors);
return ret;
}
// read 24 bits from the sensor
uint8_t val[3];
ret = transfer(nullptr, 0, &val[0], 3);
if (ret != PX4_OK) {
perf_count(_comms_errors);
return ret;
}
uint32_t adc = (val[0] << 16) | (val[1] << 8) | val[2];
// If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output
// result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and
// the final result will be wrong. Conversion sequence sent during the already started conversion process will yield
// incorrect result as well.
if (adc == 0) {
perf_count(_comms_errors);
return EAGAIN;
}
if (_current_cmd == CMD_CONVERT_PRES) {
D1 = adc;
_pressure_count++;
if (_pressure_count > 9) {
_pressure_count = 0;
_current_cmd = CMD_CONVERT_TEMP;
}
} else if (_current_cmd == CMD_CONVERT_TEMP) {
D2 = adc;
_current_cmd = CMD_CONVERT_PRES;
// only calculate and publish after new pressure readings
return PX4_OK;
}
// not ready yet
if (D1 == 0 || D2 == 0) {
return EAGAIN;
}
// Difference between actual and reference temperature
// dT = D2 - Tref
const int64_t dT = D2 - Tref;
// Measured temperature
// TEMP = 20°C + dT * TEMPSENS
const int64_t TEMP = 2000 + (dT * int64_t(C6)) / (1UL << Q6);
// Offset at actual temperature
// OFF = OFF_T1 + TCO * dT
const int64_t OFF = int64_t(C2) * (1UL << Q2) + (int64_t(C4) * dT) / (1UL << Q4);
// Sensitivity at actual temperature
// SENS = SENS_T1 + TCS * dT
const int64_t SENS = int64_t(C1) * (1UL << Q1) + (int64_t(C3) * dT) / (1UL << Q3);
// Temperature Compensated Pressure (example 24996 = 2.4996 psi)
// P = D1 * SENS - OFF
const int64_t P = (D1 * SENS / (1UL << 21) - OFF) / (1UL << 15);
const float diff_press_PSI = P * 0.0001f;
// 1 PSI = 6894.76 Pascals
static constexpr float PSI_to_Pa = 6894.757f;
const float diff_press_pa_raw = diff_press_PSI * PSI_to_Pa;
const float temperature_c = TEMP * 0.01f;
if (PX4_ISFINITE(diff_press_pa_raw)) {
differential_pressure_s diff_pressure{};
diff_pressure.error_count = perf_event_count(_comms_errors);
diff_pressure.differential_pressure_raw_pa = diff_press_pa_raw - _diff_pres_offset;
diff_pressure.differential_pressure_filtered_pa = _filter.apply(diff_press_pa_raw) - _diff_pres_offset;
diff_pressure.temperature = temperature_c;
diff_pressure.device_id = _device_id.devid;
diff_pressure.timestamp = hrt_absolute_time();
_airspeed_pub.publish(diff_pressure);
}
ret = OK;
perf_end(_sample_perf);
return ret;
}
void
MS5525::RunImpl()
{
int ret = PX4_ERROR;
// collection phase
if (_collect_phase) {
// perform collection
ret = collect();
if (OK != ret) {
/* restart the measurement state machine */
_collect_phase = false;
_sensor_ok = false;
ScheduleNow();
return;
}
// next phase is measurement
_collect_phase = false;
// is there a collect->measure gap?
if (_measure_interval > CONVERSION_INTERVAL) {
// schedule a fresh cycle call when we are ready to measure again
ScheduleDelayed(_measure_interval - CONVERSION_INTERVAL);
return;
}
}
/* measurement phase */
ret = measure();
if (OK != ret) {
DEVICE_DEBUG("measure error");
}
_sensor_ok = (ret == OK);
// next phase is collection
_collect_phase = true;
// schedule a fresh cycle call when the measurement is done
ScheduleDelayed(CONVERSION_INTERVAL);
}