pdf_report.py
17.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#! /usr/bin/env python3
"""
function collection for plotting
"""
# matplotlib don't use Xwindows backend (must be before pyplot import)
import matplotlib
matplotlib.use('Agg')
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from pyulog import ULog
from analysis.post_processing import magnetic_field_estimates_from_states, get_estimator_check_flags
from plotting.data_plots import TimeSeriesPlot, InnovationPlot, ControlModeSummaryPlot, \
CheckFlagsPlot
from analysis.detectors import PreconditionError
import analysis.data_version_handler as dvh
def create_pdf_report(ulog: ULog, multi_instance: int, output_plot_filename: str) -> None:
"""
creates a pdf report of the ekf analysis.
:param ulog:
:param output_plot_filename:
:return:
"""
# create summary plots
# save the plots to PDF
try:
estimator_status = ulog.get_dataset('estimator_status', multi_instance).data
except:
raise PreconditionError('could not find estimator_status instance', multi_instance)
try:
estimator_states = ulog.get_dataset('estimator_states', multi_instance).data
except:
raise PreconditionError('could not find estimator_states instance', multi_instance)
try:
estimator_innovations = ulog.get_dataset('estimator_innovations', multi_instance).data
estimator_innovation_variances = ulog.get_dataset('estimator_innovation_variances', multi_instance).data
innovation_data = estimator_innovations
for key in estimator_innovation_variances:
# append 'var' to the field name such that we can distingush between innov and innov_var
innovation_data.update({str('var_'+key): estimator_innovation_variances[key]})
innovations_min_length = float('inf')
for key in estimator_innovations:
if len(estimator_innovations[key]) < innovations_min_length:
innovations_min_length = len(estimator_innovations[key])
variances_min_length = float('inf')
for key in estimator_innovation_variances:
if len(estimator_innovation_variances[key]) < variances_min_length:
variances_min_length = len(estimator_innovation_variances[key])
# ensure consistent sizing for plots
if (innovations_min_length != variances_min_length):
print("estimator_innovations and estimator_innovation_variances are different sizes, adjusting")
innovation_data_min_length = min(innovations_min_length, variances_min_length)
for key in innovation_data:
innovation_data[key] = innovation_data[key][0:innovation_data_min_length]
print('found innovation data (merged estimator_innovations + estimator_innovation_variances) instance', multi_instance)
except:
raise PreconditionError('could not find innovation data')
control_mode, innov_flags, gps_fail_flags = get_estimator_check_flags(estimator_status)
status_time = 1e-6 * estimator_status['timestamp']
b_finishes_in_air, b_starts_in_air, in_air_duration, in_air_transition_time, \
on_ground_transition_time = detect_airtime(control_mode, status_time)
with PdfPages(output_plot_filename) as pdf_pages:
# vertical velocity and position innovations
data_plot = InnovationPlot(
innovation_data, [('gps_vpos', 'var_gps_vpos'),
('gps_vvel', 'var_gps_vvel')],
x_labels=['time (sec)', 'time (sec)'],
y_labels=['Down Vel (m/s)', 'Down Pos (m)'], plot_title='Vertical Innovations',
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# horizontal velocity innovations
data_plot = InnovationPlot(
innovation_data, [('gps_hvel[0]', 'var_gps_hvel[0]'),
('gps_hvel[1]', 'var_gps_hvel[1]')],
x_labels=['time (sec)', 'time (sec)'],
y_labels=['North Vel (m/s)', 'East Vel (m/s)'],
plot_title='Horizontal Velocity Innovations', pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# horizontal position innovations
data_plot = InnovationPlot(
innovation_data, [('gps_hpos[0]', 'var_gps_hpos[0]'),
('gps_hpos[1]', 'var_gps_hpos[1]')],
x_labels=['time (sec)', 'time (sec)'],
y_labels=['North Pos (m)', 'East Pos (m)'], plot_title='Horizontal Position Innovations',
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# magnetometer innovations
data_plot = InnovationPlot(
innovation_data, [('mag_field[0]', 'var_mag_field[0]'),
('mag_field[1]', 'var_mag_field[1]'),
('mag_field[2]', 'var_mag_field[2]')],
x_labels=['time (sec)', 'time (sec)', 'time (sec)'],
y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'], plot_title='Magnetometer Innovations',
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# magnetic heading innovations
data_plot = InnovationPlot(
innovation_data, [('heading', 'var_heading')],
x_labels=['time (sec)'], y_labels=['Heading (rad)'],
plot_title='Magnetic Heading Innovations', pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# air data innovations
data_plot = InnovationPlot(
innovation_data, [('airspeed', 'var_airspeed'),
('beta', 'var_beta')],
x_labels=['time (sec)', 'time (sec)'],
y_labels=['innovation (m/sec)', 'innovation (rad)'],
sub_titles=['True Airspeed Innovations', 'Synthetic Sideslip Innovations'],
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# optical flow innovations
data_plot = InnovationPlot(
innovation_data, [('flow[0]', 'var_flow[0]'),
('flow[1]', 'var_flow[1]')],
x_labels=['time (sec)', 'time (sec)'],
y_labels=['X (rad/sec)', 'Y (rad/sec)'],
plot_title='Optical Flow Innovations', pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# plot normalised innovation test levels
# define variables to plot
variables = [['mag_test_ratio'], ['vel_test_ratio', 'pos_test_ratio'], ['hgt_test_ratio']]
y_labels = ['mag', 'vel, pos', 'hgt']
legend = [['mag'], ['vel', 'pos'], ['hgt']]
if np.amax(estimator_status['hagl_test_ratio']) > 0.0: # plot hagl test ratio, if applicable
variables[-1].append('hagl_test_ratio')
y_labels[-1] += ', hagl'
legend[-1].append('hagl')
if np.amax(estimator_status[
'tas_test_ratio']) > 0.0: # plot airspeed sensor test ratio, if applicable
variables.append(['tas_test_ratio'])
y_labels.append('TAS')
legend.append(['airspeed'])
data_plot = CheckFlagsPlot(
status_time, estimator_status, variables, x_label='time (sec)', y_labels=y_labels,
plot_title='Normalised Innovation Test Levels', pdf_handle=pdf_pages, annotate=True,
legend=legend
)
data_plot.save()
data_plot.close()
# plot control mode summary A
data_plot = ControlModeSummaryPlot(
status_time, control_mode, [['tilt_aligned', 'yaw_aligned'],
['using_gps', 'using_optflow', 'using_evpos'], ['using_barohgt', 'using_gpshgt',
'using_rnghgt', 'using_evhgt'], ['using_magyaw', 'using_mag3d', 'using_magdecl']],
x_label='time (sec)', y_labels=['aligned', 'pos aiding', 'hgt aiding', 'mag aiding'],
annotation_text=[['tilt alignment', 'yaw alignment'], ['GPS aiding', 'optical flow aiding',
'external vision aiding'], ['Baro aiding', 'GPS aiding', 'rangefinder aiding',
'external vision aiding'], ['magnetic yaw aiding', '3D magnetoemter aiding',
'magnetic declination aiding']], plot_title='EKF Control Status - Figure A',
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# plot control mode summary B
# construct additional annotations for the airborne plot
airborne_annotations = list()
if np.amin(np.diff(control_mode['airborne'])) > -0.5:
airborne_annotations.append(
(on_ground_transition_time, 'air to ground transition not detected'))
else:
airborne_annotations.append((on_ground_transition_time, 'on-ground at {:.1f} sec'.format(
on_ground_transition_time)))
if in_air_duration > 0.0:
airborne_annotations.append(((in_air_transition_time + on_ground_transition_time) / 2,
'duration = {:.1f} sec'.format(in_air_duration)))
if np.amax(np.diff(control_mode['airborne'])) < 0.5:
airborne_annotations.append(
(in_air_transition_time, 'ground to air transition not detected'))
else:
airborne_annotations.append(
(in_air_transition_time, 'in-air at {:.1f} sec'.format(in_air_transition_time)))
data_plot = ControlModeSummaryPlot(
status_time, control_mode, [['airborne'], ['estimating_wind']],
x_label='time (sec)', y_labels=['airborne', 'estimating wind'], annotation_text=[[], []],
additional_annotation=[airborne_annotations, []],
plot_title='EKF Control Status - Figure B', pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# plot innovation_check_flags summary
data_plot = CheckFlagsPlot(
status_time, innov_flags, [['vel_innov_fail', 'posh_innov_fail'], ['posv_innov_fail',
'hagl_innov_fail'],
['magx_innov_fail', 'magy_innov_fail', 'magz_innov_fail',
'yaw_innov_fail'], ['tas_innov_fail'], ['sli_innov_fail'],
['ofx_innov_fail',
'ofy_innov_fail']], x_label='time (sec)',
y_labels=['failed', 'failed', 'failed', 'failed', 'failed', 'failed'],
y_lim=(-0.1, 1.1),
legend=[['vel NED', 'pos NE'], ['hgt absolute', 'hgt above ground'],
['mag_x', 'mag_y', 'mag_z', 'yaw'], ['airspeed'], ['sideslip'],
['flow X', 'flow Y']],
plot_title='EKF Innovation Test Fails', annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# gps_check_fail_flags summary
data_plot = CheckFlagsPlot(
status_time, gps_fail_flags,
[['nsat_fail', 'pdop_fail', 'herr_fail', 'verr_fail', 'gfix_fail', 'serr_fail'],
['hdrift_fail', 'vdrift_fail', 'hspd_fail', 'veld_diff_fail']],
x_label='time (sec)', y_lim=(-0.1, 1.1), y_labels=['failed', 'failed'],
sub_titles=['GPS Direct Output Check Failures', 'GPS Derived Output Check Failures'],
legend=[['N sats', 'PDOP', 'horiz pos error', 'vert pos error', 'fix type',
'speed error'], ['horiz drift', 'vert drift', 'horiz speed',
'vert vel inconsistent']], annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# filter reported accuracy
data_plot = CheckFlagsPlot(
status_time, estimator_status, [['pos_horiz_accuracy', 'pos_vert_accuracy']],
x_label='time (sec)', y_labels=['accuracy (m)'], plot_title='Reported Accuracy',
legend=[['horizontal', 'vertical']], annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# Plot the EKF IMU vibration metrics
scaled_estimator_status = {'vibe[0]': 1000. * estimator_status['vibe[0]'],
'vibe[1]': 1000. * estimator_status['vibe[1]'],
'vibe[2]': estimator_status['vibe[2]']
}
data_plot = CheckFlagsPlot(
status_time, scaled_estimator_status, [['vibe[0]'], ['vibe[1]'], ['vibe[2]']],
x_label='time (sec)', y_labels=['Del Ang Coning (mrad)', 'HF Del Ang (mrad)',
'HF Del Vel (m/s)'], plot_title='IMU Vibration Metrics',
pdf_handle=pdf_pages, annotate=True)
data_plot.save()
data_plot.close()
# Plot the EKF output observer tracking errors
scaled_innovations = {
'output_tracking_error[0]': 1000. * estimator_status['output_tracking_error[0]'],
'output_tracking_error[1]': estimator_status['output_tracking_error[1]'],
'output_tracking_error[2]': estimator_status['output_tracking_error[2]']
}
data_plot = CheckFlagsPlot(
1e-6 * estimator_status['timestamp'], scaled_innovations,
[['output_tracking_error[0]'], ['output_tracking_error[1]'],
['output_tracking_error[2]']], x_label='time (sec)',
y_labels=['angles (mrad)', 'velocity (m/s)', 'position (m)'],
plot_title='Output Observer Tracking Error Magnitudes',
pdf_handle=pdf_pages, annotate=True)
data_plot.save()
data_plot.close()
# Plot the delta angle bias estimates
data_plot = CheckFlagsPlot(
1e-6 * estimator_states['timestamp'], estimator_states,
[['states[10]'], ['states[11]'], ['states[12]']],
x_label='time (sec)', y_labels=['X (rad)', 'Y (rad)', 'Z (rad)'],
plot_title='Delta Angle Bias Estimates', annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# Plot the delta velocity bias estimates
data_plot = CheckFlagsPlot(
1e-6 * estimator_states['timestamp'], estimator_states,
[['states[13]'], ['states[14]'], ['states[15]']],
x_label='time (sec)', y_labels=['X (m/s)', 'Y (m/s)', 'Z (m/s)'],
plot_title='Delta Velocity Bias Estimates', annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# Plot the earth frame magnetic field estimates
declination, field_strength, inclination = magnetic_field_estimates_from_states(
estimator_states)
data_plot = CheckFlagsPlot(
1e-6 * estimator_states['timestamp'],
{'strength': field_strength, 'declination': declination, 'inclination': inclination},
[['declination'], ['inclination'], ['strength']],
x_label='time (sec)', y_labels=['declination (deg)', 'inclination (deg)',
'strength (Gauss)'],
plot_title='Earth Magnetic Field Estimates', annotate=False,
pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# Plot the body frame magnetic field estimates
data_plot = CheckFlagsPlot(
1e-6 * estimator_states['timestamp'], estimator_states,
[['states[19]'], ['states[20]'], ['states[21]']],
x_label='time (sec)', y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'],
plot_title='Magnetometer Bias Estimates', annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
# Plot the EKF wind estimates
data_plot = CheckFlagsPlot(
1e-6 * estimator_states['timestamp'], estimator_states,
[['states[22]'], ['states[23]']], x_label='time (sec)',
y_labels=['North (m/s)', 'East (m/s)'], plot_title='Wind Velocity Estimates',
annotate=False, pdf_handle=pdf_pages)
data_plot.save()
data_plot.close()
def detect_airtime(control_mode, status_time):
# define flags for starting and finishing in air
b_starts_in_air = False
b_finishes_in_air = False
# calculate in-air transition time
if (np.amin(control_mode['airborne']) < 0.5) and (np.amax(control_mode['airborne']) > 0.5):
in_air_transtion_time_arg = np.argmax(np.diff(control_mode['airborne']))
in_air_transition_time = status_time[in_air_transtion_time_arg]
elif (np.amax(control_mode['airborne']) > 0.5):
in_air_transition_time = np.amin(status_time)
print('log starts while in-air at ' + str(round(in_air_transition_time, 1)) + ' sec')
b_starts_in_air = True
else:
in_air_transition_time = float('NaN')
print('always on ground')
# calculate on-ground transition time
if (np.amin(np.diff(control_mode['airborne'])) < 0.0):
on_ground_transition_time_arg = np.argmin(np.diff(control_mode['airborne']))
on_ground_transition_time = status_time[on_ground_transition_time_arg]
elif (np.amax(control_mode['airborne']) > 0.5):
on_ground_transition_time = np.amax(status_time)
print('log finishes while in-air at ' + str(round(on_ground_transition_time, 1)) + ' sec')
b_finishes_in_air = True
else:
on_ground_transition_time = float('NaN')
print('always on ground')
if (np.amax(np.diff(control_mode['airborne'])) > 0.5) and (np.amin(np.diff(control_mode['airborne'])) < -0.5):
if ((on_ground_transition_time - in_air_transition_time) > 0.0):
in_air_duration = on_ground_transition_time - in_air_transition_time
else:
in_air_duration = float('NaN')
else:
in_air_duration = float('NaN')
return b_finishes_in_air, b_starts_in_air, in_air_duration, in_air_transition_time, on_ground_transition_time