FlightTaskAutoLineSmoothVel.cpp
16.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file FlightAutoLine.cpp
*/
#include "FlightTaskAutoLineSmoothVel.hpp"
#include "TrajectoryConstraints.hpp"
using namespace matrix;
bool FlightTaskAutoLineSmoothVel::activate(const vehicle_local_position_setpoint_s &last_setpoint)
{
bool ret = FlightTaskAutoMapper::activate(last_setpoint);
Vector3f vel_prev{last_setpoint.vx, last_setpoint.vy, last_setpoint.vz};
Vector3f pos_prev{last_setpoint.x, last_setpoint.y, last_setpoint.z};
Vector3f accel_prev{last_setpoint.acceleration};
for (int i = 0; i < 3; i++) {
// If the position setpoint is unknown, set to the current postion
if (!PX4_ISFINITE(pos_prev(i))) { pos_prev(i) = _position(i); }
// If the velocity setpoint is unknown, set to the current velocity
if (!PX4_ISFINITE(vel_prev(i))) { vel_prev(i) = _velocity(i); }
// No acceleration estimate available, set to zero if the setpoint is NAN
if (!PX4_ISFINITE(accel_prev(i))) { accel_prev(i) = 0.f; }
}
for (int i = 0; i < 3; ++i) {
_trajectory[i].reset(accel_prev(i), vel_prev(i), pos_prev(i));
}
_yaw_sp_prev = PX4_ISFINITE(last_setpoint.yaw) ? last_setpoint.yaw : _yaw;
_updateTrajConstraints();
return ret;
}
void FlightTaskAutoLineSmoothVel::reActivate()
{
FlightTaskAutoMapper::reActivate();
// On ground, reset acceleration and velocity to zero
for (int i = 0; i < 2; ++i) {
_trajectory[i].reset(0.f, 0.f, _position(i));
}
_trajectory[2].reset(0.f, 0.7f, _position(2));
}
/**
* EKF reset handling functions
* Those functions are called by the base FlightTask in
* case of an EKF reset event
*/
void FlightTaskAutoLineSmoothVel::_ekfResetHandlerPositionXY()
{
_trajectory[0].setCurrentPosition(_position(0));
_trajectory[1].setCurrentPosition(_position(1));
}
void FlightTaskAutoLineSmoothVel::_ekfResetHandlerVelocityXY()
{
_trajectory[0].setCurrentVelocity(_velocity(0));
_trajectory[1].setCurrentVelocity(_velocity(1));
}
void FlightTaskAutoLineSmoothVel::_ekfResetHandlerPositionZ()
{
_trajectory[2].setCurrentPosition(_position(2));
}
void FlightTaskAutoLineSmoothVel::_ekfResetHandlerVelocityZ()
{
_trajectory[2].setCurrentVelocity(_velocity(2));
}
void FlightTaskAutoLineSmoothVel::_ekfResetHandlerHeading(float delta_psi)
{
_yaw_sp_prev += delta_psi;
}
void FlightTaskAutoLineSmoothVel::_generateSetpoints()
{
_updateTurningCheck();
_prepareSetpoints();
_generateTrajectory();
if (!PX4_ISFINITE(_yaw_setpoint) && !PX4_ISFINITE(_yawspeed_setpoint)) {
// no valid heading -> generate heading in this flight task
_generateHeading();
}
}
void FlightTaskAutoLineSmoothVel::_updateTurningCheck()
{
const Vector2f vel_traj(_trajectory[0].getCurrentVelocity(),
_trajectory[1].getCurrentVelocity());
const Vector2f pos_traj(_trajectory[0].getCurrentPosition(),
_trajectory[1].getCurrentPosition());
const Vector2f target_xy(_target);
const Vector2f u_vel_traj = vel_traj.unit_or_zero();
const Vector2f pos_to_target = Vector2f(target_xy - pos_traj);
const float cos_align = u_vel_traj * pos_to_target.unit_or_zero();
// The vehicle is turning if the angle between the velocity vector
// and the direction to the target is greater than 10 degrees, the
// velocity is large enough and the drone isn't in the acceptance
// radius of the last WP.
_is_turning = vel_traj.longerThan(0.2f)
&& cos_align < 0.98f
&& pos_to_target.longerThan(_target_acceptance_radius);
}
void FlightTaskAutoLineSmoothVel::_generateHeading()
{
// Generate heading along trajectory if possible, otherwise hold the previous yaw setpoint
if (!_generateHeadingAlongTraj()) {
_yaw_setpoint = _yaw_sp_prev;
}
}
bool FlightTaskAutoLineSmoothVel::_generateHeadingAlongTraj()
{
bool res = false;
Vector2f vel_sp_xy(_velocity_setpoint);
Vector2f traj_to_target = Vector2f(_target) - Vector2f(_position);
if ((vel_sp_xy.length() > .1f) &&
(traj_to_target.length() > 2.f)) {
// Generate heading from velocity vector, only if it is long enough
// and if the drone is far enough from the target
_compute_heading_from_2D_vector(_yaw_setpoint, vel_sp_xy);
res = true;
}
return res;
}
/* Constrain some value vith a constrain depending on the sign of the constraint
* Example: - if the constrain is -5, the value will be constrained between -5 and 0
* - if the constrain is 5, the value will be constrained between 0 and 5
*/
float FlightTaskAutoLineSmoothVel::_constrainOneSide(float val, float constraint)
{
const float min = (constraint < FLT_EPSILON) ? constraint : 0.f;
const float max = (constraint > FLT_EPSILON) ? constraint : 0.f;
return math::constrain(val, min, max);
}
float FlightTaskAutoLineSmoothVel::_constrainAbs(float val, float max)
{
return sign(val) * math::min(fabsf(val), fabsf(max));
}
float FlightTaskAutoLineSmoothVel::_getMaxXYSpeed() const
{
Vector3f pos_traj(_trajectory[0].getCurrentPosition(),
_trajectory[1].getCurrentPosition(),
_trajectory[2].getCurrentPosition());
math::trajectory::VehicleDynamicLimits config;
config.z_accept_rad = _param_nav_mc_alt_rad.get();
config.xy_accept_rad = _target_acceptance_radius;
config.max_acc_xy = _trajectory[0].getMaxAccel();
config.max_jerk = _trajectory[0].getMaxJerk();
config.max_speed_xy = _mc_cruise_speed;
config.max_acc_xy_radius_scale = _param_mpc_xy_traj_p.get();
// constrain velocity to go to the position setpoint first if the position setpoint has been modified by an external source
// (eg. Obstacle Avoidance)
Vector3f waypoints[3] = {pos_traj, _target, _next_wp};
if (isTargetModified()) {
waypoints[2] = waypoints[1] = _position_setpoint;
}
float max_xy_speed = math::trajectory::computeXYSpeedFromWaypoints<3>(waypoints, config);
return max_xy_speed;
}
float FlightTaskAutoLineSmoothVel::_getMaxZSpeed() const
{
Vector3f pos_traj(_trajectory[0].getCurrentPosition(),
_trajectory[1].getCurrentPosition(),
_trajectory[2].getCurrentPosition());
float z_setpoint = _target(2);
// constrain velocity to go to the position setpoint first if the position setpoint has been modified by an external source
// (eg. Obstacle Avoidance)
bool z_valid = PX4_ISFINITE(_position_setpoint(2));
bool z_modified = z_valid && fabsf((_target - _position_setpoint)(2)) > FLT_EPSILON;
if (z_modified) {
z_setpoint = _position_setpoint(2);
}
const float distance_start_target = fabs(z_setpoint - pos_traj(2));
const float arrival_z_speed = 0.f;
float max_speed = math::min(_trajectory[2].getMaxVel(), math::trajectory::computeMaxSpeedFromDistance(
_trajectory[2].getMaxJerk(), _trajectory[2].getMaxAccel(),
distance_start_target, arrival_z_speed));
return max_speed;
}
Vector3f FlightTaskAutoLineSmoothVel::getCrossingPoint() const
{
Vector3f pos_crossing_point{};
if (isTargetModified()) {
// Strictly follow the modified setpoint
pos_crossing_point = _position_setpoint;
} else {
if (_is_turning) {
// Get the crossing point using L1-style guidance
pos_crossing_point.xy() = getL1Point();
pos_crossing_point(2) = _target(2);
} else {
pos_crossing_point = _target;
}
}
return pos_crossing_point;
}
bool FlightTaskAutoLineSmoothVel::isTargetModified() const
{
const bool xy_modified = (_target - _position_setpoint).xy().longerThan(FLT_EPSILON);
const bool z_valid = PX4_ISFINITE(_position_setpoint(2));
const bool z_modified = z_valid && fabs((_target - _position_setpoint)(2)) > FLT_EPSILON;
return xy_modified || z_modified;
}
Vector2f FlightTaskAutoLineSmoothVel::getL1Point() const
{
const Vector2f pos_traj(_trajectory[0].getCurrentPosition(),
_trajectory[1].getCurrentPosition());
const Vector2f target_xy(_target);
const Vector2f u_prev_to_target = Vector2f(target_xy - Vector2f(_prev_wp)).unit_or_zero();
const Vector2f prev_to_pos(pos_traj - Vector2f(_prev_wp));
const Vector2f prev_to_closest(u_prev_to_target * (prev_to_pos * u_prev_to_target));
const Vector2f closest_pt = Vector2f(_prev_wp) + prev_to_closest;
// Compute along-track error using L1 distance and cross-track error
const float crosstrack_error = Vector2f(closest_pt - pos_traj).length();
const float l1 = math::max(_target_acceptance_radius, 5.f);
float alongtrack_error = 0.f;
// Protect against sqrt of a negative number
if (l1 > crosstrack_error) {
alongtrack_error = sqrtf(l1 * l1 - crosstrack_error * crosstrack_error);
}
// Position of the point on the line where L1 intersect the line between the two waypoints
const Vector2f l1_point = closest_pt + alongtrack_error * u_prev_to_target;
return l1_point;
}
void FlightTaskAutoLineSmoothVel::_prepareSetpoints()
{
// Interface: A valid position setpoint generates a velocity target using conservative motion constraints.
// If a velocity is specified, that is used as a feedforward to track the position setpoint
// (ie. it assumes the position setpoint is moving at the specified velocity)
// If the position setpoints are set to NAN, the values in the velocity setpoints are used as velocity targets: nothing to do here.
_want_takeoff = false;
if (_param_mpc_yaw_mode.get() == 4 && !_yaw_sp_aligned) {
// Wait for the yaw setpoint to be aligned
_velocity_setpoint.setAll(0.f);
return;
}
const bool xy_pos_setpoint_valid = PX4_ISFINITE(_position_setpoint(0)) && PX4_ISFINITE(_position_setpoint(1));
const bool z_pos_setpoint_valid = PX4_ISFINITE(_position_setpoint(2));
if (xy_pos_setpoint_valid && z_pos_setpoint_valid) {
// Use 3D position setpoint to generate a 3D velocity setpoint
Vector3f pos_traj(_trajectory[0].getCurrentPosition(),
_trajectory[1].getCurrentPosition(),
_trajectory[2].getCurrentPosition());
const Vector3f u_pos_traj_to_dest((getCrossingPoint() - pos_traj).unit_or_zero());
float xy_speed = _getMaxXYSpeed();
const float z_speed = _getMaxZSpeed();
if (_is_turning) {
// Lock speed during turn
xy_speed = math::min(_max_speed_prev, xy_speed);
} else {
_max_speed_prev = xy_speed;
}
Vector3f vel_sp_constrained = u_pos_traj_to_dest * sqrtf(xy_speed * xy_speed + z_speed * z_speed);
math::trajectory::clampToXYNorm(vel_sp_constrained, xy_speed, 0.5f);
math::trajectory::clampToZNorm(vel_sp_constrained, z_speed, 0.5f);
for (int i = 0; i < 3; i++) {
// If available, use the existing velocity as a feedforward, otherwise replace it
if (PX4_ISFINITE(_velocity_setpoint(i))) {
_velocity_setpoint(i) += vel_sp_constrained(i);
} else {
_velocity_setpoint(i) = vel_sp_constrained(i);
}
}
}
else if (xy_pos_setpoint_valid) {
// Use 2D position setpoint to generate a 2D velocity setpoint
// Get various path specific vectors
Vector2f pos_traj(_trajectory[0].getCurrentPosition(), _trajectory[1].getCurrentPosition());
Vector2f pos_traj_to_dest_xy = Vector2f(getCrossingPoint()) - pos_traj;
Vector2f u_pos_traj_to_dest_xy(pos_traj_to_dest_xy.unit_or_zero());
float xy_speed = _getMaxXYSpeed();
if (_is_turning) {
// Lock speed during turn
xy_speed = math::min(_max_speed_prev, xy_speed);
} else {
_max_speed_prev = xy_speed;
}
Vector2f vel_sp_constrained_xy = u_pos_traj_to_dest_xy * xy_speed;
for (int i = 0; i < 2; i++) {
// If available, use the existing velocity as a feedforward, otherwise replace it
if (PX4_ISFINITE(_velocity_setpoint(i))) {
_velocity_setpoint(i) += vel_sp_constrained_xy(i);
} else {
_velocity_setpoint(i) = vel_sp_constrained_xy(i);
}
}
}
else if (z_pos_setpoint_valid) {
// Use Z position setpoint to generate a Z velocity setpoint
const float z_dir = sign(_position_setpoint(2) - _trajectory[2].getCurrentPosition());
const float vel_sp_z = z_dir * _getMaxZSpeed();
// If available, use the existing velocity as a feedforward, otherwise replace it
if (PX4_ISFINITE(_velocity_setpoint(2))) {
_velocity_setpoint(2) += vel_sp_z;
} else {
_velocity_setpoint(2) = vel_sp_z;
}
}
_want_takeoff = _velocity_setpoint(2) < -0.3f;
}
void FlightTaskAutoLineSmoothVel::_updateTrajConstraints()
{
// Update the constraints of the trajectories
_trajectory[0].setMaxAccel(_param_mpc_acc_hor.get()); // TODO : Should be computed using heading
_trajectory[1].setMaxAccel(_param_mpc_acc_hor.get());
_trajectory[0].setMaxVel(_param_mpc_xy_vel_max.get());
_trajectory[1].setMaxVel(_param_mpc_xy_vel_max.get());
_trajectory[0].setMaxJerk(_param_mpc_jerk_auto.get()); // TODO : Should be computed using heading
_trajectory[1].setMaxJerk(_param_mpc_jerk_auto.get());
_trajectory[2].setMaxJerk(_param_mpc_jerk_auto.get());
if (_velocity_setpoint(2) < 0.f) { // up
float z_accel_constraint = _param_mpc_acc_up_max.get();
float z_vel_constraint = _param_mpc_z_vel_max_up.get();
// The constraints are broken because they are used as hard limits by the position controller, so put this here
// until the constraints don't do things like cause controller integrators to saturate. Once the controller
// doesn't use z speed constraints, this can go in AutoMapper::_prepareTakeoffSetpoints(). Accel limit is to
// emulate the motor ramp (also done in the controller) so that the controller can actually track the setpoint.
if (_type == WaypointType::takeoff && _dist_to_ground < _param_mpc_land_alt1.get()) {
z_vel_constraint = _param_mpc_tko_speed.get();
z_accel_constraint = math::min(z_accel_constraint, _param_mpc_tko_speed.get() / _param_mpc_tko_ramp_t.get());
// Keep the altitude setpoint at the current altitude
// to avoid having it going down into the ground during
// the initial ramp as the velocity does not start at 0
_trajectory[2].setCurrentPosition(_position(2));
}
_trajectory[2].setMaxVel(z_vel_constraint);
_trajectory[2].setMaxAccel(z_accel_constraint);
} else { // down
_trajectory[2].setMaxAccel(_param_mpc_acc_down_max.get());
_trajectory[2].setMaxVel(_param_mpc_z_vel_max_dn.get());
}
}
void FlightTaskAutoLineSmoothVel::_generateTrajectory()
{
if (!PX4_ISFINITE(_velocity_setpoint(0)) || !PX4_ISFINITE(_velocity_setpoint(1))
|| !PX4_ISFINITE(_velocity_setpoint(2))) {
return;
}
/* Slow down the trajectory by decreasing the integration time based on the position error.
* This is only performed when the drone is behind the trajectory
*/
Vector2f position_trajectory_xy(_trajectory[0].getCurrentPosition(), _trajectory[1].getCurrentPosition());
Vector2f position_xy(_position);
Vector2f vel_traj_xy(_trajectory[0].getCurrentVelocity(), _trajectory[1].getCurrentVelocity());
Vector2f drone_to_trajectory_xy(position_trajectory_xy - position_xy);
float position_error = drone_to_trajectory_xy.length();
float time_stretch = 1.f - math::constrain(position_error / _param_mpc_xy_err_max.get(), 0.f, 1.f);
// Don't stretch time if the drone is ahead of the position setpoint
if (drone_to_trajectory_xy.dot(vel_traj_xy) < 0.f) {
time_stretch = 1.f;
}
Vector3f jerk_sp_smooth;
Vector3f accel_sp_smooth;
Vector3f vel_sp_smooth;
Vector3f pos_sp_smooth;
for (int i = 0; i < 3; ++i) {
_trajectory[i].updateTraj(_deltatime, time_stretch);
jerk_sp_smooth(i) = _trajectory[i].getCurrentJerk();
accel_sp_smooth(i) = _trajectory[i].getCurrentAcceleration();
vel_sp_smooth(i) = _trajectory[i].getCurrentVelocity();
pos_sp_smooth(i) = _trajectory[i].getCurrentPosition();
}
_updateTrajConstraints();
for (int i = 0; i < 3; ++i) {
_trajectory[i].updateDurations(_velocity_setpoint(i));
}
VelocitySmoothing::timeSynchronization(_trajectory, 3);
_jerk_setpoint = jerk_sp_smooth;
_acceleration_setpoint = accel_sp_smooth;
_velocity_setpoint = vel_sp_smooth;
_position_setpoint = pos_sp_smooth;
}