data_plots.py 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
#! /usr/bin/env python3
"""
function collection for plotting
"""

from typing import Optional, List, Tuple, Dict

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import Figure, Axes
from matplotlib.backends.backend_pdf import PdfPages


def get_min_arg_time_value(
        time_series_data: np.ndarray, data_time: np.ndarray) -> Tuple[int, float, float]:
    """
    :param time_series_data:
    :param data_time:
    :return:
    """
    min_arg = np.argmin(time_series_data)
    min_time = data_time[min_arg]
    min_value = np.amin(time_series_data)
    return (min_arg, min_value, min_time)


def get_max_arg_time_value(
        time_series_data: np.ndarray, data_time: np.ndarray) -> Tuple[int, float, float]:
    """
    :param time_series_data:
    :param data_time:
    :return:
    """
    max_arg = np.argmax(time_series_data)
    max_time = data_time[max_arg]
    max_value = np.amax(time_series_data)
    return max_arg, max_value, max_time


class DataPlot(object):
    """
    A plotting class interface. Provides functions such as saving the figure.
    """
    def __init__(
        self, plot_data: Dict[str, np.ndarray], variable_names: List[List[str]],
        plot_title: str = '', sub_titles: Optional[List[str]] = None,
        x_labels: Optional[List[str]] = None, y_labels: Optional[List[str]] = None,
        y_lim: Optional[Tuple[int, int]] = None, legend: Optional[List[str]] = None,
        pdf_handle: Optional[PdfPages] = None) -> None:
        """
        Initializes the data plot class interface.
        :param plot_title:
        :param pdf_handle:
        """
        self._plot_data = plot_data
        self._variable_names = variable_names
        self._plot_title = plot_title
        self._sub_titles = sub_titles
        self._x_labels = x_labels
        self._y_labels = y_labels
        self._y_lim = y_lim
        self._legend = legend
        self._pdf_handle = pdf_handle
        self._fig = None
        self._ax = None
        self._fig_size = (20, 13)

    @property
    def fig(self) -> Figure:
        """
        :return: the figure handle
        """
        if self._fig is None:
            self._create_figure()
        return self._fig

    @property
    def ax(self) -> Axes:
        """
        :return: the axes handle
        """
        if self._ax is None:
            self._create_figure()
        return self._ax

    @property
    def plot_data(self) -> dict:
        """
        returns the plot data. calls _generate_plot_data if necessary.
        :return:
        """
        if self._plot_data is None:
            self._generate_plot_data()
        return self._plot_data

    def plot(self) -> None:
        """
        placeholder for the plotting function. A child class should implement this function.
        :return:
        """

    def _create_figure(self) -> None:
        """
        creates the figure handle.
        :return:
        """
        self._fig, self._ax = plt.subplots(frameon=True, figsize=self._fig_size)
        self._fig.suptitle(self._plot_title)


    def _generate_plot_data(self) -> None:
        """
        placeholder for a function that generates a data table necessary for plotting
        :return:
        """

    def show(self) -> None:
        """
        displays the figure on the screen.
        :return: None
        """
        self.fig.show()


    def save(self) -> None:
        """
        saves the figure if a pdf_handle was initialized.
        :return:
        """

        if self._pdf_handle is not None and self.fig is not None:
            self.plot()
            self._pdf_handle.savefig(figure=self.fig)
        else:
            print('skipping saving to pdf: handle was not initialized.')


    def close(self) -> None:
        """
        closes the figure.
        :return:
        """
        plt.close(self._fig)


class TimeSeriesPlot(DataPlot):
    """
    class for creating multiple time series plot.
    """
    def __init__(
        self, plot_data: dict, variable_names: List[List[str]], x_labels: List[str],
        y_labels: List[str], plot_title: str = '', sub_titles: Optional[List[str]] = None,
        pdf_handle: Optional[PdfPages] = None) -> None:
        """
        initializes a timeseries plot
        :param plot_data:
        :param variable_names:
        :param xlabels:
        :param ylabels:
        :param plot_title:
        :param pdf_handle:
        """
        super().__init__(
            plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles,
            x_labels=x_labels, y_labels=y_labels, pdf_handle=pdf_handle)

    def plot(self):
        """
        plots the time series data.
        :return:
        """
        if self.fig is None:
            return

        for i in range(len(self._variable_names)):
            plt.subplot(len(self._variable_names), 1, i + 1)
            for v in self._variable_names[i]:
                plt.plot(self.plot_data[v], 'b')
            plt.xlabel(self._x_labels[i])
            plt.ylabel(self._y_labels[i])

        self.fig.tight_layout(rect=[0, 0.03, 1, 0.95])


class InnovationPlot(DataPlot):
    """
    class for creating an innovation plot.
    """
    def __init__(
        self, plot_data: dict, variable_names: List[Tuple[str, str]], x_labels: List[str],
        y_labels: List[str], plot_title: str = '', sub_titles: Optional[List[str]] = None,
        pdf_handle: Optional[PdfPages] = None) -> None:
        """
        initializes a timeseries plot
        :param plot_data:
        :param variable_names:
        :param xlabels:
        :param ylabels:
        :param plot_title:
        :param sub_titles:
        :param pdf_handle:
        """
        super().__init__(
            plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles,
            x_labels=x_labels, y_labels=y_labels, pdf_handle=pdf_handle)


    def plot(self):
        """
        plots the Innovation data.
        :return:
        """

        if self.fig is None:
            return

        for i in range(len(self._variable_names)):
            # create a subplot for every variable
            plt.subplot(len(self._variable_names), 1, i + 1)
            if self._sub_titles is not None:
                plt.title(self._sub_titles[i])

            # plot the value and the standard deviation
            plt.plot(
                1e-6 * self.plot_data['timestamp'], self.plot_data[self._variable_names[i][0]], 'b')
            plt.plot(
                1e-6 * self.plot_data['timestamp'],
                np.sqrt(self.plot_data[self._variable_names[i][1]]), 'r')
            plt.plot(
                1e-6 * self.plot_data['timestamp'],
                -np.sqrt(self.plot_data[self._variable_names[i][1]]), 'r')

            plt.xlabel(self._x_labels[i])
            plt.ylabel(self._y_labels[i])
            plt.grid()

            # add the maximum and minimum value as an annotation
            _, max_value, max_time = get_max_arg_time_value(
                self.plot_data[self._variable_names[i][0]], 1e-6 * self.plot_data['timestamp'])
            _, min_value, min_time = get_min_arg_time_value(
                self.plot_data[self._variable_names[i][0]], 1e-6 * self.plot_data['timestamp'])

            plt.text(
                max_time, max_value, 'max={:.2f}'.format(max_value), fontsize=12,
                horizontalalignment='left',
                verticalalignment='bottom')
            plt.text(
                min_time, min_value, 'min={:.2f}'.format(min_value), fontsize=12,
                horizontalalignment='left',
                verticalalignment='top')

        self.fig.tight_layout(rect=[0, 0.03, 1, 0.95])


class ControlModeSummaryPlot(DataPlot):
    """
    class for creating a control mode summary plot.
    """

    def __init__(
            self, data_time: np.ndarray, plot_data: dict, variable_names: List[List[str]],
            x_label: str, y_labels: List[str], annotation_text: List[str],
            additional_annotation: Optional[List[str]] = None, plot_title: str = '',
            sub_titles: Optional[List[str]] = None,
            pdf_handle: Optional[PdfPages] = None) -> None:
        """
        initializes a timeseries plot
        :param plot_data:
        :param variable_names:
        :param xlabels:
        :param ylabels:
        :param plot_title:
        :param sub_titles:
        :param pdf_handle:
        """
        super().__init__(
            plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles,
            x_labels=[x_label]*len(y_labels), y_labels=y_labels, pdf_handle=pdf_handle)
        self._data_time = data_time
        self._annotation_text = annotation_text
        self._additional_annotation = additional_annotation


    def plot(self):
        """
        plots the control mode data.
        :return:
        """

        if self.fig is None:
            return

        colors = ['b', 'r', 'g', 'c']

        for i in range(len(self._variable_names)):
            # create a subplot for every variable
            plt.subplot(len(self._variable_names), 1, i + 1)
            if self._sub_titles is not None:
                plt.title(self._sub_titles[i])

            for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]):
                plt.plot(self._data_time, self.plot_data[var], col)

            plt.xlabel(self._x_labels[i])
            plt.ylabel(self._y_labels[i])
            plt.grid()
            plt.ylim(-0.1, 1.1)

            for t in range(len(self._annotation_text[i])):

                _, _, align_time = get_max_arg_time_value(
                    np.diff(self.plot_data[self._variable_names[i][t]]), self._data_time)
                v_annot_pos = (t+1.0)/(len(self._variable_names[i])+1) # vert annotation position

                if np.amin(self.plot_data[self._variable_names[i][t]]) > 0:
                    plt.text(
                        align_time, v_annot_pos,
                        'no pre-arm data - cannot calculate {:s} start time'.format(
                            self._annotation_text[i][t]), fontsize=12, horizontalalignment='left',
                        verticalalignment='center', color=colors[t])
                elif np.amax(self.plot_data[self._variable_names[i][t]]) > 0:
                    plt.text(
                        align_time, v_annot_pos, '{:s} at {:.1f} sec'.format(
                            self._annotation_text[i][t], align_time), fontsize=12,
                        horizontalalignment='left', verticalalignment='center', color=colors[t])

            if self._additional_annotation is not None:
                for a in range(len(self._additional_annotation[i])):
                    v_annot_pos = (a + 1.0) / (len(self._additional_annotation[i]) + 1)
                    plt.text(
                        self._additional_annotation[i][a][0], v_annot_pos,
                        self._additional_annotation[i][a][1], fontsize=12,
                        horizontalalignment='left', verticalalignment='center', color='b')

        self.fig.tight_layout(rect=[0, 0.03, 1, 0.95])


class CheckFlagsPlot(DataPlot):
    """
    class for creating a control mode summary plot.
    """

    def __init__(
            self, data_time: np.ndarray, plot_data: dict, variable_names: List[List[str]],
            x_label: str, y_labels: List[str], y_lim: Optional[Tuple[int, int]] = None,
            plot_title: str = '', legend: Optional[List[str]] = None,
            sub_titles: Optional[List[str]] = None, pdf_handle: Optional[PdfPages] = None,
            annotate: bool = False) -> None:
        """
        initializes a timeseries plot
        :param plot_data:
        :param variable_names:
        :param xlabels:
        :param ylabels:
        :param plot_title:
        :param sub_titles:
        :param pdf_handle:
        """
        super().__init__(
            plot_data, variable_names, plot_title=plot_title, sub_titles=sub_titles,
            x_labels=[x_label]*len(y_labels), y_labels=y_labels, y_lim=y_lim, legend=legend,
            pdf_handle=pdf_handle)
        self._data_time = data_time
        self._b_annotate = annotate


    def plot(self):
        """
        plots the control mode data.
        :return:
        """

        if self.fig is None:
            return

        colors = ['b', 'r', 'g', 'c', 'k', 'm']

        for i in range(len(self._variable_names)):
            # create a subplot for every variable
            plt.subplot(len(self._variable_names), 1, i + 1)
            if self._sub_titles is not None:
                plt.title(self._sub_titles[i])

            for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]):
                plt.plot(self._data_time, self.plot_data[var], col)

            plt.xlabel(self._x_labels[i])
            plt.ylabel(self._y_labels[i])
            plt.grid()
            if self._y_lim is not None:
                plt.ylim(self._y_lim)

            if self._legend is not None:
                plt.legend(self._legend[i], loc='upper left')

            if self._b_annotate:
                for col, var in zip(colors[:len(self._variable_names[i])], self._variable_names[i]):
                    # add the maximum and minimum value as an annotation
                    _, max_value, max_time = get_max_arg_time_value(
                        self.plot_data[var], self._data_time)
                    mean_value = np.mean(self.plot_data[var])

                    plt.text(
                        max_time, max_value,
                        'max={:.4f}, mean={:.4f}'.format(max_value, mean_value), color=col,
                        fontsize=12, horizontalalignment='left', verticalalignment='bottom')

        self.fig.tight_layout(rect=[0, 0.03, 1, 0.95])