voted_sensors_update.cpp
16.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/****************************************************************************
*
* Copyright (c) 2016 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file voted_sensors_update.cpp
*
* @author Beat Kueng <beat-kueng@gmx.net>
*/
#include "voted_sensors_update.h"
#include <lib/sensor_calibration/Utilities.hpp>
#include <lib/ecl/geo/geo.h>
#include <lib/systemlib/mavlink_log.h>
#include <uORB/Subscription.hpp>
using namespace sensors;
using namespace matrix;
using namespace time_literals;
VotedSensorsUpdate::VotedSensorsUpdate(bool hil_enabled,
uORB::SubscriptionCallbackWorkItem(&vehicle_imu_sub)[MAX_SENSOR_COUNT]) :
ModuleParams(nullptr),
_vehicle_imu_sub(vehicle_imu_sub),
_hil_enabled(hil_enabled)
{
if (_hil_enabled) { // HIL has less accurate timing so increase the timeouts a bit
_gyro.voter.set_timeout(500000);
_accel.voter.set_timeout(500000);
}
}
int VotedSensorsUpdate::init(sensor_combined_s &raw)
{
raw.accelerometer_timestamp_relative = sensor_combined_s::RELATIVE_TIMESTAMP_INVALID;
raw.timestamp = 0;
initializeSensors();
_selection_changed = true;
return 0;
}
void VotedSensorsUpdate::initializeSensors()
{
initSensorClass(_gyro, MAX_SENSOR_COUNT);
initSensorClass(_accel, MAX_SENSOR_COUNT);
}
void VotedSensorsUpdate::parametersUpdate()
{
updateParams();
// run through all IMUs
for (uint8_t uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {
uORB::SubscriptionData<vehicle_imu_s> imu{ORB_ID(vehicle_imu), uorb_index};
imu.update();
if (imu.get().timestamp > 0 && imu.get().accel_device_id > 0 && imu.get().gyro_device_id > 0) {
// find corresponding configured accel priority
int8_t accel_cal_index = calibration::FindCalibrationIndex("ACC", imu.get().accel_device_id);
if (accel_cal_index >= 0) {
// found matching CAL_ACCx_PRIO
int32_t accel_priority_old = _accel.priority_configured[uorb_index];
_accel.priority_configured[uorb_index] = calibration::GetCalibrationParam("ACC", "PRIO", accel_cal_index);
if (accel_priority_old != _accel.priority_configured[uorb_index]) {
if (_accel.priority_configured[uorb_index] == 0) {
// disabled
_accel.priority[uorb_index] = 0;
} else {
// change relative priority to incorporate any sensor faults
int priority_change = _accel.priority_configured[uorb_index] - accel_priority_old;
_accel.priority[uorb_index] = math::constrain(_accel.priority[uorb_index] + priority_change, 1, 100);
}
}
}
// find corresponding configured gyro priority
int8_t gyro_cal_index = calibration::FindCalibrationIndex("GYRO", imu.get().gyro_device_id);
if (gyro_cal_index >= 0) {
// found matching CAL_GYROx_PRIO
int32_t gyro_priority_old = _gyro.priority_configured[uorb_index];
_gyro.priority_configured[uorb_index] = calibration::GetCalibrationParam("GYRO", "PRIO", gyro_cal_index);
if (gyro_priority_old != _gyro.priority_configured[uorb_index]) {
if (_gyro.priority_configured[uorb_index] == 0) {
// disabled
_gyro.priority[uorb_index] = 0;
} else {
// change relative priority to incorporate any sensor faults
int priority_change = _gyro.priority_configured[uorb_index] - gyro_priority_old;
_gyro.priority[uorb_index] = math::constrain(_gyro.priority[uorb_index] + priority_change, 1, 100);
}
}
}
}
}
}
void VotedSensorsUpdate::imuPoll(struct sensor_combined_s &raw)
{
for (int uorb_index = 0; uorb_index < MAX_SENSOR_COUNT; uorb_index++) {
vehicle_imu_s imu_report;
if ((_accel.priority[uorb_index] > 0) && (_gyro.priority[uorb_index] > 0)
&& _vehicle_imu_sub[uorb_index].update(&imu_report)) {
// copy corresponding vehicle_imu_status for accel & gyro error counts
vehicle_imu_status_s imu_status{};
_vehicle_imu_status_subs[uorb_index].copy(&imu_status);
_accel_device_id[uorb_index] = imu_report.accel_device_id;
_gyro_device_id[uorb_index] = imu_report.gyro_device_id;
// convert the delta velocities to an equivalent acceleration
const float accel_dt_inv = 1.e6f / (float)imu_report.delta_velocity_dt;
Vector3f accel_data = Vector3f{imu_report.delta_velocity} * accel_dt_inv;
// convert the delta angles to an equivalent angular rate
const float gyro_dt_inv = 1.e6f / (float)imu_report.delta_angle_dt;
Vector3f gyro_rate = Vector3f{imu_report.delta_angle} * gyro_dt_inv;
_last_sensor_data[uorb_index].timestamp = imu_report.timestamp_sample;
_last_sensor_data[uorb_index].accelerometer_m_s2[0] = accel_data(0);
_last_sensor_data[uorb_index].accelerometer_m_s2[1] = accel_data(1);
_last_sensor_data[uorb_index].accelerometer_m_s2[2] = accel_data(2);
_last_sensor_data[uorb_index].accelerometer_integral_dt = imu_report.delta_velocity_dt;
_last_sensor_data[uorb_index].accelerometer_clipping = imu_report.delta_velocity_clipping;
_last_sensor_data[uorb_index].gyro_rad[0] = gyro_rate(0);
_last_sensor_data[uorb_index].gyro_rad[1] = gyro_rate(1);
_last_sensor_data[uorb_index].gyro_rad[2] = gyro_rate(2);
_last_sensor_data[uorb_index].gyro_integral_dt = imu_report.delta_angle_dt;
_last_accel_timestamp[uorb_index] = imu_report.timestamp_sample;
_accel.voter.put(uorb_index, imu_report.timestamp, _last_sensor_data[uorb_index].accelerometer_m_s2,
imu_status.accel_error_count, _accel.priority[uorb_index]);
_gyro.voter.put(uorb_index, imu_report.timestamp, _last_sensor_data[uorb_index].gyro_rad,
imu_status.gyro_error_count, _gyro.priority[uorb_index]);
}
}
// find the best sensor
int accel_best_index = -1;
int gyro_best_index = -1;
if (!_param_sens_imu_mode.get() && ((_selection.timestamp != 0) || (_sensor_selection_sub.updated()))) {
// use sensor_selection to find best
if (_sensor_selection_sub.update(&_selection)) {
// reset inconsistency checks against primary
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
_accel_diff[sensor_index].zero();
}
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
_gyro_diff[sensor_index].zero();
}
}
for (int i = 0; i < MAX_SENSOR_COUNT; i++) {
if ((_accel_device_id[i] != 0) && (_accel_device_id[i] == _selection.accel_device_id)) {
accel_best_index = i;
}
if ((_gyro_device_id[i] != 0) && (_gyro_device_id[i] == _selection.gyro_device_id)) {
gyro_best_index = i;
}
}
} else {
// use sensor voter to find best if SENS_IMU_MODE is enabled or ORB_ID(sensor_selection) has never published
_accel.voter.get_best(hrt_absolute_time(), &accel_best_index);
_gyro.voter.get_best(hrt_absolute_time(), &gyro_best_index);
checkFailover(_accel, "Accel");
checkFailover(_gyro, "Gyro");
}
// write data for the best sensor to output variables
if ((accel_best_index >= 0) && (gyro_best_index >= 0)) {
raw.timestamp = _last_sensor_data[gyro_best_index].timestamp;
memcpy(&raw.accelerometer_m_s2, &_last_sensor_data[accel_best_index].accelerometer_m_s2,
sizeof(raw.accelerometer_m_s2));
memcpy(&raw.gyro_rad, &_last_sensor_data[gyro_best_index].gyro_rad, sizeof(raw.gyro_rad));
raw.accelerometer_integral_dt = _last_sensor_data[accel_best_index].accelerometer_integral_dt;
raw.gyro_integral_dt = _last_sensor_data[gyro_best_index].gyro_integral_dt;
raw.accelerometer_clipping = _last_sensor_data[accel_best_index].accelerometer_clipping;
if ((accel_best_index != _accel.last_best_vote) || (_selection.accel_device_id != _accel_device_id[accel_best_index])) {
_accel.last_best_vote = (uint8_t)accel_best_index;
_selection.accel_device_id = _accel_device_id[accel_best_index];
_selection_changed = true;
}
if ((_gyro.last_best_vote != gyro_best_index) || (_selection.gyro_device_id != _gyro_device_id[gyro_best_index])) {
_gyro.last_best_vote = (uint8_t)gyro_best_index;
_selection.gyro_device_id = _gyro_device_id[gyro_best_index];
_selection_changed = true;
// clear all registered callbacks
for (auto &sub : _vehicle_imu_sub) {
sub.unregisterCallback();
}
for (int i = 0; i < MAX_SENSOR_COUNT; i++) {
vehicle_imu_s report{};
if (_vehicle_imu_sub[i].copy(&report)) {
if ((report.gyro_device_id != 0) && (report.gyro_device_id == _gyro_device_id[gyro_best_index])) {
_vehicle_imu_sub[i].registerCallback();
}
}
}
}
}
// publish sensor selection if changed
if (_param_sens_imu_mode.get() || (_selection.timestamp == 0)) {
if (_selection_changed) {
// don't publish until selected IDs are valid
if (_selection.accel_device_id > 0 && _selection.gyro_device_id > 0) {
_selection.timestamp = hrt_absolute_time();
_sensor_selection_pub.publish(_selection);
_selection_changed = false;
}
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
_accel_diff[sensor_index].zero();
_gyro_diff[sensor_index].zero();
}
}
}
}
bool VotedSensorsUpdate::checkFailover(SensorData &sensor, const char *sensor_name)
{
if (sensor.last_failover_count != sensor.voter.failover_count() && !_hil_enabled) {
uint32_t flags = sensor.voter.failover_state();
int failover_index = sensor.voter.failover_index();
if (flags == DataValidator::ERROR_FLAG_NO_ERROR) {
if (failover_index != -1) {
// we switched due to a non-critical reason. No need to panic.
PX4_INFO("%s sensor switch from #%i", sensor_name, failover_index);
}
} else {
if (failover_index != -1) {
const hrt_abstime now = hrt_absolute_time();
if (now - _last_error_message > 3_s) {
mavlink_log_emergency(&_mavlink_log_pub, "%s #%i fail: %s%s%s%s%s!",
sensor_name,
failover_index,
((flags & DataValidator::ERROR_FLAG_NO_DATA) ? " OFF" : ""),
((flags & DataValidator::ERROR_FLAG_STALE_DATA) ? " STALE" : ""),
((flags & DataValidator::ERROR_FLAG_TIMEOUT) ? " TIMEOUT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRCOUNT) ? " ERR CNT" : ""),
((flags & DataValidator::ERROR_FLAG_HIGH_ERRDENSITY) ? " ERR DNST" : ""));
_last_error_message = now;
}
// reduce priority of failed sensor to the minimum
sensor.priority[failover_index] = 1;
}
}
sensor.last_failover_count = sensor.voter.failover_count();
return true;
}
return false;
}
void VotedSensorsUpdate::initSensorClass(SensorData &sensor_data, uint8_t sensor_count_max)
{
bool added = false;
int max_sensor_index = -1;
for (unsigned i = 0; i < sensor_count_max; i++) {
max_sensor_index = i;
if (!sensor_data.advertised[i] && sensor_data.subscription[i].advertised()) {
sensor_data.advertised[i] = true;
sensor_data.priority[i] = DEFAULT_PRIORITY;
sensor_data.priority_configured[i] = DEFAULT_PRIORITY;
if (i > 0) {
/* the first always exists, but for each further sensor, add a new validator */
if (sensor_data.voter.add_new_validator()) {
added = true;
} else {
PX4_ERR("failed to add validator for sensor %s %i", sensor_data.subscription[i].get_topic()->o_name, i);
}
}
}
}
// never decrease the sensor count, as we could end up with mismatching validators
if (max_sensor_index + 1 > sensor_data.subscription_count) {
sensor_data.subscription_count = max_sensor_index + 1;
}
if (added) {
// force parameter refresh if anything was added
parametersUpdate();
}
}
void VotedSensorsUpdate::printStatus()
{
PX4_INFO("selected gyro: %d (%d)", _selection.gyro_device_id, _gyro.last_best_vote);
_gyro.voter.print();
PX4_INFO_RAW("\n");
PX4_INFO("selected accel: %d (%d)", _selection.accel_device_id, _accel.last_best_vote);
_accel.voter.print();
}
void VotedSensorsUpdate::sensorsPoll(sensor_combined_s &raw)
{
imuPoll(raw);
calcAccelInconsistency();
calcGyroInconsistency();
sensors_status_imu_s status{};
status.accel_device_id_primary = _selection.accel_device_id;
status.gyro_device_id_primary = _selection.gyro_device_id;
static_assert(MAX_SENSOR_COUNT == (sizeof(sensors_status_imu_s::accel_inconsistency_m_s_s) / sizeof(
sensors_status_imu_s::accel_inconsistency_m_s_s[0])), "check sensors_status_imu accel_inconsistency_m_s_s size");
static_assert(MAX_SENSOR_COUNT == (sizeof(sensors_status_imu_s::gyro_inconsistency_rad_s) / sizeof(
sensors_status_imu_s::gyro_inconsistency_rad_s[0])), "check sensors_status_imu accel_inconsistency_m_s_s size");
for (int i = 0; i < MAX_SENSOR_COUNT; i++) {
if ((_accel_device_id[i] != 0) && (_accel.priority[i] > 0)) {
status.accel_device_ids[i] = _accel_device_id[i];
status.accel_inconsistency_m_s_s[i] = _accel_diff[i].norm();
status.accel_healthy[i] = (_accel.voter.get_sensor_state(i) == DataValidator::ERROR_FLAG_NO_ERROR);
}
if ((_gyro_device_id[i] != 0) && (_gyro.priority[i] > 0)) {
status.gyro_device_ids[i] = _gyro_device_id[i];
status.gyro_inconsistency_rad_s[i] = _gyro_diff[i].norm();
status.gyro_healthy[i] = (_gyro.voter.get_sensor_state(i) == DataValidator::ERROR_FLAG_NO_ERROR);
}
}
status.timestamp = hrt_absolute_time();
_sensors_status_imu_pub.publish(status);
}
void VotedSensorsUpdate::setRelativeTimestamps(sensor_combined_s &raw)
{
if (_last_accel_timestamp[_accel.last_best_vote]) {
raw.accelerometer_timestamp_relative = (int32_t)((int64_t)_last_accel_timestamp[_accel.last_best_vote] -
(int64_t)raw.timestamp);
}
}
void VotedSensorsUpdate::calcAccelInconsistency()
{
Vector3f accel_mean{};
Vector3f accel_all[MAX_SENSOR_COUNT] {};
uint8_t accel_count = 0;
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
if ((_accel_device_id[sensor_index] != 0) && (_accel.priority[sensor_index] > 0)) {
accel_count++;
accel_all[sensor_index] = Vector3f{_last_sensor_data[sensor_index].accelerometer_m_s2};
accel_mean += accel_all[sensor_index];
}
}
if (accel_count > 0) {
accel_mean /= accel_count;
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
if ((_accel_device_id[sensor_index] != 0) && (_accel.priority[sensor_index] > 0)) {
_accel_diff[sensor_index] = 0.95f * _accel_diff[sensor_index] + 0.05f * (accel_all[sensor_index] - accel_mean);
}
}
}
}
void VotedSensorsUpdate::calcGyroInconsistency()
{
Vector3f gyro_mean{};
Vector3f gyro_all[MAX_SENSOR_COUNT] {};
uint8_t gyro_count = 0;
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
if ((_gyro_device_id[sensor_index] != 0) && (_gyro.priority[sensor_index] > 0)) {
gyro_count++;
gyro_all[sensor_index] = Vector3f{_last_sensor_data[sensor_index].gyro_rad};
gyro_mean += gyro_all[sensor_index];
}
}
if (gyro_count > 0) {
gyro_mean /= gyro_count;
for (int sensor_index = 0; sensor_index < MAX_SENSOR_COUNT; sensor_index++) {
if ((_gyro_device_id[sensor_index] != 0) && (_gyro.priority[sensor_index] > 0)) {
_gyro_diff[sensor_index] = 0.95f * _gyro_diff[sensor_index] + 0.05f * (gyro_all[sensor_index] - gyro_mean);
}
}
}
}