geofence_breach_avoidance.cpp
11.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "geofence_breach_avoidance.h"
#include <lib/ecl/geo/geo.h>
#include <motion_planning/VelocitySmoothing.hpp>
using Vector2d = matrix::Vector2<double>;
GeofenceBreachAvoidance::GeofenceBreachAvoidance(ModuleParams *parent) :
ModuleParams(parent)
{
_paramHandle.param_mpc_jerk_max = param_find("MPC_JERK_MAX");
_paramHandle.param_mpc_acc_hor = param_find("MPC_ACC_HOR");
_paramHandle.param_mpc_acc_hor_max = param_find("MPC_ACC_HOR_MAX");
_paramHandle.param_mpc_jerk_auto = param_find("MPC_JERK_AUTO");
_paramHandle.param_mpc_acc_up_max = param_find("MPC_ACC_UP_MAX");
_paramHandle.param_mpc_acc_down_max = param_find("MPC_ACC_DOWN_MAX");
updateParameters();
}
void GeofenceBreachAvoidance::updateParameters()
{
ModuleParams::updateParams();
param_get(_paramHandle.param_mpc_jerk_max, &_params.param_mpc_jerk_max);
param_get(_paramHandle.param_mpc_acc_hor, &_params.param_mpc_acc_hor);
param_get(_paramHandle.param_mpc_acc_hor_max, &_params.param_mpc_acc_hor_max);
param_get(_paramHandle.param_mpc_jerk_auto, &_params.param_mpc_jerk_auto);
param_get(_paramHandle.param_mpc_acc_up_max, &_params.param_mpc_acc_up_max);
param_get(_paramHandle.param_mpc_acc_down_max, &_params.param_mpc_acc_down_max);
updateMinHorDistToFenceMultirotor();
}
void GeofenceBreachAvoidance::setCurrentPosition(double lat, double lon, float alt)
{
_current_pos_lat_lon = Vector2d(lat, lon);
_current_alt_amsl = alt;
}
void GeofenceBreachAvoidance::setHomePosition(double lat, double lon, float alt)
{
_home_lat_lon(0) = lat;
_home_lat_lon(1) = lon;
_home_alt_amsl = alt;
}
matrix::Vector2<double> GeofenceBreachAvoidance::waypointFromBearingAndDistance(matrix::Vector2<double>
current_pos_lat_lon, float test_point_bearing, float test_point_distance)
{
// TODO: Remove this once the underlying geo function has been fixed
if (test_point_distance < 0.0f) {
test_point_distance *= -1.0f;
test_point_bearing = matrix::wrap_2pi(test_point_bearing + M_PI_F);
}
double fence_violation_test_point_lat, fence_violation_test_point_lon;
waypoint_from_heading_and_distance(current_pos_lat_lon(0), current_pos_lat_lon(1), test_point_bearing,
test_point_distance, &fence_violation_test_point_lat, &fence_violation_test_point_lon);
return Vector2d(fence_violation_test_point_lat, fence_violation_test_point_lon);
}
Vector2d
GeofenceBreachAvoidance::getFenceViolationTestPoint()
{
return waypointFromBearingAndDistance(_current_pos_lat_lon, _test_point_bearing, _test_point_distance);
}
Vector2d
GeofenceBreachAvoidance::generateLoiterPointForFixedWing(geofence_violation_type_u violation_type, Geofence *geofence)
{
if (violation_type.flags.fence_violation) {
const float bearing_90_left = matrix::wrap_2pi(_test_point_bearing - M_PI_F * 0.5f);
const float bearing_90_right = matrix::wrap_2pi(_test_point_bearing + M_PI_F * 0.5f);
double loiter_center_lat, loiter_center_lon;
double fence_violation_test_point_lat, fence_violation_test_point_lon;
waypoint_from_heading_and_distance(_current_pos_lat_lon(0), _current_pos_lat_lon(1), bearing_90_left,
_test_point_distance, &fence_violation_test_point_lat, &fence_violation_test_point_lon);
const bool left_side_is_inside_fence = geofence->isInsidePolygonOrCircle(fence_violation_test_point_lat,
fence_violation_test_point_lon, _current_alt_amsl);
waypoint_from_heading_and_distance(_current_pos_lat_lon(0), _current_pos_lat_lon(1), bearing_90_right,
_test_point_distance, &fence_violation_test_point_lat, &fence_violation_test_point_lon);
const bool right_side_is_inside_fence = geofence->isInsidePolygonOrCircle(fence_violation_test_point_lat,
fence_violation_test_point_lon, _current_alt_amsl);
float bearing_to_loiter_point;
if (right_side_is_inside_fence && !left_side_is_inside_fence) {
bearing_to_loiter_point = bearing_90_right;
} else if (left_side_is_inside_fence && !right_side_is_inside_fence) {
bearing_to_loiter_point = bearing_90_left;
} else {
bearing_to_loiter_point = matrix::wrap_2pi(_test_point_bearing + M_PI_F);
}
waypoint_from_heading_and_distance(_current_pos_lat_lon(0), _current_pos_lat_lon(1), bearing_to_loiter_point,
_test_point_distance, &loiter_center_lat, &loiter_center_lon);
return Vector2d(loiter_center_lat, loiter_center_lon);
} else if (violation_type.flags.dist_to_home_exceeded) {
return waypointFromHomeToTestPointAtDist(math::max(_max_hor_dist_home - 2 * _test_point_distance, 0.0f));
} else {
return _current_pos_lat_lon;
}
}
Vector2d
GeofenceBreachAvoidance::generateLoiterPointForMultirotor(geofence_violation_type_u violation_type, Geofence *geofence)
{
if (violation_type.flags.fence_violation) {
float current_distance = _test_point_distance * 0.5f;
float current_min = 0.0f;
float current_max = _test_point_distance;
Vector2d test_point;
// binary search for the distance from the drone to the geofence in the given direction
while (abs(current_max - current_min) > 0.5f) {
test_point = waypointFromBearingAndDistance(_current_pos_lat_lon, _test_point_bearing, current_distance);
if (!geofence->isInsidePolygonOrCircle(test_point(0), test_point(1), _current_alt_amsl)) {
current_max = current_distance;
} else {
current_min = current_distance;
}
current_distance = (current_max + current_min) * 0.5f;
}
test_point = waypointFromBearingAndDistance(_current_pos_lat_lon, _test_point_bearing, current_distance);
if (_multirotor_braking_distance > current_distance - _min_hor_dist_to_fence_mc) {
return waypointFromBearingAndDistance(test_point, _test_point_bearing + M_PI_F, _min_hor_dist_to_fence_mc);
} else {
return waypointFromBearingAndDistance(_current_pos_lat_lon, _test_point_bearing, _multirotor_braking_distance);
}
} else if (violation_type.flags.dist_to_home_exceeded) {
return waypointFromHomeToTestPointAtDist(math::max(_max_hor_dist_home - _min_hor_dist_to_fence_mc, 0.0f));
} else {
if (_velocity_hor_abs > 0.5f) {
return waypointFromBearingAndDistance(_current_pos_lat_lon, _test_point_bearing, _multirotor_braking_distance);
} else {
return _current_pos_lat_lon;
}
}
}
float GeofenceBreachAvoidance::generateLoiterAltitudeForFixedWing(geofence_violation_type_u violation_type)
{
if (violation_type.flags.max_altitude_exceeded) {
return _current_alt_amsl - 2.0f * _vertical_test_point_distance;
} else {
return _current_alt_amsl;
}
}
float GeofenceBreachAvoidance::generateLoiterAltitudeForMulticopter(geofence_violation_type_u violation_type)
{
if (violation_type.flags.max_altitude_exceeded) {
return _current_alt_amsl + _multirotor_vertical_braking_distance - _min_vert_dist_to_fence_mc;
} else {
return _current_alt_amsl;
}
}
float GeofenceBreachAvoidance::computeBrakingDistanceMultirotor()
{
const float accel_delay_max = math::max(_params.param_mpc_acc_hor, _params.param_mpc_acc_hor_max);
VelocitySmoothing predictor(accel_delay_max, _velocity_hor_abs, 0.f);
predictor.setMaxVel(_velocity_hor_abs);
predictor.setMaxAccel(_params.param_mpc_acc_hor);
predictor.setMaxJerk(_params.param_mpc_jerk_auto);
predictor.updateDurations(0.f);
predictor.updateTraj(predictor.getTotalTime());
_multirotor_braking_distance = predictor.getCurrentPosition() + (GEOFENCE_CHECK_INTERVAL_US / 1e6f) *
_velocity_hor_abs;
return _multirotor_braking_distance;
}
float GeofenceBreachAvoidance::computeVerticalBrakingDistanceMultirotor()
{
const float accel_delay_max = math::max(_params.param_mpc_acc_up_max, _params.param_mpc_acc_down_max);
const float vertical_vel_abs = fabsf(_climbrate);
VelocitySmoothing predictor(accel_delay_max, vertical_vel_abs, 0.f);
predictor.setMaxVel(vertical_vel_abs);
predictor.setMaxAccel(_climbrate > 0 ? _params.param_mpc_acc_down_max : _params.param_mpc_acc_up_max);
predictor.setMaxJerk(_params.param_mpc_jerk_auto);
predictor.updateDurations(0.f);
predictor.updateTraj(predictor.getTotalTime());
_multirotor_vertical_braking_distance = predictor.getCurrentPosition() + (GEOFENCE_CHECK_INTERVAL_US / 1e6f) *
vertical_vel_abs;
_multirotor_vertical_braking_distance = matrix::sign(_climbrate) * _multirotor_vertical_braking_distance;
return _multirotor_vertical_braking_distance;
}
void GeofenceBreachAvoidance::updateMinHorDistToFenceMultirotor()
{
const float accel_delay_max = math::max(_params.param_mpc_acc_hor, _params.param_mpc_acc_hor_max);
VelocitySmoothing predictor(accel_delay_max, 0.0f, 0.f);
predictor.setMaxVel(0.0f);
predictor.setMaxAccel(_params.param_mpc_acc_hor);
predictor.setMaxJerk(_params.param_mpc_jerk_auto);
predictor.updateDurations(0.f);
predictor.updateTraj(predictor.getTotalTime());
_min_hor_dist_to_fence_mc = 2.0f * predictor.getCurrentPosition();
}
void GeofenceBreachAvoidance::updateMinVertDistToFenceMultirotor()
{
const float accel_delay_max = math::max(_params.param_mpc_acc_up_max, _params.param_mpc_acc_down_max);
VelocitySmoothing predictor(accel_delay_max, 0, 0.f);
predictor.setMaxVel(0);
predictor.setMaxAccel(_params.param_mpc_acc_down_max);
predictor.setMaxJerk(_params.param_mpc_jerk_auto);
predictor.updateDurations(0.f);
predictor.updateTraj(predictor.getTotalTime());
_min_vert_dist_to_fence_mc = 2.0f * predictor.getCurrentPosition();
}
Vector2d GeofenceBreachAvoidance::waypointFromHomeToTestPointAtDist(float distance)
{
Vector2d test_point = getFenceViolationTestPoint();
float bearing_home_current_pos = get_bearing_to_next_waypoint(_home_lat_lon(0), _home_lat_lon(1), test_point(0),
test_point(1));
double loiter_center_lat, loiter_center_lon;
waypoint_from_heading_and_distance(_home_lat_lon(0), _home_lat_lon(1), bearing_home_current_pos, distance,
&loiter_center_lat, &loiter_center_lon);
return Vector2d(loiter_center_lat, loiter_center_lon);
}