vision.cpp
6.88 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "../BlockLocalPositionEstimator.hpp"
#include <systemlib/mavlink_log.h>
#include <matrix/math.hpp>
extern orb_advert_t mavlink_log_pub;
// required number of samples for sensor to initialize.
// This is a vision based position measurement so we assume
// as soon as we get one measurement it is initialized.
static const uint32_t REQ_VISION_INIT_COUNT = 1;
// We don't want to deinitialize it because
// this will throw away a correction before it starts using the data so we
// set the timeout to 0.5 seconds
static const uint32_t VISION_TIMEOUT = 500000; // 0.5 s
// set pose/velocity as invalid if standard deviation is bigger than EP_MAX_STD_DEV
// TODO: the user should be allowed to set these values by a parameter
static constexpr float EP_MAX_STD_DEV = 100.0f;
void BlockLocalPositionEstimator::visionInit()
{
// measure
Vector<float, n_y_vision> y;
if (visionMeasure(y) != OK) {
_visionStats.reset();
return;
}
// increament sums for mean
if (_visionStats.getCount() > REQ_VISION_INIT_COUNT) {
mavlink_log_info(&mavlink_log_pub, "[lpe] vision position init: "
"%5.2f %5.2f %5.2f m std %5.2f %5.2f %5.2f m",
double(_visionStats.getMean()(0)),
double(_visionStats.getMean()(1)),
double(_visionStats.getMean()(2)),
double(_visionStats.getStdDev()(0)),
double(_visionStats.getStdDev()(1)),
double(_visionStats.getStdDev()(2)));
_sensorTimeout &= ~SENSOR_VISION;
_sensorFault &= ~SENSOR_VISION;
// get reference for global position
_ref_lat = math::degrees(_global_local_proj_ref.lat_rad);
_ref_lon = math::degrees(_global_local_proj_ref.lon_rad);
_ref_alt = _global_local_alt0;
_is_global_cov_init = map_projection_initialized(&_global_local_proj_ref);
if (!_map_ref.init_done && _is_global_cov_init) {
// initialize global origin using the visual estimator reference
mavlink_log_info(&mavlink_log_pub, "[lpe] global origin init (vision) : lat %6.2f lon %6.2f alt %5.1f m",
double(_ref_lat), double(_ref_lon), double(_ref_alt));
map_projection_init(&_map_ref, _ref_lat, _ref_lon);
// set timestamp when origin was set to current time
_time_origin = _timeStamp;
}
if (!_altOriginInitialized) {
_altOriginInitialized = true;
_altOriginGlobal = true;
_altOrigin = map_projection_initialized(&_global_local_proj_ref) ? _ref_alt : 0.0f;
}
}
}
int BlockLocalPositionEstimator::visionMeasure(Vector<float, n_y_vision> &y)
{
uint8_t x_variance = _sub_visual_odom.get().COVARIANCE_MATRIX_X_VARIANCE;
uint8_t y_variance = _sub_visual_odom.get().COVARIANCE_MATRIX_Y_VARIANCE;
uint8_t z_variance = _sub_visual_odom.get().COVARIANCE_MATRIX_Z_VARIANCE;
if (PX4_ISFINITE(_sub_visual_odom.get().pose_covariance[x_variance])) {
// check if the vision data is valid based on the covariances
_vision_eph = sqrtf(fmaxf(_sub_visual_odom.get().pose_covariance[x_variance],
_sub_visual_odom.get().pose_covariance[y_variance]));
_vision_epv = sqrtf(_sub_visual_odom.get().pose_covariance[z_variance]);
_vision_xy_valid = _vision_eph <= EP_MAX_STD_DEV;
_vision_z_valid = _vision_epv <= EP_MAX_STD_DEV;
} else {
// if we don't have covariances, assume every reading
_vision_xy_valid = true;
_vision_z_valid = true;
}
if (!_vision_xy_valid || !_vision_z_valid) {
_time_last_vision_p = _sub_visual_odom.get().timestamp_sample;
return -1;
} else {
_time_last_vision_p = _sub_visual_odom.get().timestamp_sample;
if (PX4_ISFINITE(_sub_visual_odom.get().x)) {
y.setZero();
y(Y_vision_x) = _sub_visual_odom.get().x;
y(Y_vision_y) = _sub_visual_odom.get().y;
y(Y_vision_z) = _sub_visual_odom.get().z;
_visionStats.update(y);
return OK;
} else {
return -1;
}
}
}
void BlockLocalPositionEstimator::visionCorrect()
{
// measure
Vector<float, n_y_vision> y;
if (visionMeasure(y) != OK) {
mavlink_log_info(&mavlink_log_pub, "[lpe] vision data invalid. eph: %f epv: %f", (double)_vision_eph,
(double)_vision_epv);
return;
}
// vision measurement matrix, measures position
Matrix<float, n_y_vision, n_x> C;
C.setZero();
C(Y_vision_x, X_x) = 1;
C(Y_vision_y, X_y) = 1;
C(Y_vision_z, X_z) = 1;
// noise matrix
Matrix<float, n_y_vision, n_y_vision> R;
R.setZero();
// use std dev from vision data if available
if (_vision_eph > _param_lpe_vis_xy.get()) {
R(Y_vision_x, Y_vision_x) = _vision_eph * _vision_eph;
R(Y_vision_y, Y_vision_y) = _vision_eph * _vision_eph;
} else {
R(Y_vision_x, Y_vision_x) = _param_lpe_vis_xy.get() * _param_lpe_vis_xy.get();
R(Y_vision_y, Y_vision_y) = _param_lpe_vis_xy.get() * _param_lpe_vis_xy.get();
}
if (_vision_epv > _param_lpe_vis_z.get()) {
R(Y_vision_z, Y_vision_z) = _vision_epv * _vision_epv;
} else {
R(Y_vision_z, Y_vision_z) = _param_lpe_vis_z.get() * _param_lpe_vis_z.get();
}
// vision delayed x
uint8_t i_hist = 0;
float vision_delay = (_timeStamp - _sub_visual_odom.get().timestamp_sample) * 1e-6f; // measurement delay in seconds
if (vision_delay < 0.0f) { vision_delay = 0.0f; }
// use auto-calculated delay from measurement if parameter is set to zero
if (getDelayPeriods(_param_lpe_vis_delay.get() > 0.0f ? _param_lpe_vis_delay.get() : vision_delay, &i_hist) < 0) { return; }
Vector<float, n_x> x0 = _xDelay.get(i_hist);
// residual
Matrix<float, n_y_vision, 1> r = y - C * x0;
// residual covariance
Matrix<float, n_y_vision, n_y_vision> S = C * m_P * C.transpose() + R;
// publish innovations
_pub_innov.get().ev_hpos[0] = r(0, 0);
_pub_innov.get().ev_hpos[1] = r(1, 0);
_pub_innov.get().ev_vpos = r(2, 0);
_pub_innov.get().ev_hvel[0] = NAN;
_pub_innov.get().ev_hvel[1] = NAN;
_pub_innov.get().ev_vvel = NAN;
// publish innovation variances
_pub_innov_var.get().ev_hpos[0] = S(0, 0);
_pub_innov_var.get().ev_hpos[1] = S(1, 1);
_pub_innov_var.get().ev_vpos = S(2, 2);
_pub_innov_var.get().ev_hvel[0] = NAN;
_pub_innov_var.get().ev_hvel[1] = NAN;
_pub_innov_var.get().ev_vvel = NAN;
// residual covariance, (inverse)
Matrix<float, n_y_vision, n_y_vision> S_I = inv<float, n_y_vision>(S);
// fault detection
float beta = (r.transpose() * (S_I * r))(0, 0);
if (beta > BETA_TABLE[n_y_vision]) {
if (!(_sensorFault & SENSOR_VISION)) {
mavlink_log_info(&mavlink_log_pub, "[lpe] vision position fault, beta %5.2f", double(beta));
_sensorFault |= SENSOR_VISION;
}
} else if (_sensorFault & SENSOR_VISION) {
_sensorFault &= ~SENSOR_VISION;
mavlink_log_info(&mavlink_log_pub, "[lpe] vision position OK");
}
// kalman filter correction if no fault
if (!(_sensorFault & SENSOR_VISION)) {
Matrix<float, n_x, n_y_vision> K = m_P * C.transpose() * S_I;
Vector<float, n_x> dx = K * r;
_x += dx;
m_P -= K * C * m_P;
}
}
void BlockLocalPositionEstimator::visionCheckTimeout()
{
if (_timeStamp - _time_last_vision_p > VISION_TIMEOUT) {
if (!(_sensorTimeout & SENSOR_VISION)) {
_sensorTimeout |= SENSOR_VISION;
_visionStats.reset();
mavlink_log_critical(&mavlink_log_pub, "[lpe] vision position timeout ");
}
}
}