gps.cpp
6.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include "../BlockLocalPositionEstimator.hpp"
#include <systemlib/mavlink_log.h>
#include <matrix/math.hpp>
extern orb_advert_t mavlink_log_pub;
// required number of samples for sensor
// to initialize
static const uint32_t REQ_GPS_INIT_COUNT = 10;
static const uint32_t GPS_TIMEOUT = 1000000; // 1.0 s
void BlockLocalPositionEstimator::gpsInit()
{
// check for good gps signal
uint8_t nSat = _sub_gps.get().satellites_used;
float eph = _sub_gps.get().eph;
float epv = _sub_gps.get().epv;
uint8_t fix_type = _sub_gps.get().fix_type;
if (
nSat < 6 ||
eph > _param_lpe_eph_max.get() ||
epv > _param_lpe_epv_max.get() ||
fix_type < 3
) {
_gpsStats.reset();
return;
}
// measure
Vector<double, n_y_gps> y;
if (gpsMeasure(y) != OK) {
_gpsStats.reset();
return;
}
// if finished
if (_gpsStats.getCount() > REQ_GPS_INIT_COUNT) {
// get mean gps values
double gpsLat = _gpsStats.getMean()(0);
double gpsLon = _gpsStats.getMean()(1);
float gpsAlt = _gpsStats.getMean()(2);
_sensorTimeout &= ~SENSOR_GPS;
_sensorFault &= ~SENSOR_GPS;
_gpsStats.reset();
if (!_receivedGps) {
// this is the first time we have received gps
_receivedGps = true;
// note we subtract X_z which is in down directon so it is
// an addition
_gpsAltOrigin = gpsAlt + _x(X_z);
// find lat, lon of current origin by subtracting x and y
// if not using vision position since vision will
// have it's own origin, not necessarily where vehicle starts
if (!_map_ref.init_done) {
double gpsLatOrigin = 0;
double gpsLonOrigin = 0;
// reproject at current coordinates
map_projection_init(&_map_ref, gpsLat, gpsLon);
// find origin
map_projection_reproject(&_map_ref, -_x(X_x), -_x(X_y), &gpsLatOrigin, &gpsLonOrigin);
// reinit origin
map_projection_init(&_map_ref, gpsLatOrigin, gpsLonOrigin);
// set timestamp when origin was set to current time
_time_origin = _timeStamp;
// always override alt origin on first GPS to fix
// possible baro offset in global altitude at init
_altOrigin = _gpsAltOrigin;
_altOriginInitialized = true;
_altOriginGlobal = true;
mavlink_log_info(&mavlink_log_pub, "[lpe] global origin init (gps) : lat %6.2f lon %6.2f alt %5.1f m",
gpsLatOrigin, gpsLonOrigin, double(_gpsAltOrigin));
}
PX4_INFO("[lpe] gps init "
"lat %6.2f lon %6.2f alt %5.1f m",
gpsLat,
gpsLon,
double(gpsAlt));
}
}
}
int BlockLocalPositionEstimator::gpsMeasure(Vector<double, n_y_gps> &y)
{
// gps measurement
y.setZero();
y(0) = _sub_gps.get().lat * 1e-7;
y(1) = _sub_gps.get().lon * 1e-7;
y(2) = _sub_gps.get().alt * 1e-3;
y(3) = (double)_sub_gps.get().vel_n_m_s;
y(4) = (double)_sub_gps.get().vel_e_m_s;
y(5) = (double)_sub_gps.get().vel_d_m_s;
// increament sums for mean
_gpsStats.update(y);
_time_last_gps = _timeStamp;
return OK;
}
void BlockLocalPositionEstimator::gpsCorrect()
{
// measure
Vector<double, n_y_gps> y_global;
if (gpsMeasure(y_global) != OK) { return; }
// gps measurement in local frame
double lat = y_global(Y_gps_x);
double lon = y_global(Y_gps_y);
float alt = y_global(Y_gps_z);
float px = 0;
float py = 0;
float pz = -(alt - _gpsAltOrigin);
map_projection_project(&_map_ref, lat, lon, &px, &py);
Vector<float, n_y_gps> y;
y.setZero();
y(Y_gps_x) = px;
y(Y_gps_y) = py;
y(Y_gps_z) = pz;
y(Y_gps_vx) = y_global(Y_gps_vx);
y(Y_gps_vy) = y_global(Y_gps_vy);
y(Y_gps_vz) = y_global(Y_gps_vz);
// gps measurement matrix, measures position and velocity
Matrix<float, n_y_gps, n_x> C;
C.setZero();
C(Y_gps_x, X_x) = 1;
C(Y_gps_y, X_y) = 1;
C(Y_gps_z, X_z) = 1;
C(Y_gps_vx, X_vx) = 1;
C(Y_gps_vy, X_vy) = 1;
C(Y_gps_vz, X_vz) = 1;
// gps covariance matrix
SquareMatrix<float, n_y_gps> R;
R.setZero();
// default to parameter, use gps cov if provided
float var_xy = _param_lpe_gps_xy.get() * _param_lpe_gps_xy.get();
float var_z = _param_lpe_gps_z.get() * _param_lpe_gps_z.get();
float var_vxy = _param_lpe_gps_vxy.get() * _param_lpe_gps_vxy.get();
float var_vz = _param_lpe_gps_vz.get() * _param_lpe_gps_vz.get();
// if field is not below minimum, set it to the value provided
if (_sub_gps.get().eph > _param_lpe_gps_xy.get()) {
var_xy = _sub_gps.get().eph * _sub_gps.get().eph;
}
if (_sub_gps.get().epv > _param_lpe_gps_z.get()) {
var_z = _sub_gps.get().epv * _sub_gps.get().epv;
}
float gps_s_stddev = _sub_gps.get().s_variance_m_s;
if (gps_s_stddev > _param_lpe_gps_vxy.get()) {
var_vxy = gps_s_stddev * gps_s_stddev;
}
if (gps_s_stddev > _param_lpe_gps_vz.get()) {
var_vz = gps_s_stddev * gps_s_stddev;
}
R(0, 0) = var_xy;
R(1, 1) = var_xy;
R(2, 2) = var_z;
R(3, 3) = var_vxy;
R(4, 4) = var_vxy;
R(5, 5) = var_vz;
// get delayed x
uint8_t i_hist = 0;
if (getDelayPeriods(_param_lpe_gps_delay.get(), &i_hist) < 0) { return; }
Vector<float, n_x> x0 = _xDelay.get(i_hist);
// residual
Vector<float, n_y_gps> r = y - C * x0;
// residual covariance
Matrix<float, n_y_gps, n_y_gps> S = C * m_P * C.transpose() + R;
// publish innovations
_pub_innov.get().gps_hpos[0] = r(0);
_pub_innov.get().gps_hpos[1] = r(1);
_pub_innov.get().gps_vpos = r(2);
_pub_innov.get().gps_hvel[0] = r(3);
_pub_innov.get().gps_hvel[1] = r(4);
_pub_innov.get().gps_vvel = r(5);
// publish innovation variances
_pub_innov_var.get().gps_hpos[0] = S(0, 0);
_pub_innov_var.get().gps_hpos[1] = S(1, 1);
_pub_innov_var.get().gps_vpos = S(2, 2);
_pub_innov_var.get().gps_hvel[0] = S(3, 3);
_pub_innov_var.get().gps_hvel[1] = S(4, 4);
_pub_innov_var.get().gps_vvel = S(5, 5);
// residual covariance, (inverse)
Matrix<float, n_y_gps, n_y_gps> S_I = inv<float, n_y_gps>(S);
// fault detection
float beta = (r.transpose() * (S_I * r))(0, 0);
// artifically increase beta threshhold to prevent fault during landing
float beta_thresh = 1e2f;
if (beta / BETA_TABLE[n_y_gps] > beta_thresh) {
if (!(_sensorFault & SENSOR_GPS)) {
mavlink_log_critical(&mavlink_log_pub, "[lpe] gps fault %3g %3g %3g %3g %3g %3g",
double(r(0) * r(0) / S_I(0, 0)), double(r(1) * r(1) / S_I(1, 1)), double(r(2) * r(2) / S_I(2, 2)),
double(r(3) * r(3) / S_I(3, 3)), double(r(4) * r(4) / S_I(4, 4)), double(r(5) * r(5) / S_I(5, 5)));
_sensorFault |= SENSOR_GPS;
}
} else if (_sensorFault & SENSOR_GPS) {
_sensorFault &= ~SENSOR_GPS;
mavlink_log_info(&mavlink_log_pub, "[lpe] GPS OK");
}
// kalman filter correction always for GPS
Matrix<float, n_x, n_y_gps> K = m_P * C.transpose() * S_I;
Vector<float, n_x> dx = K * r;
_x += dx;
m_P -= K * C * m_P;
}
void BlockLocalPositionEstimator::gpsCheckTimeout()
{
if (_timeStamp - _time_last_gps > GPS_TIMEOUT) {
if (!(_sensorTimeout & SENSOR_GPS)) {
_sensorTimeout |= SENSOR_GPS;
_gpsStats.reset();
mavlink_log_critical(&mavlink_log_pub, "[lpe] GPS timeout ");
}
}
}