FlightTaskOrbit.cpp
8.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/****************************************************************************
*
* Copyright (c) 2018-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file FlightTaskOrbit.cpp
*/
#include "FlightTaskOrbit.hpp"
#include <mathlib/mathlib.h>
#include <lib/ecl/geo/geo.h>
using namespace matrix;
FlightTaskOrbit::FlightTaskOrbit() : _circle_approach_line(_position)
{
_sticks_data_required = false;
}
bool FlightTaskOrbit::applyCommandParameters(const vehicle_command_s &command)
{
bool ret = true;
// save previous velocity and roatation direction
float v = fabsf(_v);
bool clockwise = _v > 0;
// commanded radius
if (PX4_ISFINITE(command.param1)) {
clockwise = command.param1 > 0;
const float r = fabsf(command.param1);
ret = ret && setRadius(r);
}
// commanded velocity, take sign of radius as rotation direction
if (PX4_ISFINITE(command.param2)) {
v = command.param2;
}
ret = ret && setVelocity(v * (clockwise ? 1.f : -1.f));
// commanded heading behaviour
if (PX4_ISFINITE(command.param3)) {
_yaw_behaviour = command.param3;
}
// save current yaw estimate for ORBIT_YAW_BEHAVIOUR_HOLD_INITIAL_HEADING
_initial_heading = _yaw;
// commanded center coordinates
if (PX4_ISFINITE(command.param5) && PX4_ISFINITE(command.param6)) {
if (map_projection_initialized(&_global_local_proj_ref)) {
map_projection_project(&_global_local_proj_ref,
command.param5, command.param6,
&_center(0), &_center(1));
} else {
ret = false;
}
}
// commanded altitude
if (PX4_ISFINITE(command.param7)) {
if (map_projection_initialized(&_global_local_proj_ref)) {
_position_setpoint(2) = _global_local_alt0 - command.param7;
} else {
ret = false;
}
}
// perpendicularly approach the orbit circle again when new parameters get commanded
_in_circle_approach = true;
_circle_approach_line.reset();
return ret;
}
bool FlightTaskOrbit::sendTelemetry()
{
orbit_status_s orbit_status{};
orbit_status.radius = math::signNoZero(_v) * _r;
orbit_status.frame = 0; // MAV_FRAME::MAV_FRAME_GLOBAL
orbit_status.yaw_behaviour = _yaw_behaviour;
if (map_projection_initialized(&_global_local_proj_ref)) {
// local -> global
map_projection_reproject(&_global_local_proj_ref, _center(0), _center(1), &orbit_status.x, &orbit_status.y);
orbit_status.z = _global_local_alt0 - _position_setpoint(2);
} else {
return false; // don't send the message if the transformation failed
}
orbit_status.timestamp = hrt_absolute_time();
_orbit_status_pub.publish(orbit_status);
return true;
}
bool FlightTaskOrbit::setRadius(float r)
{
// clip the radius to be within range
r = math::constrain(r, _radius_min, _radius_max);
// small radius is more important than high velocity for safety
if (!checkAcceleration(r, _v, _acceleration_max)) {
_v = sign(_v) * sqrtf(_acceleration_max * r);
}
if (fabs(_r - r) > FLT_EPSILON) {
_circle_approach_line.reset();
}
_r = r;
return true;
}
bool FlightTaskOrbit::setVelocity(const float v)
{
if (fabs(v) < _velocity_max &&
checkAcceleration(_r, v, _acceleration_max)) {
_v = v;
return true;
}
return false;
}
bool FlightTaskOrbit::checkAcceleration(float r, float v, float a)
{
return v * v < a * r;
}
bool FlightTaskOrbit::activate(const vehicle_local_position_setpoint_s &last_setpoint)
{
bool ret = FlightTaskManualAltitudeSmoothVel::activate(last_setpoint);
_r = _radius_min;
_v = 1.f;
_center = _position.xy();
_initial_heading = _yaw;
_slew_rate_yaw.setForcedValue(_yaw);
_slew_rate_yaw.setSlewRate(math::radians(_param_mpc_yawrauto_max.get()));
// need a valid position and velocity
ret = ret && PX4_ISFINITE(_position(0))
&& PX4_ISFINITE(_position(1))
&& PX4_ISFINITE(_position(2))
&& PX4_ISFINITE(_velocity(0))
&& PX4_ISFINITE(_velocity(1))
&& PX4_ISFINITE(_velocity(2));
return ret;
}
bool FlightTaskOrbit::update()
{
// update altitude
bool ret = FlightTaskManualAltitudeSmoothVel::update();
// stick input adjusts parameters within a fixed time frame
const float r = _r - _sticks.getPositionExpo()(0) * _deltatime * (_radius_max / 8.f);
const float v = _v - _sticks.getPositionExpo()(1) * _deltatime * (_velocity_max / 4.f);
setRadius(r);
setVelocity(v);
const Vector2f center_to_position = Vector2f(_position) - _center;
if (_in_circle_approach) {
generate_circle_approach_setpoints(center_to_position);
} else {
generate_circle_setpoints(center_to_position);
generate_circle_yaw_setpoints(center_to_position);
}
// Apply yaw smoothing
_yaw_setpoint = _slew_rate_yaw.update(_yaw_setpoint, _deltatime);
// publish information to UI
sendTelemetry();
return ret;
}
void FlightTaskOrbit::generate_circle_approach_setpoints(const Vector2f ¢er_to_position)
{
const Vector2f start_to_circle = (_r - center_to_position.norm()) * center_to_position.unit_or_zero();
if (_circle_approach_line.isEndReached()) {
// calculate target point on circle and plan a line trajectory
const Vector2f closest_circle_point = Vector2f(_position) + start_to_circle;
const Vector3f target = Vector3f(closest_circle_point(0), closest_circle_point(1), _position(2));
_circle_approach_line.setLineFromTo(_position, target);
_circle_approach_line.setSpeed(_param_mpc_xy_cruise.get());
}
_yaw_setpoint = atan2f(start_to_circle(1), start_to_circle(0));
// follow the planned line and switch to orbiting once the circle is reached
_circle_approach_line.generateSetpoints(_position_setpoint, _velocity_setpoint);
_in_circle_approach = !_circle_approach_line.isEndReached();
}
void FlightTaskOrbit::generate_circle_setpoints(const Vector2f ¢er_to_position)
{
// xy velocity to go around in a circle
Vector2f velocity_xy(-center_to_position(1), center_to_position(0));
velocity_xy = velocity_xy.unit_or_zero();
velocity_xy *= _v;
// xy velocity adjustment to stay on the radius distance
velocity_xy += (_r - center_to_position.norm()) * center_to_position.unit_or_zero();
_position_setpoint(0) = _position_setpoint(1) = NAN;
_velocity_setpoint.xy() = velocity_xy;
_acceleration_setpoint.xy() = -center_to_position.unit_or_zero() * _v * _v / _r;
}
void FlightTaskOrbit::generate_circle_yaw_setpoints(const Vector2f ¢er_to_position)
{
switch (_yaw_behaviour) {
case orbit_status_s::ORBIT_YAW_BEHAVIOUR_HOLD_INITIAL_HEADING:
// make vehicle keep the same heading as when the orbit was commanded
_yaw_setpoint = _initial_heading;
_yawspeed_setpoint = NAN;
break;
case orbit_status_s::ORBIT_YAW_BEHAVIOUR_UNCONTROLLED:
// no yaw setpoint
_yaw_setpoint = NAN;
_yawspeed_setpoint = NAN;
break;
case orbit_status_s::ORBIT_YAW_BEHAVIOUR_HOLD_FRONT_TANGENT_TO_CIRCLE:
_yaw_setpoint = atan2f(sign(_v) * center_to_position(0), -sign(_v) * center_to_position(1));
_yawspeed_setpoint = _v / _r;
break;
case orbit_status_s::ORBIT_YAW_BEHAVIOUR_RC_CONTROLLED:
// inherit setpoint from altitude flight task
break;
case orbit_status_s::ORBIT_YAW_BEHAVIOUR_HOLD_FRONT_TO_CIRCLE_CENTER:
default:
_yaw_setpoint = atan2f(-center_to_position(1), -center_to_position(0));
// yawspeed feed-forward because we know the necessary angular rate
_yawspeed_setpoint = _v / _r;
break;
}
}