TrajectoryConstraints.hpp
6.41 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#pragma once
#include <px4_defines.h>
#include <matrix/math.hpp>
#include <mathlib/mathlib.h>
namespace math
{
namespace trajectory
{
using matrix::Vector3f;
using matrix::Vector2f;
struct VehicleDynamicLimits {
float z_accept_rad;
float xy_accept_rad;
float max_acc_xy;
float max_jerk;
float max_speed_xy;
// TODO: remove this
float max_acc_xy_radius_scale;
};
/*
* Compute the maximum allowed speed at the waypoint assuming that we want to
* connect the two lines (current-target and target-next)
* with a tangent circle with constant speed and desired centripetal acceleration: a_centripetal = speed^2 / radius
* The circle should in theory start and end at the intersection of the lines and the waypoint's acceptance radius.
* This is not exactly true in reality since Navigator switches the waypoint so we have to take in account that
* the real acceptance radius is smaller.
*
*/
inline float computeStartXYSpeedFromWaypoints(const Vector3f &start_position, const Vector3f &target,
const Vector3f &next_target, float exit_speed, const VehicleDynamicLimits &config)
{
const float distance_target_next = (target - next_target).xy().norm();
const bool target_next_different = distance_target_next > 0.001f;
const bool waypoint_overlap = distance_target_next < config.xy_accept_rad;
const bool has_reached_altitude = fabsf(target(2) - start_position(2)) < config.z_accept_rad;
const bool altitude_stays_same = fabsf(next_target(2) - target(2)) < config.z_accept_rad;
float speed_at_target = 0.0f;
if (target_next_different &&
!waypoint_overlap &&
has_reached_altitude &&
altitude_stays_same
) {
const float alpha = acosf(Vector2f((target - start_position).xy()).unit_or_zero().dot(
Vector2f((target - next_target).xy()).unit_or_zero()));
const float safe_alpha = constrain(alpha, 0.f, M_PI_F - FLT_EPSILON);
float accel_tmp = config.max_acc_xy_radius_scale * config.max_acc_xy;
float max_speed_in_turn = computeMaxSpeedInWaypoint(safe_alpha, accel_tmp, config.xy_accept_rad);
speed_at_target = min(min(max_speed_in_turn, exit_speed), config.max_speed_xy);
}
float start_to_target = (start_position - target).xy().norm();
float max_speed = computeMaxSpeedFromDistance(config.max_jerk, config.max_acc_xy, start_to_target, speed_at_target);
return min(config.max_speed_xy, max_speed);
}
/*
* This function computes the maximum speed XY that can be travelled, given a set of waypoints and vehicle dynamics
*
* The first waypoint should be the starting location, and the later waypoints the desired points to be followed.
*
* @param waypoints the list of waypoints to be followed, the first of which should be the starting location
* @param config the vehicle dynamic limits
*
* @return the maximum speed at waypoint[0] which allows it to follow the trajectory while respecting the dynamic limits
*/
template <size_t N>
float computeXYSpeedFromWaypoints(const Vector3f waypoints[N], const VehicleDynamicLimits &config)
{
static_assert(N >= 2, "Need at least 2 points to compute speed");
float max_speed = 0.f;
for (size_t j = 0; j < N - 1; j++) {
size_t i = N - 2 - j;
max_speed = computeStartXYSpeedFromWaypoints(waypoints[i],
waypoints[i + 1],
waypoints[min(i + 2, N - 1)],
max_speed, config);
}
return max_speed;
}
/*
* Constrain the 3D vector given a maximum XY norm
* If the XY norm of the 3D vector is larger than the maximum norm, the whole vector
* is scaled down to respect the constraint.
* If the maximum norm is small (defined by the "accuracy" parameter),
* only the XY components are scaled down to avoid affecting
* Z in case of numerical issues
*/
inline void clampToXYNorm(Vector3f &target, float max_xy_norm, float accuracy = FLT_EPSILON)
{
const float xynorm = target.xy().norm();
const float scale_factor = (xynorm > FLT_EPSILON)
? max_xy_norm / xynorm
: 1.f;
if (scale_factor < 1.f) {
if (max_xy_norm < accuracy && xynorm < accuracy) {
target.xy() = Vector2f(target) * scale_factor;
} else {
target *= scale_factor;
}
}
}
/*
* Constrain the 3D vector given a maximum Z norm
* If the Z component of the 3D vector is larger than the maximum norm, the whole vector
* is scaled down to respect the constraint.
* If the maximum norm is small (defined by the "accuracy parameter),
* only the Z component is scaled down to avoid affecting
* XY in case of numerical issues
*/
inline void clampToZNorm(Vector3f &target, float max_z_norm, float accuracy = FLT_EPSILON)
{
const float znorm = fabs(target(2));
const float scale_factor = (znorm > FLT_EPSILON)
? max_z_norm / znorm
: 1.f;
if (scale_factor < 1.f) {
if (max_z_norm < accuracy && znorm < accuracy) {
target(2) *= scale_factor;
} else {
target *= scale_factor;
}
}
}
}
}