FlightTaskAuto.cpp 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/****************************************************************************
 *
 *   Copyright (c) 2018 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/
/**
 * @file FlightTaskAuto.cpp
 */

#include "FlightTaskAuto.hpp"
#include <mathlib/mathlib.h>
#include <float.h>

using namespace matrix;

static constexpr float SIGMA_NORM	= 0.001f;

FlightTaskAuto::FlightTaskAuto() :
	_obstacle_avoidance(this)
{

}

bool FlightTaskAuto::activate(const vehicle_local_position_setpoint_s &last_setpoint)
{
	bool ret = FlightTask::activate(last_setpoint);
	_position_setpoint = _position;
	_velocity_setpoint = _velocity;
	_yaw_setpoint = _yaw_sp_prev = _yaw;
	_yawspeed_setpoint = 0.0f;
	_setDefaultConstraints();
	return ret;
}

bool FlightTaskAuto::updateInitialize()
{
	bool ret = FlightTask::updateInitialize();

	_sub_home_position.update();
	_sub_vehicle_status.update();
	_sub_triplet_setpoint.update();

	// require valid reference and valid target
	ret = ret && _evaluateGlobalReference() && _evaluateTriplets();
	// require valid position
	ret = ret && PX4_ISFINITE(_position(0))
	      && PX4_ISFINITE(_position(1))
	      && PX4_ISFINITE(_position(2))
	      && PX4_ISFINITE(_velocity(0))
	      && PX4_ISFINITE(_velocity(1))
	      && PX4_ISFINITE(_velocity(2));

	return ret;
}

bool FlightTaskAuto::updateFinalize()
{
	// All the auto FlightTasks have to comply with defined maximum yaw rate
	// If the FlightTask generates a yaw or a yawrate setpoint that exceeds this value
	// it will see its setpoint constrained here
	_limitYawRate();
	_constraints.want_takeoff = _checkTakeoff();
	return true;
}

void FlightTaskAuto::_limitYawRate()
{
	const float yawrate_max = math::radians(_param_mpc_yawrauto_max.get());

	_yaw_sp_aligned = true;

	if (PX4_ISFINITE(_yaw_setpoint) && PX4_ISFINITE(_yaw_sp_prev)) {
		// Limit the rate of change of the yaw setpoint
		const float dyaw_desired = matrix::wrap_pi(_yaw_setpoint - _yaw_sp_prev);
		const float dyaw_max = yawrate_max * _deltatime;
		const float dyaw = math::constrain(dyaw_desired, -dyaw_max, dyaw_max);
		const float yaw_setpoint_sat = matrix::wrap_pi(_yaw_sp_prev + dyaw);

		// The yaw setpoint is aligned when it is within tolerance
		_yaw_sp_aligned = fabsf(matrix::wrap_pi(_yaw_setpoint - yaw_setpoint_sat)) < math::radians(_param_mis_yaw_err.get());

		_yaw_setpoint = yaw_setpoint_sat;
		_yaw_sp_prev = _yaw_setpoint;

		if (!PX4_ISFINITE(_yawspeed_setpoint) && (_deltatime > FLT_EPSILON)) {
			// Create a feedforward
			_yawspeed_setpoint = dyaw / _deltatime;
		}
	}

	if (PX4_ISFINITE(_yawspeed_setpoint)) {
		// The yaw setpoint is aligned when its rate is not saturated
		_yaw_sp_aligned = _yaw_sp_aligned && (fabsf(_yawspeed_setpoint) < yawrate_max);

		_yawspeed_setpoint = math::constrain(_yawspeed_setpoint, -yawrate_max, yawrate_max);
	}
}

bool FlightTaskAuto::_evaluateTriplets()
{
	// TODO: fix the issues mentioned below
	// We add here some conditions that are only required because:
	// 1. navigator continuously sends triplet during mission due to yaw setpoint. This
	// should be removed in the navigator and only updates if the current setpoint actually has changed.
	//
	// 2. navigator should be responsible to send always three valid setpoints. If there is only one setpoint,
	// then previous will be set to current vehicle position and next will be set equal to setpoint.
	//
	// 3. navigator originally only supports gps guided maneuvers. However, it now also supports some flow-specific features
	// such as land and takeoff. The navigator should use for auto takeoff/land with flow the position in xy at the moment the
	// takeoff/land was initiated. Until then we do this kind of logic here.

	// Check if triplet is valid. There must be at least a valid altitude.

	if (!_sub_triplet_setpoint.get().current.valid || !PX4_ISFINITE(_sub_triplet_setpoint.get().current.alt)) {
		// Best we can do is to just set all waypoints to current state
		_prev_prev_wp = _triplet_prev_wp = _triplet_target = _triplet_next_wp = _position;
		_type = WaypointType::loiter;
		_yaw_setpoint = _yaw;
		_yawspeed_setpoint = NAN;
		_target_acceptance_radius = _sub_triplet_setpoint.get().current.acceptance_radius;
		_updateInternalWaypoints();
		return true;
	}

	_type = (WaypointType)_sub_triplet_setpoint.get().current.type;

	// Always update cruise speed since that can change without waypoint changes.
	_mc_cruise_speed = _sub_triplet_setpoint.get().current.cruising_speed;

	if (!PX4_ISFINITE(_mc_cruise_speed) || (_mc_cruise_speed < 0.0f)) {
		// If no speed is planned use the default cruise speed as limit
		_mc_cruise_speed = _constraints.speed_xy;
	}

	// Ensure planned cruise speed is below the maximum such that the smooth trajectory doesn't get capped
	_mc_cruise_speed = math::min(_mc_cruise_speed, _param_mpc_xy_vel_max.get());

	// Temporary target variable where we save the local reprojection of the latest navigator current triplet.
	Vector3f tmp_target;

	if (!PX4_ISFINITE(_sub_triplet_setpoint.get().current.lat)
	    || !PX4_ISFINITE(_sub_triplet_setpoint.get().current.lon)) {
		// No position provided in xy. Lock position
		if (!PX4_ISFINITE(_lock_position_xy(0))) {
			tmp_target(0) = _lock_position_xy(0) = _position(0);
			tmp_target(1) = _lock_position_xy(1) = _position(1);

		} else {
			tmp_target(0) = _lock_position_xy(0);
			tmp_target(1) = _lock_position_xy(1);
		}

	} else {
		// reset locked position if current lon and lat are valid
		_lock_position_xy.setAll(NAN);

		// Convert from global to local frame.
		map_projection_project(&_reference_position,
				       _sub_triplet_setpoint.get().current.lat, _sub_triplet_setpoint.get().current.lon, &tmp_target(0), &tmp_target(1));
	}

	tmp_target(2) = -(_sub_triplet_setpoint.get().current.alt - _reference_altitude);

	// Check if anything has changed. We do that by comparing the temporary target
	// to the internal _triplet_target.
	// TODO This is a hack and it would be much better if the navigator only sends out a waypoints once they have changed.

	bool triplet_update = true;
	const bool prev_next_validity_changed = (_prev_was_valid != _sub_triplet_setpoint.get().previous.valid)
						|| (_next_was_valid != _sub_triplet_setpoint.get().next.valid);

	if (PX4_ISFINITE(_triplet_target(0))
	    && PX4_ISFINITE(_triplet_target(1))
	    && PX4_ISFINITE(_triplet_target(2))
	    && fabsf(_triplet_target(0) - tmp_target(0)) < 0.001f
	    && fabsf(_triplet_target(1) - tmp_target(1)) < 0.001f
	    && fabsf(_triplet_target(2) - tmp_target(2)) < 0.001f
	    && !prev_next_validity_changed) {
		// Nothing has changed: just keep old waypoints.
		triplet_update = false;

	} else {
		_triplet_target = tmp_target;
		_target_acceptance_radius = _sub_triplet_setpoint.get().current.acceptance_radius;

		if (!PX4_ISFINITE(_triplet_target(0)) || !PX4_ISFINITE(_triplet_target(1))) {
			// Horizontal target is not finite.
			_triplet_target(0) = _position(0);
			_triplet_target(1) = _position(1);
		}

		if (!PX4_ISFINITE(_triplet_target(2))) {
			_triplet_target(2) = _position(2);
		}

		// If _triplet_target has updated, update also _triplet_prev_wp and _triplet_next_wp.
		_prev_prev_wp = _triplet_prev_wp;

		if (_isFinite(_sub_triplet_setpoint.get().previous) && _sub_triplet_setpoint.get().previous.valid) {
			map_projection_project(&_reference_position, _sub_triplet_setpoint.get().previous.lat,
					       _sub_triplet_setpoint.get().previous.lon, &_triplet_prev_wp(0), &_triplet_prev_wp(1));
			_triplet_prev_wp(2) = -(_sub_triplet_setpoint.get().previous.alt - _reference_altitude);

		} else {
			_triplet_prev_wp = _position;
		}

		_prev_was_valid = _sub_triplet_setpoint.get().previous.valid;

		if (_type == WaypointType::loiter) {
			_triplet_next_wp = _triplet_target;

		} else if (_isFinite(_sub_triplet_setpoint.get().next) && _sub_triplet_setpoint.get().next.valid) {
			map_projection_project(&_reference_position, _sub_triplet_setpoint.get().next.lat,
					       _sub_triplet_setpoint.get().next.lon, &_triplet_next_wp(0), &_triplet_next_wp(1));
			_triplet_next_wp(2) = -(_sub_triplet_setpoint.get().next.alt - _reference_altitude);

		} else {
			_triplet_next_wp = _triplet_target;
		}

		_next_was_valid = _sub_triplet_setpoint.get().next.valid;
	}

	if (_ext_yaw_handler != nullptr) {
		// activation/deactivation of weather vane is based on parameter WV_EN and setting of navigator (allow_weather_vane)
		(_param_wv_en.get() && !_sub_triplet_setpoint.get().current.disable_weather_vane) ?	_ext_yaw_handler->activate() :
		_ext_yaw_handler->deactivate();
	}

	// Calculate the current vehicle state and check if it has updated.
	State previous_state = _current_state;
	_current_state = _getCurrentState();

	if (triplet_update || (_current_state != previous_state) || _current_state == State::offtrack) {
		_updateInternalWaypoints();
		_mission_gear = _sub_triplet_setpoint.get().current.landing_gear;
		_yaw_lock = false;
	}

	if (_param_com_obs_avoid.get()
	    && _sub_vehicle_status.get().vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
		_obstacle_avoidance.updateAvoidanceDesiredWaypoints(_triplet_target, _yaw_setpoint, _yawspeed_setpoint,
				_triplet_next_wp,
				_sub_triplet_setpoint.get().next.yaw,
				_sub_triplet_setpoint.get().next.yawspeed_valid ? _sub_triplet_setpoint.get().next.yawspeed : (float)NAN,
				_ext_yaw_handler != nullptr && _ext_yaw_handler->is_active(), _sub_triplet_setpoint.get().current.type);
		_obstacle_avoidance.checkAvoidanceProgress(_position, _triplet_prev_wp, _target_acceptance_radius, _closest_pt);
	}

	// set heading
	if (_ext_yaw_handler != nullptr && _ext_yaw_handler->is_active()) {
		_yaw_setpoint = _yaw;
		// use the yawrate setpoint from WV only if not moving lateral (velocity setpoint below half of _param_mpc_xy_cruise)
		// otherwise, keep heading constant (as output from WV is not according to wind in this case)
		bool vehicle_is_moving_lateral = _velocity_setpoint.xy().longerThan(_param_mpc_xy_cruise.get() / 2.0f);

		if (vehicle_is_moving_lateral) {
			_yawspeed_setpoint = 0.0f;

		} else {
			_yawspeed_setpoint = _ext_yaw_handler->get_weathervane_yawrate();
		}



	} else if (_type == WaypointType::follow_target && _sub_triplet_setpoint.get().current.yawspeed_valid) {
		_yawspeed_setpoint = _sub_triplet_setpoint.get().current.yawspeed;
		_yaw_setpoint = NAN;

	} else {
		if ((_type != WaypointType::takeoff || _sub_triplet_setpoint.get().current.disable_weather_vane)
		    && _sub_triplet_setpoint.get().current.yaw_valid) {
			// Use the yaw computed in Navigator except during takeoff because
			// Navigator is not handling the yaw reset properly.
			// But: use if from Navigator during takeoff if disable_weather_vane is true,
			// because we're then aligning to the transition waypoint.
			// TODO: fix in navigator
			_yaw_setpoint = _sub_triplet_setpoint.get().current.yaw;

		} else {
			_set_heading_from_mode();
		}

		_yawspeed_setpoint = NAN;
	}

	return true;
}

void FlightTaskAuto::_set_heading_from_mode()
{

	Vector2f v; // Vector that points towards desired location

	switch (_param_mpc_yaw_mode.get()) {

	case 0: // Heading points towards the current waypoint.
	case 4: // Same as 0 but yaw first and then go
		v = Vector2f(_target) - Vector2f(_position);
		break;

	case 1: // Heading points towards home.
		if (_sub_home_position.get().valid_lpos) {
			v = Vector2f(&_sub_home_position.get().x) - Vector2f(_position);
		}

		break;

	case 2: // Heading point away from home.
		if (_sub_home_position.get().valid_lpos) {
			v = Vector2f(_position) - Vector2f(&_sub_home_position.get().x);
		}

		break;

	case 3: // Along trajectory.
		// The heading depends on the kind of setpoint generation. This needs to be implemented
		// in the subclasses where the velocity setpoints are generated.
		v.setAll(NAN);
		break;
	}

	if (PX4_ISFINITE(v.length())) {
		// We only adjust yaw if vehicle is outside of acceptance radius. Once we enter acceptance
		// radius, lock yaw to current yaw.
		// This prevents excessive yawing.
		if (!_yaw_lock) {
			if (v.length() < _target_acceptance_radius) {
				_yaw_setpoint = _yaw;
				_yaw_lock = true;

			} else {
				_compute_heading_from_2D_vector(_yaw_setpoint, v);
			}
		}

	} else {
		_yaw_lock = false;
		_yaw_setpoint = NAN;
	}
}

bool FlightTaskAuto::_isFinite(const position_setpoint_s &sp)
{
	return (PX4_ISFINITE(sp.lat) && PX4_ISFINITE(sp.lon) && PX4_ISFINITE(sp.alt));
}

bool FlightTaskAuto::_evaluateGlobalReference()
{
	// check if reference has changed and update.
	// Only update if reference timestamp has changed AND no valid reference altitude
	// is available.
	// TODO: this needs to be revisited and needs a more clear implementation
	if (_sub_vehicle_local_position.get().ref_timestamp == _time_stamp_reference && PX4_ISFINITE(_reference_altitude)) {
		// don't need to update anything
		return true;
	}

	double ref_lat = _sub_vehicle_local_position.get().ref_lat;
	double ref_lon = _sub_vehicle_local_position.get().ref_lon;
	_reference_altitude = _sub_vehicle_local_position.get().ref_alt;

	if (!_sub_vehicle_local_position.get().z_global) {
		// we have no valid global altitude
		// set global reference to local reference
		_reference_altitude = 0.0f;
	}

	if (!_sub_vehicle_local_position.get().xy_global) {
		// we have no valid global alt/lat
		// set global reference to local reference
		ref_lat = 0.0;
		ref_lon = 0.0;
	}

	// init projection
	map_projection_init(&_reference_position, ref_lat, ref_lon);

	// check if everything is still finite
	return PX4_ISFINITE(_reference_altitude) && PX4_ISFINITE(ref_lat) && PX4_ISFINITE(ref_lon);
}

void FlightTaskAuto::_setDefaultConstraints()
{
	FlightTask::_setDefaultConstraints();

	// only adjust limits if the new limit is lower
	if (_constraints.speed_xy >= _param_mpc_xy_cruise.get()) {
		_constraints.speed_xy = _param_mpc_xy_cruise.get();
	}
}

Vector2f FlightTaskAuto::_getTargetVelocityXY()
{
	// guard against any bad velocity values
	const float vx = _sub_triplet_setpoint.get().current.vx;
	const float vy = _sub_triplet_setpoint.get().current.vy;
	bool velocity_valid = PX4_ISFINITE(vx) && PX4_ISFINITE(vy) &&
			      _sub_triplet_setpoint.get().current.velocity_valid;

	if (velocity_valid) {
		return Vector2f(vx, vy);

	} else {
		// just return zero speed
		return Vector2f{};
	}
}

State FlightTaskAuto::_getCurrentState()
{
	// Calculate the vehicle current state based on the Navigator triplets and the current position.
	Vector2f u_prev_to_target = Vector2f(_triplet_target - _triplet_prev_wp).unit_or_zero();
	Vector2f pos_to_target(_triplet_target - _position);
	Vector2f prev_to_pos(_position - _triplet_prev_wp);
	// Calculate the closest point to the vehicle position on the line prev_wp - target
	_closest_pt = Vector2f(_triplet_prev_wp) + u_prev_to_target * (prev_to_pos * u_prev_to_target);

	State return_state = State::none;

	if (u_prev_to_target * pos_to_target < 0.0f) {
		// Target is behind.
		return_state = State::target_behind;

	} else if (u_prev_to_target * prev_to_pos < 0.0f && prev_to_pos.length() > _target_acceptance_radius) {
		// Current position is more than cruise speed in front of previous setpoint.
		return_state = State::previous_infront;

	} else if (Vector2f(Vector2f(_position) - _closest_pt).length() > _target_acceptance_radius) {
		// Vehicle is more than cruise speed off track.
		return_state = State::offtrack;

	}

	return return_state;
}

void FlightTaskAuto::_updateInternalWaypoints()
{
	// The internal Waypoints might differ from _triplet_prev_wp, _triplet_target and _triplet_next_wp.
	// The cases where it differs:
	// 1. The vehicle already passed the target -> go straight to target
	// 2. The vehicle is more than cruise speed in front of previous waypoint -> go straight to previous waypoint
	// 3. The vehicle is more than cruise speed from track -> go straight to closest point on track
	switch (_current_state) {
	case State::target_behind:
		_target = _triplet_target;
		_prev_wp = _position;
		_next_wp = _triplet_next_wp;
		break;

	case State::previous_infront:
		_next_wp = _triplet_target;
		_target = _triplet_prev_wp;
		_prev_wp = _position;
		break;

	case State::offtrack:
		_next_wp = _triplet_target;
		_target = matrix::Vector3f(_closest_pt(0), _closest_pt(1), _triplet_target(2));
		_prev_wp = _position;
		break;

	case State::none:
		_target = _triplet_target;
		_prev_wp = _triplet_prev_wp;
		_next_wp = _triplet_next_wp;
		break;

	default:
		break;

	}
}

bool FlightTaskAuto::_compute_heading_from_2D_vector(float &heading, Vector2f v)
{
	if (PX4_ISFINITE(v.length()) && v.length() > SIGMA_NORM) {
		v.normalize();
		// To find yaw: take dot product of x = (1,0) and v
		// and multiply by the sign given of cross product of x and v.
		// Dot product: (x(0)*v(0)+(x(1)*v(1)) = v(0)
		// Cross product: x(0)*v(1) - v(0)*x(1) = v(1)
		heading =  sign(v(1)) * wrap_pi(acosf(v(0)));
		return true;
	}

	// heading unknown and therefore do not change heading
	return false;
}