FlightTaskAuto.cpp
18.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file FlightTaskAuto.cpp
*/
#include "FlightTaskAuto.hpp"
#include <mathlib/mathlib.h>
#include <float.h>
using namespace matrix;
static constexpr float SIGMA_NORM = 0.001f;
FlightTaskAuto::FlightTaskAuto() :
_obstacle_avoidance(this)
{
}
bool FlightTaskAuto::activate(const vehicle_local_position_setpoint_s &last_setpoint)
{
bool ret = FlightTask::activate(last_setpoint);
_position_setpoint = _position;
_velocity_setpoint = _velocity;
_yaw_setpoint = _yaw_sp_prev = _yaw;
_yawspeed_setpoint = 0.0f;
_setDefaultConstraints();
return ret;
}
bool FlightTaskAuto::updateInitialize()
{
bool ret = FlightTask::updateInitialize();
_sub_home_position.update();
_sub_vehicle_status.update();
_sub_triplet_setpoint.update();
// require valid reference and valid target
ret = ret && _evaluateGlobalReference() && _evaluateTriplets();
// require valid position
ret = ret && PX4_ISFINITE(_position(0))
&& PX4_ISFINITE(_position(1))
&& PX4_ISFINITE(_position(2))
&& PX4_ISFINITE(_velocity(0))
&& PX4_ISFINITE(_velocity(1))
&& PX4_ISFINITE(_velocity(2));
return ret;
}
bool FlightTaskAuto::updateFinalize()
{
// All the auto FlightTasks have to comply with defined maximum yaw rate
// If the FlightTask generates a yaw or a yawrate setpoint that exceeds this value
// it will see its setpoint constrained here
_limitYawRate();
_constraints.want_takeoff = _checkTakeoff();
return true;
}
void FlightTaskAuto::_limitYawRate()
{
const float yawrate_max = math::radians(_param_mpc_yawrauto_max.get());
_yaw_sp_aligned = true;
if (PX4_ISFINITE(_yaw_setpoint) && PX4_ISFINITE(_yaw_sp_prev)) {
// Limit the rate of change of the yaw setpoint
const float dyaw_desired = matrix::wrap_pi(_yaw_setpoint - _yaw_sp_prev);
const float dyaw_max = yawrate_max * _deltatime;
const float dyaw = math::constrain(dyaw_desired, -dyaw_max, dyaw_max);
const float yaw_setpoint_sat = matrix::wrap_pi(_yaw_sp_prev + dyaw);
// The yaw setpoint is aligned when it is within tolerance
_yaw_sp_aligned = fabsf(matrix::wrap_pi(_yaw_setpoint - yaw_setpoint_sat)) < math::radians(_param_mis_yaw_err.get());
_yaw_setpoint = yaw_setpoint_sat;
_yaw_sp_prev = _yaw_setpoint;
if (!PX4_ISFINITE(_yawspeed_setpoint) && (_deltatime > FLT_EPSILON)) {
// Create a feedforward
_yawspeed_setpoint = dyaw / _deltatime;
}
}
if (PX4_ISFINITE(_yawspeed_setpoint)) {
// The yaw setpoint is aligned when its rate is not saturated
_yaw_sp_aligned = _yaw_sp_aligned && (fabsf(_yawspeed_setpoint) < yawrate_max);
_yawspeed_setpoint = math::constrain(_yawspeed_setpoint, -yawrate_max, yawrate_max);
}
}
bool FlightTaskAuto::_evaluateTriplets()
{
// TODO: fix the issues mentioned below
// We add here some conditions that are only required because:
// 1. navigator continuously sends triplet during mission due to yaw setpoint. This
// should be removed in the navigator and only updates if the current setpoint actually has changed.
//
// 2. navigator should be responsible to send always three valid setpoints. If there is only one setpoint,
// then previous will be set to current vehicle position and next will be set equal to setpoint.
//
// 3. navigator originally only supports gps guided maneuvers. However, it now also supports some flow-specific features
// such as land and takeoff. The navigator should use for auto takeoff/land with flow the position in xy at the moment the
// takeoff/land was initiated. Until then we do this kind of logic here.
// Check if triplet is valid. There must be at least a valid altitude.
if (!_sub_triplet_setpoint.get().current.valid || !PX4_ISFINITE(_sub_triplet_setpoint.get().current.alt)) {
// Best we can do is to just set all waypoints to current state
_prev_prev_wp = _triplet_prev_wp = _triplet_target = _triplet_next_wp = _position;
_type = WaypointType::loiter;
_yaw_setpoint = _yaw;
_yawspeed_setpoint = NAN;
_target_acceptance_radius = _sub_triplet_setpoint.get().current.acceptance_radius;
_updateInternalWaypoints();
return true;
}
_type = (WaypointType)_sub_triplet_setpoint.get().current.type;
// Always update cruise speed since that can change without waypoint changes.
_mc_cruise_speed = _sub_triplet_setpoint.get().current.cruising_speed;
if (!PX4_ISFINITE(_mc_cruise_speed) || (_mc_cruise_speed < 0.0f)) {
// If no speed is planned use the default cruise speed as limit
_mc_cruise_speed = _constraints.speed_xy;
}
// Ensure planned cruise speed is below the maximum such that the smooth trajectory doesn't get capped
_mc_cruise_speed = math::min(_mc_cruise_speed, _param_mpc_xy_vel_max.get());
// Temporary target variable where we save the local reprojection of the latest navigator current triplet.
Vector3f tmp_target;
if (!PX4_ISFINITE(_sub_triplet_setpoint.get().current.lat)
|| !PX4_ISFINITE(_sub_triplet_setpoint.get().current.lon)) {
// No position provided in xy. Lock position
if (!PX4_ISFINITE(_lock_position_xy(0))) {
tmp_target(0) = _lock_position_xy(0) = _position(0);
tmp_target(1) = _lock_position_xy(1) = _position(1);
} else {
tmp_target(0) = _lock_position_xy(0);
tmp_target(1) = _lock_position_xy(1);
}
} else {
// reset locked position if current lon and lat are valid
_lock_position_xy.setAll(NAN);
// Convert from global to local frame.
map_projection_project(&_reference_position,
_sub_triplet_setpoint.get().current.lat, _sub_triplet_setpoint.get().current.lon, &tmp_target(0), &tmp_target(1));
}
tmp_target(2) = -(_sub_triplet_setpoint.get().current.alt - _reference_altitude);
// Check if anything has changed. We do that by comparing the temporary target
// to the internal _triplet_target.
// TODO This is a hack and it would be much better if the navigator only sends out a waypoints once they have changed.
bool triplet_update = true;
const bool prev_next_validity_changed = (_prev_was_valid != _sub_triplet_setpoint.get().previous.valid)
|| (_next_was_valid != _sub_triplet_setpoint.get().next.valid);
if (PX4_ISFINITE(_triplet_target(0))
&& PX4_ISFINITE(_triplet_target(1))
&& PX4_ISFINITE(_triplet_target(2))
&& fabsf(_triplet_target(0) - tmp_target(0)) < 0.001f
&& fabsf(_triplet_target(1) - tmp_target(1)) < 0.001f
&& fabsf(_triplet_target(2) - tmp_target(2)) < 0.001f
&& !prev_next_validity_changed) {
// Nothing has changed: just keep old waypoints.
triplet_update = false;
} else {
_triplet_target = tmp_target;
_target_acceptance_radius = _sub_triplet_setpoint.get().current.acceptance_radius;
if (!PX4_ISFINITE(_triplet_target(0)) || !PX4_ISFINITE(_triplet_target(1))) {
// Horizontal target is not finite.
_triplet_target(0) = _position(0);
_triplet_target(1) = _position(1);
}
if (!PX4_ISFINITE(_triplet_target(2))) {
_triplet_target(2) = _position(2);
}
// If _triplet_target has updated, update also _triplet_prev_wp and _triplet_next_wp.
_prev_prev_wp = _triplet_prev_wp;
if (_isFinite(_sub_triplet_setpoint.get().previous) && _sub_triplet_setpoint.get().previous.valid) {
map_projection_project(&_reference_position, _sub_triplet_setpoint.get().previous.lat,
_sub_triplet_setpoint.get().previous.lon, &_triplet_prev_wp(0), &_triplet_prev_wp(1));
_triplet_prev_wp(2) = -(_sub_triplet_setpoint.get().previous.alt - _reference_altitude);
} else {
_triplet_prev_wp = _position;
}
_prev_was_valid = _sub_triplet_setpoint.get().previous.valid;
if (_type == WaypointType::loiter) {
_triplet_next_wp = _triplet_target;
} else if (_isFinite(_sub_triplet_setpoint.get().next) && _sub_triplet_setpoint.get().next.valid) {
map_projection_project(&_reference_position, _sub_triplet_setpoint.get().next.lat,
_sub_triplet_setpoint.get().next.lon, &_triplet_next_wp(0), &_triplet_next_wp(1));
_triplet_next_wp(2) = -(_sub_triplet_setpoint.get().next.alt - _reference_altitude);
} else {
_triplet_next_wp = _triplet_target;
}
_next_was_valid = _sub_triplet_setpoint.get().next.valid;
}
if (_ext_yaw_handler != nullptr) {
// activation/deactivation of weather vane is based on parameter WV_EN and setting of navigator (allow_weather_vane)
(_param_wv_en.get() && !_sub_triplet_setpoint.get().current.disable_weather_vane) ? _ext_yaw_handler->activate() :
_ext_yaw_handler->deactivate();
}
// Calculate the current vehicle state and check if it has updated.
State previous_state = _current_state;
_current_state = _getCurrentState();
if (triplet_update || (_current_state != previous_state) || _current_state == State::offtrack) {
_updateInternalWaypoints();
_mission_gear = _sub_triplet_setpoint.get().current.landing_gear;
_yaw_lock = false;
}
if (_param_com_obs_avoid.get()
&& _sub_vehicle_status.get().vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
_obstacle_avoidance.updateAvoidanceDesiredWaypoints(_triplet_target, _yaw_setpoint, _yawspeed_setpoint,
_triplet_next_wp,
_sub_triplet_setpoint.get().next.yaw,
_sub_triplet_setpoint.get().next.yawspeed_valid ? _sub_triplet_setpoint.get().next.yawspeed : (float)NAN,
_ext_yaw_handler != nullptr && _ext_yaw_handler->is_active(), _sub_triplet_setpoint.get().current.type);
_obstacle_avoidance.checkAvoidanceProgress(_position, _triplet_prev_wp, _target_acceptance_radius, _closest_pt);
}
// set heading
if (_ext_yaw_handler != nullptr && _ext_yaw_handler->is_active()) {
_yaw_setpoint = _yaw;
// use the yawrate setpoint from WV only if not moving lateral (velocity setpoint below half of _param_mpc_xy_cruise)
// otherwise, keep heading constant (as output from WV is not according to wind in this case)
bool vehicle_is_moving_lateral = _velocity_setpoint.xy().longerThan(_param_mpc_xy_cruise.get() / 2.0f);
if (vehicle_is_moving_lateral) {
_yawspeed_setpoint = 0.0f;
} else {
_yawspeed_setpoint = _ext_yaw_handler->get_weathervane_yawrate();
}
} else if (_type == WaypointType::follow_target && _sub_triplet_setpoint.get().current.yawspeed_valid) {
_yawspeed_setpoint = _sub_triplet_setpoint.get().current.yawspeed;
_yaw_setpoint = NAN;
} else {
if ((_type != WaypointType::takeoff || _sub_triplet_setpoint.get().current.disable_weather_vane)
&& _sub_triplet_setpoint.get().current.yaw_valid) {
// Use the yaw computed in Navigator except during takeoff because
// Navigator is not handling the yaw reset properly.
// But: use if from Navigator during takeoff if disable_weather_vane is true,
// because we're then aligning to the transition waypoint.
// TODO: fix in navigator
_yaw_setpoint = _sub_triplet_setpoint.get().current.yaw;
} else {
_set_heading_from_mode();
}
_yawspeed_setpoint = NAN;
}
return true;
}
void FlightTaskAuto::_set_heading_from_mode()
{
Vector2f v; // Vector that points towards desired location
switch (_param_mpc_yaw_mode.get()) {
case 0: // Heading points towards the current waypoint.
case 4: // Same as 0 but yaw first and then go
v = Vector2f(_target) - Vector2f(_position);
break;
case 1: // Heading points towards home.
if (_sub_home_position.get().valid_lpos) {
v = Vector2f(&_sub_home_position.get().x) - Vector2f(_position);
}
break;
case 2: // Heading point away from home.
if (_sub_home_position.get().valid_lpos) {
v = Vector2f(_position) - Vector2f(&_sub_home_position.get().x);
}
break;
case 3: // Along trajectory.
// The heading depends on the kind of setpoint generation. This needs to be implemented
// in the subclasses where the velocity setpoints are generated.
v.setAll(NAN);
break;
}
if (PX4_ISFINITE(v.length())) {
// We only adjust yaw if vehicle is outside of acceptance radius. Once we enter acceptance
// radius, lock yaw to current yaw.
// This prevents excessive yawing.
if (!_yaw_lock) {
if (v.length() < _target_acceptance_radius) {
_yaw_setpoint = _yaw;
_yaw_lock = true;
} else {
_compute_heading_from_2D_vector(_yaw_setpoint, v);
}
}
} else {
_yaw_lock = false;
_yaw_setpoint = NAN;
}
}
bool FlightTaskAuto::_isFinite(const position_setpoint_s &sp)
{
return (PX4_ISFINITE(sp.lat) && PX4_ISFINITE(sp.lon) && PX4_ISFINITE(sp.alt));
}
bool FlightTaskAuto::_evaluateGlobalReference()
{
// check if reference has changed and update.
// Only update if reference timestamp has changed AND no valid reference altitude
// is available.
// TODO: this needs to be revisited and needs a more clear implementation
if (_sub_vehicle_local_position.get().ref_timestamp == _time_stamp_reference && PX4_ISFINITE(_reference_altitude)) {
// don't need to update anything
return true;
}
double ref_lat = _sub_vehicle_local_position.get().ref_lat;
double ref_lon = _sub_vehicle_local_position.get().ref_lon;
_reference_altitude = _sub_vehicle_local_position.get().ref_alt;
if (!_sub_vehicle_local_position.get().z_global) {
// we have no valid global altitude
// set global reference to local reference
_reference_altitude = 0.0f;
}
if (!_sub_vehicle_local_position.get().xy_global) {
// we have no valid global alt/lat
// set global reference to local reference
ref_lat = 0.0;
ref_lon = 0.0;
}
// init projection
map_projection_init(&_reference_position, ref_lat, ref_lon);
// check if everything is still finite
return PX4_ISFINITE(_reference_altitude) && PX4_ISFINITE(ref_lat) && PX4_ISFINITE(ref_lon);
}
void FlightTaskAuto::_setDefaultConstraints()
{
FlightTask::_setDefaultConstraints();
// only adjust limits if the new limit is lower
if (_constraints.speed_xy >= _param_mpc_xy_cruise.get()) {
_constraints.speed_xy = _param_mpc_xy_cruise.get();
}
}
Vector2f FlightTaskAuto::_getTargetVelocityXY()
{
// guard against any bad velocity values
const float vx = _sub_triplet_setpoint.get().current.vx;
const float vy = _sub_triplet_setpoint.get().current.vy;
bool velocity_valid = PX4_ISFINITE(vx) && PX4_ISFINITE(vy) &&
_sub_triplet_setpoint.get().current.velocity_valid;
if (velocity_valid) {
return Vector2f(vx, vy);
} else {
// just return zero speed
return Vector2f{};
}
}
State FlightTaskAuto::_getCurrentState()
{
// Calculate the vehicle current state based on the Navigator triplets and the current position.
Vector2f u_prev_to_target = Vector2f(_triplet_target - _triplet_prev_wp).unit_or_zero();
Vector2f pos_to_target(_triplet_target - _position);
Vector2f prev_to_pos(_position - _triplet_prev_wp);
// Calculate the closest point to the vehicle position on the line prev_wp - target
_closest_pt = Vector2f(_triplet_prev_wp) + u_prev_to_target * (prev_to_pos * u_prev_to_target);
State return_state = State::none;
if (u_prev_to_target * pos_to_target < 0.0f) {
// Target is behind.
return_state = State::target_behind;
} else if (u_prev_to_target * prev_to_pos < 0.0f && prev_to_pos.length() > _target_acceptance_radius) {
// Current position is more than cruise speed in front of previous setpoint.
return_state = State::previous_infront;
} else if (Vector2f(Vector2f(_position) - _closest_pt).length() > _target_acceptance_radius) {
// Vehicle is more than cruise speed off track.
return_state = State::offtrack;
}
return return_state;
}
void FlightTaskAuto::_updateInternalWaypoints()
{
// The internal Waypoints might differ from _triplet_prev_wp, _triplet_target and _triplet_next_wp.
// The cases where it differs:
// 1. The vehicle already passed the target -> go straight to target
// 2. The vehicle is more than cruise speed in front of previous waypoint -> go straight to previous waypoint
// 3. The vehicle is more than cruise speed from track -> go straight to closest point on track
switch (_current_state) {
case State::target_behind:
_target = _triplet_target;
_prev_wp = _position;
_next_wp = _triplet_next_wp;
break;
case State::previous_infront:
_next_wp = _triplet_target;
_target = _triplet_prev_wp;
_prev_wp = _position;
break;
case State::offtrack:
_next_wp = _triplet_target;
_target = matrix::Vector3f(_closest_pt(0), _closest_pt(1), _triplet_target(2));
_prev_wp = _position;
break;
case State::none:
_target = _triplet_target;
_prev_wp = _triplet_prev_wp;
_next_wp = _triplet_next_wp;
break;
default:
break;
}
}
bool FlightTaskAuto::_compute_heading_from_2D_vector(float &heading, Vector2f v)
{
if (PX4_ISFINITE(v.length()) && v.length() > SIGMA_NORM) {
v.normalize();
// To find yaw: take dot product of x = (1,0) and v
// and multiply by the sign given of cross product of x and v.
// Dot product: (x(0)*v(0)+(x(1)*v(1)) = v(0)
// Cross product: x(0)*v(1) - v(0)*x(1) = v(1)
heading = sign(v(1)) * wrap_pi(acosf(v(0)));
return true;
}
// heading unknown and therefore do not change heading
return false;
}