airspeed_selector_main.cpp
26.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/****************************************************************************
*
* Copyright (c) 2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <drivers/drv_hrt.h>
#include <ecl/airdata/WindEstimator.hpp>
#include <matrix/math.hpp>
#include <parameters/param.h>
#include <perf/perf_counter.h>
#include <px4_platform_common/module.h>
#include <px4_platform_common/module_params.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>
#include <lib/airspeed/airspeed.h>
#include <AirspeedValidator.hpp>
#include <systemlib/mavlink_log.h>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionMultiArray.hpp>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/airspeed_validated.h>
#include <uORB/topics/estimator_selector_status.h>
#include <uORB/topics/estimator_status.h>
#include <uORB/topics/mavlink_log.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/position_setpoint.h>
#include <uORB/Publication.hpp>
#include <uORB/PublicationMulti.hpp>
#include <uORB/topics/vehicle_acceleration.h>
#include <uORB/topics/vehicle_air_data.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_land_detected.h>
#include <uORB/topics/vehicle_local_position.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/vtol_vehicle_status.h>
#include <uORB/topics/airspeed_wind.h>
using namespace time_literals;
static constexpr uint32_t SCHEDULE_INTERVAL{100_ms}; /**< The schedule interval in usec (10 Hz) */
using matrix::Dcmf;
using matrix::Quatf;
using matrix::Vector2f;
using matrix::Vector3f;
class AirspeedModule : public ModuleBase<AirspeedModule>, public ModuleParams,
public px4::ScheduledWorkItem
{
public:
AirspeedModule();
~AirspeedModule() override;
/** @see ModuleBase */
static int task_spawn(int argc, char *argv[]);
/** @see ModuleBase */
static int custom_command(int argc, char *argv[]);
/** @see ModuleBase */
static int print_usage(const char *reason = nullptr);
private:
void Run() override;
static constexpr int MAX_NUM_AIRSPEED_SENSORS = 3; /**< Support max 3 airspeed sensors */
enum airspeed_index {
DISABLED_INDEX = -1,
GROUND_MINUS_WIND_INDEX,
FIRST_SENSOR_INDEX,
SECOND_SENSOR_INDEX,
THIRD_SENSOR_INDEX
};
uORB::Publication<airspeed_validated_s> _airspeed_validated_pub {ORB_ID(airspeed_validated)}; /**< airspeed validated topic*/
uORB::PublicationMulti<airspeed_wind_s> _wind_est_pub[MAX_NUM_AIRSPEED_SENSORS + 1] {{ORB_ID(airspeed_wind)}, {ORB_ID(airspeed_wind)}, {ORB_ID(airspeed_wind)}, {ORB_ID(airspeed_wind)}}; /**< wind estimate topic (for each airspeed validator + purely sideslip fusion) */
orb_advert_t _mavlink_log_pub {nullptr}; /**< mavlink log topic*/
uORB::SubscriptionInterval _parameter_update_sub{ORB_ID(parameter_update), 1_s};
uORB::Subscription _estimator_selector_status_sub{ORB_ID(estimator_selector_status)};
uORB::Subscription _estimator_status_sub{ORB_ID(estimator_status)};
uORB::Subscription _vehicle_acceleration_sub{ORB_ID(vehicle_acceleration)};
uORB::Subscription _vehicle_air_data_sub{ORB_ID(vehicle_air_data)};
uORB::Subscription _vehicle_attitude_sub{ORB_ID(vehicle_attitude)};
uORB::Subscription _vehicle_land_detected_sub{ORB_ID(vehicle_land_detected)};
uORB::Subscription _vehicle_local_position_sub{ORB_ID(vehicle_local_position)};
uORB::Subscription _vehicle_status_sub{ORB_ID(vehicle_status)};
uORB::Subscription _vtol_vehicle_status_sub{ORB_ID(vtol_vehicle_status)};
uORB::Subscription _position_setpoint_sub{ORB_ID(position_setpoint)};
uORB::SubscriptionMultiArray<airspeed_s, MAX_NUM_AIRSPEED_SENSORS> _airspeed_subs{ORB_ID::airspeed};
estimator_status_s _estimator_status {};
vehicle_acceleration_s _accel {};
vehicle_air_data_s _vehicle_air_data {};
vehicle_attitude_s _vehicle_attitude {};
vehicle_land_detected_s _vehicle_land_detected {};
vehicle_local_position_s _vehicle_local_position {};
vehicle_status_s _vehicle_status {};
vtol_vehicle_status_s _vtol_vehicle_status {};
position_setpoint_s _position_setpoint {};
WindEstimator _wind_estimator_sideslip; /**< wind estimator instance only fusing sideslip */
airspeed_wind_s _wind_estimate_sideslip {}; /**< wind estimate message for wind estimator instance only fusing sideslip */
int32_t _number_of_airspeed_sensors{0}; /**< number of airspeed sensors in use (detected during initialization)*/
int32_t _prev_number_of_airspeed_sensors{0}; /**< number of airspeed sensors in previous loop (to detect a new added sensor)*/
AirspeedValidator _airspeed_validator[MAX_NUM_AIRSPEED_SENSORS] {}; /**< airspeedValidator instances (one for each sensor) */
hrt_abstime _time_now_usec{0};
int _valid_airspeed_index{-2}; /**< index of currently chosen (valid) airspeed sensor */
int _prev_airspeed_index{-2}; /**< previously chosen airspeed sensor index */
bool _initialized{false}; /**< module initialized*/
bool _vehicle_local_position_valid{false}; /**< local position (from GPS) valid */
bool _in_takeoff_situation{true}; /**< in takeoff situation (defined as not yet stall speed reached) */
float _ground_minus_wind_TAS{0.0f}; /**< true airspeed from groundspeed minus windspeed */
float _ground_minus_wind_CAS{0.0f}; /**< calibrated airspeed from groundspeed minus windspeed */
bool _scale_estimation_previously_on{false}; /**< scale_estimation was on in the last cycle */
hrt_abstime _time_last_airspeed_update[MAX_NUM_AIRSPEED_SENSORS] {};
perf_counter_t _perf_elapsed{};
DEFINE_PARAMETERS(
(ParamFloat<px4::params::ASPD_W_P_NOISE>) _param_west_w_p_noise,
(ParamFloat<px4::params::ASPD_SC_P_NOISE>) _param_west_sc_p_noise,
(ParamFloat<px4::params::ASPD_TAS_NOISE>) _param_west_tas_noise,
(ParamFloat<px4::params::ASPD_BETA_NOISE>) _param_west_beta_noise,
(ParamInt<px4::params::ASPD_TAS_GATE>) _param_west_tas_gate,
(ParamInt<px4::params::ASPD_BETA_GATE>) _param_west_beta_gate,
(ParamInt<px4::params::ASPD_SCALE_EST>) _param_west_scale_estimation_on,
(ParamFloat<px4::params::ASPD_SCALE>) _param_west_airspeed_scale,
(ParamInt<px4::params::ASPD_PRIMARY>) _param_airspeed_primary_index,
(ParamInt<px4::params::ASPD_DO_CHECKS>) _param_airspeed_checks_on,
(ParamInt<px4::params::ASPD_FALLBACK_GW>) _param_airspeed_fallback_gw,
(ParamFloat<px4::params::ASPD_FS_INNOV>) _tas_innov_threshold, /**< innovation check threshold */
(ParamFloat<px4::params::ASPD_FS_INTEG>) _tas_innov_integ_threshold, /**< innovation check integrator threshold */
(ParamInt<px4::params::ASPD_FS_T_STOP>) _checks_fail_delay, /**< delay to declare airspeed invalid */
(ParamInt<px4::params::ASPD_FS_T_START>) _checks_clear_delay, /**< delay to declare airspeed valid again */
(ParamFloat<px4::params::FW_AIRSPD_STALL>) _param_fw_airspd_stall
)
void init(); /**< initialization of the airspeed validator instances */
void check_for_connected_airspeed_sensors(); /**< check for airspeed sensors (airspeed topics) and get _number_of_airspeed_sensors */
void update_params(); /**< update parameters */
void poll_topics(); /**< poll all topics required beside airspeed (e.g. current temperature) */
void update_wind_estimator_sideslip(); /**< update the wind estimator instance only fusing sideslip */
void update_ground_minus_wind_airspeed(); /**< update airspeed estimate based on groundspeed minus windspeed */
void select_airspeed_and_publish(); /**< select airspeed sensor (or groundspeed-windspeed) */
};
AirspeedModule::AirspeedModule():
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers)
{
// initialise parameters
update_params();
_perf_elapsed = perf_alloc(PC_ELAPSED, MODULE_NAME": elapsed");
}
AirspeedModule::~AirspeedModule()
{
ScheduleClear();
perf_free(_perf_elapsed);
}
int
AirspeedModule::task_spawn(int argc, char *argv[])
{
AirspeedModule *dev = new AirspeedModule();
// check if the trampoline is called for the first time
if (!dev) {
PX4_ERR("alloc failed");
return PX4_ERROR;
}
_object.store(dev);
dev->ScheduleOnInterval(SCHEDULE_INTERVAL, 10000);
_task_id = task_id_is_work_queue;
return PX4_OK;
}
void
AirspeedModule::init()
{
check_for_connected_airspeed_sensors();
// Set the default sensor
if (_param_airspeed_primary_index.get() > _number_of_airspeed_sensors) {
// constrain the index to the number of sensors connected
_valid_airspeed_index = math::min(_param_airspeed_primary_index.get(), _number_of_airspeed_sensors);
if (_number_of_airspeed_sensors == 0) {
mavlink_log_info(&_mavlink_log_pub,
"No airspeed sensor detected. Switch to non-airspeed mode.");
} else {
mavlink_log_info(&_mavlink_log_pub,
"Primary airspeed index bigger than number connected sensors. Take last sensor.");
}
} else {
// set index to the one provided in the parameter ASPD_PRIMARY
_valid_airspeed_index = _param_airspeed_primary_index.get();
}
_prev_airspeed_index = _valid_airspeed_index; // used to detect a sensor switching
}
void
AirspeedModule::check_for_connected_airspeed_sensors()
{
// check for new connected airspeed sensor
int detected_airspeed_sensors = 0;
if (_param_airspeed_primary_index.get() > 0) {
for (int i = 0; i < _airspeed_subs.size(); i++) {
if (!_airspeed_subs[i].advertised()) {
break;
}
detected_airspeed_sensors = i + 1;
}
} else {
// user has selected groundspeed-windspeed as primary source, or disabled airspeed
detected_airspeed_sensors = 0;
}
_number_of_airspeed_sensors = detected_airspeed_sensors;
}
void
AirspeedModule::Run()
{
_time_now_usec = hrt_absolute_time(); // hrt time of the current cycle
// do not run the airspeed selector until 2s after system boot,
// as data from airspeed sensor and estimator may not be valid yet
if (_time_now_usec < 2_s) {
return;
}
perf_begin(_perf_elapsed);
if (!_initialized) {
init(); // initialize airspeed validator instances
_initialized = true;
}
parameter_update_s update;
if (_parameter_update_sub.update(&update)) {
update_params();
}
bool armed = (_vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED);
// check for new connected airspeed sensors as long as we're disarmed
if (!armed) {
check_for_connected_airspeed_sensors();
}
poll_topics();
update_wind_estimator_sideslip();
update_ground_minus_wind_airspeed();
if (_number_of_airspeed_sensors > 0) {
// disable checks if not a fixed-wing or the vehicle is landing/landed, as then airspeed can fall below stall speed
// and wind estimate isn't accurate anymore. Even better would be to have a reliable "ground_contact" detection
// for fixed-wing landings.
const bool in_air_fixed_wing = !_vehicle_land_detected.landed &&
_position_setpoint.type != position_setpoint_s::SETPOINT_TYPE_LAND &&
_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;
// Prepare data for airspeed_validator
struct airspeed_validator_update_data input_data = {};
input_data.timestamp = _time_now_usec;
input_data.lpos_vx = _vehicle_local_position.vx;
input_data.lpos_vy = _vehicle_local_position.vy;
input_data.lpos_vz = _vehicle_local_position.vz;
input_data.lpos_valid = _vehicle_local_position_valid;
input_data.lpos_evh = _vehicle_local_position.evh;
input_data.lpos_evv = _vehicle_local_position.evv;
input_data.att_q[0] = _vehicle_attitude.q[0];
input_data.att_q[1] = _vehicle_attitude.q[1];
input_data.att_q[2] = _vehicle_attitude.q[2];
input_data.att_q[3] = _vehicle_attitude.q[3];
input_data.air_pressure_pa = _vehicle_air_data.baro_pressure_pa;
input_data.accel_z = _accel.xyz[2];
input_data.vel_test_ratio = _estimator_status.vel_test_ratio;
input_data.mag_test_ratio = _estimator_status.mag_test_ratio;
// iterate through all airspeed sensors, poll new data from them and update their validators
for (int i = 0; i < _number_of_airspeed_sensors; i++) {
// poll raw airspeed topic of the i-th sensor
airspeed_s airspeed_raw;
if (_airspeed_subs[i].update(&airspeed_raw)) {
input_data.airspeed_indicated_raw = airspeed_raw.indicated_airspeed_m_s;
input_data.airspeed_true_raw = airspeed_raw.true_airspeed_m_s;
input_data.airspeed_timestamp = airspeed_raw.timestamp;
input_data.air_temperature_celsius = airspeed_raw.air_temperature_celsius;
// takeoff situation is active from start till one of the sensors' IAS or groundspeed_CAS is above stall speed
if (_in_takeoff_situation &&
(airspeed_raw.indicated_airspeed_m_s > _param_fw_airspd_stall.get() ||
_ground_minus_wind_CAS > _param_fw_airspd_stall.get())) {
_in_takeoff_situation = false;
}
// reset takeoff_situation to true when not in air and not in fixed-wing mode
if (!in_air_fixed_wing) {
_in_takeoff_situation = true;
}
input_data.in_fixed_wing_flight = (armed && in_air_fixed_wing && !_in_takeoff_situation);
// push input data into airspeed validator
_airspeed_validator[i].update_airspeed_validator(input_data);
_time_last_airspeed_update[i] = _time_now_usec;
} else if (_time_now_usec - _time_last_airspeed_update[i] > 1_s) {
// declare airspeed invalid if more then 1s since last raw airspeed update
_airspeed_validator[i].reset_airspeed_to_invalid(_time_now_usec);
}
}
}
select_airspeed_and_publish();
perf_end(_perf_elapsed);
if (should_exit()) {
exit_and_cleanup();
}
}
void AirspeedModule::update_params()
{
updateParams();
_wind_estimator_sideslip.set_wind_p_noise(_param_west_w_p_noise.get());
_wind_estimator_sideslip.set_tas_scale_p_noise(_param_west_sc_p_noise.get());
_wind_estimator_sideslip.set_tas_noise(_param_west_tas_noise.get());
_wind_estimator_sideslip.set_beta_noise(_param_west_beta_noise.get());
_wind_estimator_sideslip.set_tas_gate(_param_west_tas_gate.get());
_wind_estimator_sideslip.set_beta_gate(_param_west_beta_gate.get());
for (int i = 0; i < _number_of_airspeed_sensors; i++) {
_airspeed_validator[i].set_wind_estimator_wind_p_noise(_param_west_w_p_noise.get());
_airspeed_validator[i].set_wind_estimator_tas_scale_p_noise(_param_west_sc_p_noise.get());
_airspeed_validator[i].set_wind_estimator_tas_noise(_param_west_tas_noise.get());
_airspeed_validator[i].set_wind_estimator_beta_noise(_param_west_beta_noise.get());
_airspeed_validator[i].set_wind_estimator_tas_gate(_param_west_tas_gate.get());
_airspeed_validator[i].set_wind_estimator_beta_gate(_param_west_beta_gate.get());
_airspeed_validator[i].set_wind_estimator_scale_estimation_on(_param_west_scale_estimation_on.get());
// only apply manual entered airspeed scale to first airspeed measurement
// TODO: enable multiple airspeed sensors
_airspeed_validator[0].set_airspeed_scale_manual(_param_west_airspeed_scale.get());
_airspeed_validator[i].set_tas_innov_threshold(_tas_innov_threshold.get());
_airspeed_validator[i].set_tas_innov_integ_threshold(_tas_innov_integ_threshold.get());
_airspeed_validator[i].set_checks_fail_delay(_checks_fail_delay.get());
_airspeed_validator[i].set_checks_clear_delay(_checks_clear_delay.get());
_airspeed_validator[i].set_airspeed_stall(_param_fw_airspd_stall.get());
}
// if the airspeed scale estimation is enabled and the airspeed is valid,
// then set the scale inside the wind estimator to -1 such that it starts to estimate it
if (!_scale_estimation_previously_on && _param_west_scale_estimation_on.get()) {
if (_valid_airspeed_index > 0) {
// set it to a negative value to start estimation inside wind estimator
_airspeed_validator[0].set_airspeed_scale_manual(-1.0f);
} else {
mavlink_log_info(&_mavlink_log_pub, "Airspeed: can't estimate scale as no valid sensor.");
_param_west_scale_estimation_on.set(0); // reset this param to 0 as estimation was not turned on
_param_west_scale_estimation_on.commit_no_notification();
}
} else if (_scale_estimation_previously_on && !_param_west_scale_estimation_on.get()) {
if (_valid_airspeed_index > 0) {
_param_west_airspeed_scale.set(_airspeed_validator[_valid_airspeed_index - 1].get_CAS_scale());
_param_west_airspeed_scale.commit_no_notification();
_airspeed_validator[_valid_airspeed_index - 1].set_airspeed_scale_manual(_param_west_airspeed_scale.get());
mavlink_log_info(&_mavlink_log_pub, "Airspeed: estimated scale (ASPD_SCALE): %0.2f",
(double)_airspeed_validator[_valid_airspeed_index - 1].get_CAS_scale());
} else {
mavlink_log_info(&_mavlink_log_pub, "Airspeed: can't estimate scale as no valid sensor.");
}
}
_scale_estimation_previously_on = _param_west_scale_estimation_on.get();
}
void AirspeedModule::poll_topics()
{
// use primary estimator_status
if (_estimator_selector_status_sub.updated()) {
estimator_selector_status_s estimator_selector_status;
if (_estimator_selector_status_sub.copy(&estimator_selector_status)) {
if (estimator_selector_status.primary_instance != _estimator_status_sub.get_instance()) {
_estimator_status_sub.ChangeInstance(estimator_selector_status.primary_instance);
}
}
}
_estimator_status_sub.update(&_estimator_status);
_vehicle_acceleration_sub.update(&_accel);
_vehicle_air_data_sub.update(&_vehicle_air_data);
_vehicle_attitude_sub.update(&_vehicle_attitude);
_vehicle_land_detected_sub.update(&_vehicle_land_detected);
_vehicle_status_sub.update(&_vehicle_status);
_vtol_vehicle_status_sub.update(&_vtol_vehicle_status);
_vehicle_local_position_sub.update(&_vehicle_local_position);
_position_setpoint_sub.update(&_position_setpoint);
_vehicle_local_position_valid = (_time_now_usec - _vehicle_local_position.timestamp < 1_s)
&& (_vehicle_local_position.timestamp > 0) && _vehicle_local_position.v_xy_valid;
}
void AirspeedModule::update_wind_estimator_sideslip()
{
// update wind and airspeed estimator
_wind_estimator_sideslip.update(_time_now_usec);
if (_vehicle_local_position_valid && !_vtol_vehicle_status.vtol_in_rw_mode) {
Vector3f vI(_vehicle_local_position.vx, _vehicle_local_position.vy, _vehicle_local_position.vz);
Quatf q(_vehicle_attitude.q);
_wind_estimator_sideslip.fuse_beta(_time_now_usec, vI, q);
}
_wind_estimate_sideslip.timestamp = _time_now_usec;
float wind[2];
_wind_estimator_sideslip.get_wind(wind);
_wind_estimate_sideslip.windspeed_north = wind[0];
_wind_estimate_sideslip.windspeed_east = wind[1];
float wind_cov[2];
_wind_estimator_sideslip.get_wind_var(wind_cov);
_wind_estimate_sideslip.variance_north = wind_cov[0];
_wind_estimate_sideslip.variance_east = wind_cov[1];
_wind_estimate_sideslip.tas_innov = _wind_estimator_sideslip.get_tas_innov();
_wind_estimate_sideslip.tas_innov_var = _wind_estimator_sideslip.get_tas_innov_var();
_wind_estimate_sideslip.beta_innov = _wind_estimator_sideslip.get_beta_innov();
_wind_estimate_sideslip.beta_innov_var = _wind_estimator_sideslip.get_beta_innov_var();
_wind_estimate_sideslip.tas_scale = _wind_estimator_sideslip.get_tas_scale();
_wind_estimate_sideslip.source = airspeed_wind_s::SOURCE_AS_BETA_ONLY;
}
void AirspeedModule::update_ground_minus_wind_airspeed()
{
// calculate airspeed estimate based on groundspeed-windspeed to use as fallback
const float TAS_north = _vehicle_local_position.vx - _wind_estimate_sideslip.windspeed_north;
const float TAS_east = _vehicle_local_position.vy - _wind_estimate_sideslip.windspeed_east;
const float TAS_down = _vehicle_local_position.vz; // no wind estimate in z
_ground_minus_wind_TAS = sqrtf(TAS_north * TAS_north + TAS_east * TAS_east + TAS_down * TAS_down);
_ground_minus_wind_CAS = calc_CAS_from_TAS(_ground_minus_wind_TAS, _vehicle_air_data.baro_pressure_pa,
_vehicle_air_data.baro_temp_celcius);
}
void AirspeedModule::select_airspeed_and_publish()
{
const bool airspeed_sensor_switching_necessary = _prev_airspeed_index < airspeed_index::FIRST_SENSOR_INDEX ||
!_airspeed_validator[_prev_airspeed_index - 1].get_airspeed_valid();
const bool airspeed_sensor_switching_allowed = _number_of_airspeed_sensors > 0 &&
_param_airspeed_primary_index.get() > airspeed_index::GROUND_MINUS_WIND_INDEX && _param_airspeed_checks_on.get();
const bool airspeed_sensor_added = _prev_number_of_airspeed_sensors < _number_of_airspeed_sensors;
if (airspeed_sensor_switching_necessary && (airspeed_sensor_switching_allowed || airspeed_sensor_added)) {
_valid_airspeed_index = airspeed_index::DISABLED_INDEX;
// loop through all sensors and take the first valid one
for (int i = 0; i < _number_of_airspeed_sensors; i++) {
if (_airspeed_validator[i].get_airspeed_valid()) {
_valid_airspeed_index = i + 1;
break;
}
}
}
// check if airspeed based on ground-wind speed is valid and can be published
if (_param_airspeed_primary_index.get() > airspeed_index::DISABLED_INDEX &&
(_valid_airspeed_index < airspeed_index::FIRST_SENSOR_INDEX
|| _param_airspeed_primary_index.get() == airspeed_index::GROUND_MINUS_WIND_INDEX)) {
// _vehicle_local_position_valid determines if ground-wind estimate is valid
if (_vehicle_local_position_valid &&
(_param_airspeed_fallback_gw.get() || _param_airspeed_primary_index.get() == airspeed_index::GROUND_MINUS_WIND_INDEX)) {
_valid_airspeed_index = airspeed_index::GROUND_MINUS_WIND_INDEX;
} else {
_valid_airspeed_index = airspeed_index::DISABLED_INDEX;
}
}
// print warning or info, depending of whether airspeed got declared invalid or healthy
if (_valid_airspeed_index != _prev_airspeed_index &&
(_number_of_airspeed_sensors > 0 || !_vehicle_land_detected.landed) &&
_valid_airspeed_index != _prev_airspeed_index) {
if (_prev_airspeed_index > 0) {
mavlink_log_critical(&_mavlink_log_pub, "Airspeed sensor failure detected (%i, %i)", _prev_airspeed_index,
_valid_airspeed_index);
} else if (_prev_airspeed_index == 0 && _valid_airspeed_index == -1) {
mavlink_log_info(&_mavlink_log_pub, "Airspeed estimation invalid");
} else if (_prev_airspeed_index == -1 && _valid_airspeed_index == 0) {
mavlink_log_info(&_mavlink_log_pub, "Airspeed estimation valid");
} else {
mavlink_log_info(&_mavlink_log_pub, "Airspeed sensor healthy, start using again (%i, %i)", _prev_airspeed_index,
_valid_airspeed_index);
}
}
_prev_airspeed_index = _valid_airspeed_index;
_prev_number_of_airspeed_sensors = _number_of_airspeed_sensors;
airspeed_validated_s airspeed_validated = {};
airspeed_validated.timestamp = _time_now_usec;
airspeed_validated.true_ground_minus_wind_m_s = NAN;
airspeed_validated.calibrated_ground_minus_wind_m_s = NAN;
airspeed_validated.indicated_airspeed_m_s = NAN;
airspeed_validated.calibrated_airspeed_m_s = NAN;
airspeed_validated.true_airspeed_m_s = NAN;
airspeed_validated.airspeed_sensor_measurement_valid = false;
airspeed_validated.selected_airspeed_index = _valid_airspeed_index;
switch (_valid_airspeed_index) {
case airspeed_index::DISABLED_INDEX:
break;
case airspeed_index::GROUND_MINUS_WIND_INDEX:
airspeed_validated.indicated_airspeed_m_s = _ground_minus_wind_CAS;
airspeed_validated.calibrated_airspeed_m_s = _ground_minus_wind_CAS;
airspeed_validated.true_airspeed_m_s = _ground_minus_wind_TAS;
airspeed_validated.calibrated_ground_minus_wind_m_s = _ground_minus_wind_CAS;
airspeed_validated.true_ground_minus_wind_m_s = _ground_minus_wind_TAS;
break;
default:
airspeed_validated.indicated_airspeed_m_s = _airspeed_validator[_valid_airspeed_index - 1].get_IAS();
airspeed_validated.calibrated_airspeed_m_s = _airspeed_validator[_valid_airspeed_index - 1].get_CAS();
airspeed_validated.true_airspeed_m_s = _airspeed_validator[_valid_airspeed_index - 1].get_TAS();
airspeed_validated.calibrated_ground_minus_wind_m_s = _ground_minus_wind_CAS;
airspeed_validated.true_ground_minus_wind_m_s = _ground_minus_wind_TAS;
airspeed_validated.airspeed_sensor_measurement_valid = true;
break;
}
_airspeed_validated_pub.publish(airspeed_validated);
_wind_est_pub[0].publish(_wind_estimate_sideslip);
// publish the wind estimator states from all airspeed validators
for (int i = 0; i < _number_of_airspeed_sensors; i++) {
airspeed_wind_s wind_est = _airspeed_validator[i].get_wind_estimator_states(_time_now_usec);
if (i == 0) {
wind_est.source = airspeed_wind_s::SOURCE_AS_SENSOR_1;
} else if (i == 1) {
wind_est.source = airspeed_wind_s::SOURCE_AS_SENSOR_2;
} else {
wind_est.source = airspeed_wind_s::SOURCE_AS_SENSOR_3;
}
_wind_est_pub[i + 1].publish(wind_est);
}
}
int AirspeedModule::custom_command(int argc, char *argv[])
{
if (!is_running()) {
int ret = AirspeedModule::task_spawn(argc, argv);
if (ret) {
return ret;
}
}
return print_usage("unknown command");
}
int AirspeedModule::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
This module provides a single airspeed_validated topic, containing indicated (IAS),
calibrated (CAS), true airspeed (TAS) and the information if the estimation currently
is invalid and if based sensor readings or on groundspeed minus windspeed.
Supporting the input of multiple "raw" airspeed inputs, this module automatically switches
to a valid sensor in case of failure detection. For failure detection as well as for
the estimation of a scale factor from IAS to CAS, it runs several wind estimators
and also publishes those.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("airspeed_estimator", "estimator");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int airspeed_selector_main(int argc, char *argv[])
{
return AirspeedModule::main(argc, argv);
}