TECS.hpp
16.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/****************************************************************************
*
* Copyright (c) 2017-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file tecs.cpp
*
* @author Paul Riseborough
*/
#pragma once
#include <mathlib/mathlib.h>
#include <matrix/math.hpp>
#include <lib/ecl/AlphaFilter/AlphaFilter.hpp>
class TECS
{
public:
TECS() = default;
~TECS() = default;
// no copy, assignment, move, move assignment
TECS(const TECS &) = delete;
TECS &operator=(const TECS &) = delete;
TECS(TECS &&) = delete;
TECS &operator=(TECS &&) = delete;
/**
* Get the current airspeed status
*
* @return true if airspeed is enabled for control
*/
bool airspeed_sensor_enabled() { return _airspeed_enabled; }
/**
* Set the airspeed enable state
*/
void enable_airspeed(bool enabled) { _airspeed_enabled = enabled; }
/**
* Updates the following vehicle kineamtic state estimates:
* Vertical position, velocity and acceleration.
* Speed derivative
* Must be called prior to udating tecs control loops
* Must be called at 50Hz or greater
*/
void update_vehicle_state_estimates(float equivalent_airspeed, const float speed_deriv_forward, bool altitude_lock,
bool in_air,
float altitude, float vz);
/**
* Update the control loop calculations
*/
void update_pitch_throttle(float pitch, float baro_altitude, float hgt_setpoint,
float EAS_setpoint, float equivalent_airspeed, float eas_to_tas, bool climb_out_setpoint, float pitch_min_climbout,
float throttle_min, float throttle_setpoint_max, float throttle_cruise,
float pitch_limit_min, float pitch_limit_max);
float get_throttle_setpoint() { return _last_throttle_setpoint; }
float get_pitch_setpoint() { return _last_pitch_setpoint; }
float get_speed_weight() { return _pitch_speed_weight; }
void reset_state() { _states_initialized = false; }
enum ECL_TECS_MODE {
ECL_TECS_MODE_NORMAL = 0,
ECL_TECS_MODE_UNDERSPEED,
ECL_TECS_MODE_BAD_DESCENT,
ECL_TECS_MODE_CLIMBOUT
};
void set_detect_underspeed_enabled(bool enabled) { _detect_underspeed_enabled = enabled; }
// setters for controller parameters
void set_integrator_gain_throttle(float gain) { _integrator_gain_throttle = gain; }
void set_integrator_gain_pitch(float gain) { _integrator_gain_pitch = gain; }
void set_min_sink_rate(float rate) { _min_sink_rate = rate; }
void set_max_sink_rate(float sink_rate) { _max_sink_rate = sink_rate; }
void set_max_climb_rate(float climb_rate) { _max_climb_rate = climb_rate; }
void set_heightrate_ff(float heightrate_ff) { _height_setpoint_gain_ff = heightrate_ff; }
void set_height_error_time_constant(float time_const) { _height_error_gain = 1.0f / math::max(time_const, 0.1f); }
void set_equivalent_airspeed_max(float airspeed) { _equivalent_airspeed_max = airspeed; }
void set_equivalent_airspeed_min(float airspeed) { _equivalent_airspeed_min = airspeed; }
void set_equivalent_airspeed_cruise(float airspeed) { _equivalent_airspeed_cruise = airspeed; }
void set_pitch_damping(float damping) { _pitch_damping_gain = damping; }
void set_vertical_accel_limit(float limit) { _vert_accel_limit = limit; }
void set_speed_comp_filter_omega(float omega) { _tas_estimate_freq = omega; }
void set_speed_weight(float weight) { _pitch_speed_weight = weight; }
void set_airspeed_error_time_constant(float time_const) { _airspeed_error_gain = 1.0f / math::max(time_const, 0.1f); }
void set_throttle_damp(float throttle_damp) { _throttle_damping_gain = throttle_damp; }
void set_throttle_slewrate(float slewrate) { _throttle_slewrate = slewrate; }
void set_roll_throttle_compensation(float compensation) { _load_factor_correction = compensation; }
void set_load_factor(float load_factor) { _load_factor = load_factor; }
void set_ste_rate_time_const(float time_const) { _STE_rate_time_const = time_const; }
void set_speed_derivative_time_constant(float time_const) { _speed_derivative_time_const = time_const; }
void set_seb_rate_ff_gain(float ff_gain) { _SEB_rate_ff = ff_gain; }
// TECS status
uint64_t timestamp() { return _pitch_update_timestamp; }
ECL_TECS_MODE tecs_mode() { return _tecs_mode; }
float hgt_setpoint_adj() { return _hgt_setpoint_adj; }
float vert_pos_state() { return _vert_pos_state; }
float TAS_setpoint_adj() { return _TAS_setpoint_adj; }
float tas_state() { return _tas_state; }
float getTASInnovation() { return _tas_innov; }
float hgt_rate_setpoint() { return _hgt_rate_setpoint; }
float vert_vel_state() { return _vert_vel_state; }
float get_EAS_setpoint() { return _EAS_setpoint; };
float TAS_rate_setpoint() { return _TAS_rate_setpoint; }
float speed_derivative() { return _tas_rate_filtered; }
float speed_derivative_raw() { return _tas_rate_raw; }
float STE_error() { return _STE_error; }
float STE_rate_error() { return _STE_rate_error; }
float SEB_error() { return _SEB_error; }
float SEB_rate_error() { return _SEB_rate_error; }
float throttle_integ_state() { return _throttle_integ_state; }
float pitch_integ_state() { return _pitch_integ_state; }
float STE() { return _SPE_estimate + _SKE_estimate; }
float STE_setpoint() { return _SPE_setpoint + _SKE_setpoint; }
float STE_rate() { return _SPE_rate + _SKE_rate; }
float STE_rate_setpoint() { return _SPE_rate_setpoint + _SKE_rate_setpoint; }
float SEB() { return _SPE_estimate * _SPE_weighting - _SKE_estimate * _SKE_weighting; }
float SEB_setpoint() { return _SPE_setpoint * _SPE_weighting - _SKE_setpoint * _SKE_weighting; }
float SEB_rate() { return _SPE_rate * _SPE_weighting - _SKE_rate * _SKE_weighting; }
float SEB_rate_setpoint() { return _SPE_rate_setpoint * _SPE_weighting - _SKE_rate_setpoint * _SKE_weighting; }
/**
* Handle the altitude reset
*
* If the estimation system resets the height in one discrete step this
* will gracefully even out the reset over time.
*/
void handle_alt_step(float delta_alt, float altitude)
{
// add height reset delta to all variables involved
// in filtering the demanded height
_hgt_setpoint_in_prev += delta_alt;
_hgt_setpoint_prev += delta_alt;
_hgt_setpoint_adj_prev += delta_alt;
// reset height states
_vert_pos_state = altitude;
_vert_vel_state = 0.0f;
}
private:
enum ECL_TECS_MODE _tecs_mode {ECL_TECS_MODE_NORMAL};
// timestamps
uint64_t _state_update_timestamp{0}; ///< last timestamp of the 50 Hz function call
uint64_t _speed_update_timestamp{0}; ///< last timestamp of the speed function call
uint64_t _pitch_update_timestamp{0}; ///< last timestamp of the pitch function call
// controller parameters
float _tas_estimate_freq{0.0f}; ///< cross-over frequency of the true airspeed complementary filter (rad/sec)
float _max_climb_rate{2.0f}; ///< climb rate produced by max allowed throttle (m/sec)
float _min_sink_rate{1.0f}; ///< sink rate produced by min allowed throttle (m/sec)
float _max_sink_rate{2.0f}; ///< maximum safe sink rate (m/sec)
float _pitch_damping_gain{0.0f}; ///< damping gain of the pitch demand calculation (sec)
float _throttle_damping_gain{0.0f}; ///< damping gain of the throttle demand calculation (sec)
float _integrator_gain_throttle{0.0f}; ///< integrator gain used by the throttle demand calculation
float _integrator_gain_pitch{0.0f}; ///< integrator gain used by the pitch demand calculation
float _vert_accel_limit{0.0f}; ///< magnitude of the maximum vertical acceleration allowed (m/sec**2)
float _load_factor{0.0f}; ///< additional normal load factor
float _load_factor_correction{0.0f}; ///< gain from normal load factor increase to total energy rate demand (m**2/sec**3)
float _pitch_speed_weight{1.0f}; ///< speed control weighting used by pitch demand calculation
float _height_error_gain{0.2f}; ///< height error inverse time constant [1/s]
float _height_setpoint_gain_ff{0.0f}; ///< gain from height demand derivative to demanded climb rate
float _airspeed_error_gain{0.1f}; ///< airspeed error inverse time constant [1/s]
float _equivalent_airspeed_min{3.0f}; ///< equivalent airspeed demand lower limit (m/sec)
float _equivalent_airspeed_max{30.0f}; ///< equivalent airspeed demand upper limit (m/sec)
float _equivalent_airspeed_cruise{15.0f}; ///< equivalent cruise airspeed for airspeed less mode (m/sec)
float _throttle_slewrate{0.0f}; ///< throttle demand slew rate limit (1/sec)
float _STE_rate_time_const{0.1f}; ///< filter time constant for specific total energy rate (damping path) (s)
float _speed_derivative_time_const{0.01f}; ///< speed derivative filter time constant (s)
float _SEB_rate_ff{1.0f};
// complimentary filter states
float _vert_vel_state{0.0f}; ///< complimentary filter state - height rate (m/sec)
float _vert_pos_state{0.0f}; ///< complimentary filter state - height (m)
float _tas_rate_state{0.0f}; ///< complimentary filter state - true airspeed first derivative (m/sec**2)
float _tas_state{0.0f}; ///< complimentary filter state - true airspeed (m/sec)
float _tas_innov{0.0f}; ///< complimentary filter true airspeed innovation (m/sec)
// controller states
float _throttle_integ_state{0.0f}; ///< throttle integrator state
float _pitch_integ_state{0.0f}; ///< pitch integrator state (rad)
float _last_throttle_setpoint{0.0f}; ///< throttle demand rate limiter state (1/sec)
float _last_pitch_setpoint{0.0f}; ///< pitch demand rate limiter state (rad/sec)
float _tas_rate_filtered{0.0f}; ///< low pass filtered rate of change of speed along X axis (m/sec**2)
// speed demand calculations
float _EAS{0.0f}; ///< equivalent airspeed (m/sec)
float _TAS_max{30.0f}; ///< true airpeed demand upper limit (m/sec)
float _TAS_min{3.0f}; ///< true airpeed demand lower limit (m/sec)
float _TAS_setpoint{0.0f}; ///< current airpeed demand (m/sec)
float _TAS_setpoint_last{0.0f}; ///< previous true airpeed demand (m/sec)
float _EAS_setpoint{0.0f}; ///< Equivalent airspeed demand (m/sec)
float _TAS_setpoint_adj{0.0f}; ///< true airspeed demand tracked by the TECS algorithm (m/sec)
float _TAS_rate_setpoint{0.0f}; ///< true airspeed rate demand tracked by the TECS algorithm (m/sec**2)
float _tas_rate_raw{0.0f}; ///< true airspeed rate, calculated as inertial acceleration in body X direction
// height demand calculations
float _hgt_setpoint{0.0f}; ///< demanded height tracked by the TECS algorithm (m)
float _hgt_setpoint_in_prev{0.0f}; ///< previous value of _hgt_setpoint after noise filtering (m)
float _hgt_setpoint_prev{0.0f}; ///< previous value of _hgt_setpoint after noise filtering and rate limiting (m)
float _hgt_setpoint_adj{0.0f}; ///< demanded height used by the control loops after all filtering has been applied (m)
float _hgt_setpoint_adj_prev{0.0f}; ///< value of _hgt_setpoint_adj from previous frame (m)
float _hgt_rate_setpoint{0.0f}; ///< demanded climb rate tracked by the TECS algorithm
// vehicle physical limits
float _pitch_setpoint_unc{0.0f}; ///< pitch demand before limiting (rad)
float _STE_rate_max{0.0f}; ///< specific total energy rate upper limit achieved when throttle is at _throttle_setpoint_max (m**2/sec**3)
float _STE_rate_min{0.0f}; ///< specific total energy rate lower limit acheived when throttle is at _throttle_setpoint_min (m**2/sec**3)
float _throttle_setpoint_max{0.0f}; ///< normalised throttle upper limit
float _throttle_setpoint_min{0.0f}; ///< normalised throttle lower limit
float _pitch_setpoint_max{0.5f}; ///< pitch demand upper limit (rad)
float _pitch_setpoint_min{-0.5f}; ///< pitch demand lower limit (rad)
// specific energy quantities
float _SPE_setpoint{0.0f}; ///< specific potential energy demand (m**2/sec**2)
float _SKE_setpoint{0.0f}; ///< specific kinetic energy demand (m**2/sec**2)
float _SPE_rate_setpoint{0.0f}; ///< specific potential energy rate demand (m**2/sec**3)
float _SKE_rate_setpoint{0.0f}; ///< specific kinetic energy rate demand (m**2/sec**3)
float _SPE_estimate{0.0f}; ///< specific potential energy estimate (m**2/sec**2)
float _SKE_estimate{0.0f}; ///< specific kinetic energy estimate (m**2/sec**2)
float _SPE_rate{0.0f}; ///< specific potential energy rate estimate (m**2/sec**3)
float _SKE_rate{0.0f}; ///< specific kinetic energy rate estimate (m**2/sec**3)
// specific energy error quantities
float _STE_error{0.0f}; ///< specific total energy error (m**2/sec**2)
float _STE_rate_error{0.0f}; ///< specific total energy rate error (m**2/sec**3)
float _SEB_error{0.0f}; ///< specific energy balance error (m**2/sec**2)
float _SEB_rate_error{0.0f}; ///< specific energy balance rate error (m**2/sec**3)
// speed height weighting
float _SPE_weighting{1.0f};
float _SKE_weighting{1.0f};
// time steps (non-fixed)
float _dt{DT_DEFAULT}; ///< Time since last update of main TECS loop (sec)
static constexpr float DT_DEFAULT = 0.02f; ///< default value for _dt (sec)
// controller mode logic
bool _underspeed_detected{false}; ///< true when an underspeed condition has been detected
bool _detect_underspeed_enabled{true}; ///< true when underspeed detection is enabled
bool _uncommanded_descent_recovery{false}; ///< true when a continuous descent caused by an unachievable airspeed demand has been detected
bool _climbout_mode_active{false}; ///< true when in climbout mode
bool _airspeed_enabled{false}; ///< true when airspeed use has been enabled
bool _states_initialized{false}; ///< true when TECS states have been iniitalized
bool _in_air{false}; ///< true when the vehicle is flying
/**
* Update the airspeed internal state using a second order complementary filter
*/
void _update_speed_states(float airspeed_setpoint, float equivalent_airspeed, float cas_to_tas);
/**
* Update the desired airspeed
*/
void _update_speed_setpoint();
/**
* Update the desired height
*/
void _update_height_setpoint(float desired, float state);
/**
* Detect if the system is not capable of maintaining airspeed
*/
void _detect_underspeed();
/**
* Update specific energy
*/
void _update_energy_estimates();
/**
* Update throttle setpoint
*/
void _update_throttle_setpoint(float throttle_cruise);
/**
* Detect an uncommanded descent
*/
void _detect_uncommanded_descent();
/**
* Update the pitch setpoint
*/
void _update_pitch_setpoint();
/**
* Initialize the controller
*/
void _initialize_states(float pitch, float throttle_cruise, float baro_altitude, float pitch_min_climbout,
float eas_to_tas);
/**
* Calculate specific total energy rate limits
*/
void _update_STE_rate_lim();
void _update_speed_height_weights();
AlphaFilter<float> _STE_rate_error_filter;
AlphaFilter<float> _TAS_rate_filter;
};