dsm.cpp 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/****************************************************************************
 *
 *   Copyright (c) 2012-2021 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file dsm.cpp
 *
 * Serial protocol decoder for the Spektrum DSM* family of protocols.
 *
 * Decodes into the global PPM buffer and updates accordingly.
 */

#include <px4_platform_common/px4_config.h>
#include <board_config.h>
#include <px4_platform_common/defines.h>

#include <fcntl.h>
#include <math.h>
#include <unistd.h>
#include <termios.h>
#include <string.h>

#include "dsm.h"
#include "spektrum_rssi.h"
#include "common_rc.h"
#include <drivers/drv_hrt.h>

#include <include/containers/Bitset.hpp>

#if defined(__PX4_NUTTX)
#include <nuttx/arch.h>
#define dsm_udelay(arg)    up_udelay(arg)
#else
#define dsm_udelay(arg) px4_usleep(arg)
#endif

// #define DSM_DEBUG

static enum DSM_DECODE_STATE {
	DSM_DECODE_STATE_DESYNC = 0,
	DSM_DECODE_STATE_SYNC
} dsm_decode_state = DSM_DECODE_STATE_DESYNC;

static int dsm_fd = -1;						/**< File handle to the DSM UART */
static hrt_abstime dsm_last_rx_time;            /**< Timestamp when we last received data */
static hrt_abstime dsm_last_frame_time;		/**< Timestamp for start of last valid dsm frame */
static dsm_frame_t &dsm_frame = rc_decode_buf.dsm.frame;	/**< DSM_BUFFER_SIZE DSM dsm frame receive buffer */
static dsm_buf_t &dsm_buf = rc_decode_buf.dsm.buf;	/**< DSM_BUFFER_SIZE DSM dsm frame receive buffer */

static uint16_t dsm_chan_buf[DSM_MAX_CHANNEL_COUNT];
static unsigned dsm_partial_frame_count;	/**< Count of bytes received for current dsm frame */
static unsigned dsm_channel_shift = 0;			/**< Channel resolution, 0=unknown, 10=10 bit (1024), 11=11 bit (2048) */
static unsigned dsm_frame_drops = 0;			/**< Count of incomplete DSM frames */
static uint16_t dsm_chan_count = 0;         /**< DSM channel count */
static uint16_t dsm_chan_count_prev = 0;    /**< last valid DSM channel count */

/**
 * Attempt to decode a single channel raw channel datum
 *
 * The DSM* protocol doesn't provide any explicit framing,
 * so we detect dsm frame boundaries by the inter-dsm frame delay.
 *
 * The minimum dsm frame spacing is 11ms; with 16 bytes at 115200bps
 * dsm frame transmission time is ~1.4ms.
 *
 * We expect to only be called when bytes arrive for processing,
 * and if an interval of more than 5ms passes between calls,
 * the first byte we read will be the first byte of a dsm frame.
 *
 * In the case where byte(s) are dropped from a dsm frame, this also
 * provides a degree of protection. Of course, it would be better
 * if we didn't drop bytes...
 *
 * Upon receiving a full dsm frame we attempt to decode it
 *
 * @param[in] raw 16 bit raw channel value from dsm frame
 * @param[in] shift position of channel number in raw data
 * @param[out] channel pointer to returned channel number
 * @param[out] value pointer to returned channel value
 * @return true=raw value successfully decoded
 */
static bool dsm_decode_channel(uint16_t raw, unsigned shift, uint8_t &channel, uint16_t &value)
{
	if (raw == 0 || raw == 0xffff) {
		return false;
	}

	if (shift == 10) {
		// 1024 Mode: This format is used only by DSM2/22ms mode. All other modes use 2048 data.
		//  Bits 15-10 Channel ID
		//  Bits 9-0   Servo Position
		static constexpr uint16_t MASK_1024_CHANID = 0xFC00;
		static constexpr uint16_t MASK_1024_SXPOS = 0x03FF;

		channel = (raw & MASK_1024_CHANID) >> 10; // 6 bits

		const uint16_t servo_position = (raw & MASK_1024_SXPOS); // 10 bits

		if (channel > DSM_MAX_CHANNEL_COUNT) {
			PX4_DEBUG("invalid channel: %d\n", channel);
			return false;
		}

		// PWM_OUT = (ServoPosition x 1.166μs) + Offset
		static constexpr uint16_t offset = 903; // microseconds
		value = roundf(servo_position * 1.166f) + offset;

		// Spektrum range is 903μs to 2097μs (Specification for Spektrum Remote Receiver Interfacing Rev G 9.1)
		//  ±100% travel is 1102µs to 1898 µs
		if (value < 903 || value > 2097) {
			// if the value is unrealistic, fail the parsing entirely
			PX4_DEBUG("channel %d invalid range %d", channel, value);
			return false;
		}

		return true;

	} else if (shift == 11) {
		// 2048 Mode
		//  Bits 15    Servo Phase
		//  Bits 14-11 Channel ID
		//  Bits 10-0  Servo Position

		uint16_t servo_position = 0;

		// from Spektrum Remote Receiver Interfacing Rev G Page 6
		const bool phase = raw & (2 >> 15); // the phase is part of the X-Plus address (bit 15)
		uint8_t chan = (raw >> 11) & 0x0F;

		if (chan < 12) {
			// Normal channels
			static constexpr uint16_t MASK_2048_SXPOS = 0x07FF;
			servo_position = (raw & MASK_2048_SXPOS);

		} else if (chan == 12) {
			// XPlus channels
			chan += ((raw >> 9) & 0x03);

			if (phase) {
				chan += 4;
			}

			if (chan > DSM_MAX_CHANNEL_COUNT) {
				PX4_DEBUG("invalid channel: %d\n", chan);
				return false;
			}

			servo_position = (raw & 0x01FF) << 2;

			channel = chan;

		} else {
			PX4_DEBUG("invalid channel: %d\n", chan);
			return false;
		}

		channel = chan;

		// PWM_OUT = (ServoPosition x 0.583μs) + Offset
		static constexpr uint16_t offset = 903; // microseconds
		value = roundf(servo_position * 0.583f) + offset;

		// Spektrum range is 903μs to 2097μs (Specification for Spektrum Remote Receiver Interfacing Rev G 9.1)
		//  ±100% travel is 1102µs to 1898 µs
		if (value < 903 || value > 2097) {
			// if the value is unrealistic, fail the parsing entirely
			PX4_DEBUG("channel %d invalid range %d", channel, value);
			return false;
		}

		PX4_DEBUG(stderr, "CH%d=%d(0x%02x), ", channel, value, raw);

		return true;
	}

	return false;
}

/**
 * Attempt to guess if receiving 10 or 11 bit channel values
 *
 * @param[in] reset true=reset the 10/11 bit state to unknown
 */
static bool dsm_guess_format(bool reset)
{
	static uint32_t	cs10 = 0;
	static uint32_t	cs11 = 0;
	static unsigned samples = 0;

	/* reset the 10/11 bit sniffed channel masks */
	if (reset) {
		PX4_DEBUG("dsm_guess_format reset");
		cs10 = 0;
		cs11 = 0;
		samples = 0;
		dsm_channel_shift = 0;
		return false;
	}

	px4::Bitset<DSM_MAX_CHANNEL_COUNT> channels_found_10;
	px4::Bitset<DSM_MAX_CHANNEL_COUNT> channels_found_11;

	bool cs10_frame_valid = true;
	bool cs11_frame_valid = true;

	/* scan the channels in the current dsm_frame in both 10- and 11-bit mode */
	for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) {

		uint8_t *dp = &dsm_frame[2 + (2 * i)];
		uint16_t raw = (dp[0] << 8) | dp[1];

		uint8_t channel = 0;
		uint16_t value = 0;

		/* if the channel decodes, remember the assigned number */
		if (dsm_decode_channel(raw, 10, channel, value)) {
			// invalidate entire frame (for 1024) if channel already found, no duplicate channels per DSM frame
			if (channels_found_10[channel]) {
				cs10_frame_valid = false;

			} else {
				channels_found_10.set(channel);
			}
		}

		if (dsm_decode_channel(raw, 11, channel, value)) {
			// invalidate entire frame (for 2048) if channel already found, no duplicate channels per DSM frame
			if (channels_found_11[channel]) {
				cs11_frame_valid = false;

			} else {
				channels_found_11.set(channel);
			}
		}
	}

	// add valid cs10 channels
	if (cs10_frame_valid) {
		for (unsigned channel = 0; channel < DSM_FRAME_CHANNELS; channel++) {
			if (channels_found_10[channel]) {
				cs10 |= 1 << channel;
			}
		}
	}

	// add valid cs11 channels
	if (cs11_frame_valid) {
		for (unsigned channel = 0; channel < DSM_FRAME_CHANNELS; channel++) {
			if (channels_found_11[channel]) {
				cs11 |= 1 << channel;
			}
		}
	}

	samples++;

#ifdef DSM_DEBUG
	printf("dsm guess format: samples: %d %s\n", samples, (reset) ? "RESET" : "");
#endif

	/* wait until we have seen plenty of frames */
	if (samples < 10) {
		return false;
	}

	/*
	 * Iterate the set of sensible sniffed channel sets and see whether
	 * decoding in 10 or 11-bit mode has yielded anything we recognize.
	 *
	 * XXX Note that due to what seem to be bugs in the DSM2 high-resolution
	 *     stream, we may want to sniff for longer in some cases when we think we
	 *     are talking to a DSM2 receiver in high-resolution mode (so that we can
	 *     reject it, ideally).
	 */
	static uint32_t masks[] = {
		0x3f,	/* 6 channels (DX6) */
		0x7f,	/* 7 channels (DX7) */
		0xff,	/* 8 channels (DX8) */
		0x1ff,	/* 9 channels (DX9, etc.) */
		0x3ff,	/* 10 channels (DX10) */
		0x1fff,	/* 13 channels (DX10t) */
		0xffff,	/* 16 channels */
		0x3ffff,/* 18 channels (DX10) */
	};

	unsigned votes10 = 0;
	unsigned votes11 = 0;

	for (unsigned i = 0; i < (sizeof(masks) / sizeof(masks[0])); i++) {

		if (cs10 == masks[i]) {
			votes10++;
		}

		if (cs11 == masks[i]) {
			votes11++;
		}
	}

	if ((votes11 == 1) && (votes10 == 0)) {
		dsm_channel_shift = 11;
#ifdef DSM_DEBUG
		printf("DSM: 11-bit format\n");
#endif
		return true;
	}

	if ((votes10 == 1) && (votes11 == 0)) {
		dsm_channel_shift = 10;
#ifdef DSM_DEBUG
		printf("DSM: 10-bit format\n");
#endif
		return true;
	}

	/* call ourselves to reset our state ... we have to try again */
#ifdef DSM_DEBUG
	printf("DSM: format detect fail, 10: 0x%08x %d 11: 0x%08x %d\n", cs10, votes10, cs11, votes11);
#endif
	dsm_guess_format(true);
	return false;
}

int dsm_config(int fd)
{
#ifdef SPEKTRUM_POWER_CONFIG
	// Enable power controls for Spektrum receiver
	SPEKTRUM_POWER_CONFIG();
#endif
#ifdef SPEKTRUM_POWER
	// enable power on DSM connector
	SPEKTRUM_POWER(true);
#endif

	int ret = -1;

	if (fd >= 0) {

		struct termios t;

		/* 115200bps, no parity, one stop bit */
		tcgetattr(fd, &t);
		cfsetspeed(&t, 115200);
		t.c_cflag &= ~(CSTOPB | PARENB);
		tcsetattr(fd, TCSANOW, &t);

		/* initialise the decoder */
		dsm_partial_frame_count = 0;
		dsm_last_rx_time = hrt_absolute_time();

		/* reset the format detector */
		dsm_guess_format(true);

		ret = 0;
	}

	return ret;
}

void dsm_proto_init()
{
	dsm_channel_shift = 0;
	dsm_frame_drops = 0;
	dsm_chan_count = 0;
	dsm_decode_state = DSM_DECODE_STATE_DESYNC;

	for (unsigned i = 0; i < DSM_MAX_CHANNEL_COUNT; i++) {
		dsm_chan_buf[i] = 0;
	}
}

/**
 * Initialize the DSM receive functionality
 *
 * Open the UART for receiving DSM frames and configure it appropriately
 *
 * @param[in] device Device name of DSM UART
 */
int dsm_init(const char *device)
{
	if (dsm_fd < 0) {
		dsm_fd = open(device, O_RDWR | O_NONBLOCK);
	}

	dsm_proto_init();

	int ret = dsm_config(dsm_fd);

	if (!ret) {
		return dsm_fd;

	} else {
		return -1;
	}
}

void dsm_deinit()
{
#ifdef SPEKTRUM_POWER_PASSIVE
	// Turn power controls to passive
	SPEKTRUM_POWER_PASSIVE();
#endif

	if (dsm_fd >= 0) {
		close(dsm_fd);
	}

	dsm_fd = -1;
}

#if defined(SPEKTRUM_POWER)
/**
 * Handle DSM satellite receiver bind mode handler
 *
 * @param[in] cmd commands - dsm_bind_power_down, dsm_bind_power_up, dsm_bind_set_rx_out, dsm_bind_send_pulses, dsm_bind_reinit_uart
 * @param[in] pulses Number of pulses for dsm_bind_send_pulses command
 */
void dsm_bind(uint16_t cmd, int pulses)
{
	if (dsm_fd < 0) {
		return;
	}

	switch (cmd) {
	case DSM_CMD_BIND_POWER_DOWN:
		// power down DSM satellite
#if defined(DSM_DEBUG)
		printf("DSM: DSM_CMD_BIND_POWER_DOWN\n");
#endif
		SPEKTRUM_POWER(false);
		break;

	case DSM_CMD_BIND_POWER_UP:
		// power up DSM satellite
#if defined(DSM_DEBUG)
		printf("DSM: DSM_CMD_BIND_POWER_UP\n");
#endif
		SPEKTRUM_POWER(true);
		dsm_guess_format(true);
		break;

	case DSM_CMD_BIND_SET_RX_OUT:
		// Set UART RX pin to active output mode
#if defined(DSM_DEBUG)
		printf("DSM: DSM_CMD_BIND_SET_RX_OUT\n");
#endif
		SPEKTRUM_RX_AS_GPIO_OUTPUT();
		break;

	case DSM_CMD_BIND_SEND_PULSES:
		// Pulse RX pin a number of times
#if defined(DSM_DEBUG)
		printf("DSM: DSM_CMD_BIND_SEND_PULSES\n");
#endif

		for (int i = 0; i < pulses; i++) {
			dsm_udelay(120);
			SPEKTRUM_OUT(false);
			dsm_udelay(120);
			SPEKTRUM_OUT(true);
		}

		break;

	case DSM_CMD_BIND_REINIT_UART:
		// Restore USART RX pin to RS232 receive mode
#if defined(DSM_DEBUG)
		printf("DSM: DSM_CMD_BIND_REINIT_UART\n");
#endif
		SPEKTRUM_RX_AS_UART();
		break;

	}
}
#endif

/**
 * Decode the entire dsm frame (all contained channels)
 *
 * @param[in] frame_time timestamp when this dsm frame was received. Used to detect RX loss in order to reset 10/11 bit guess.
 * @param[out] values pointer to per channel array of decoded values
 * @param[out] num_values pointer to number of raw channel values returned
 * @return true=DSM frame successfully decoded, false=no update
 */
bool dsm_decode(hrt_abstime frame_time, uint16_t *values, uint16_t *num_values, bool *dsm_11_bit, unsigned max_values,
		int8_t *rssi_percent)
{
	/*
	debug("DSM dsm_frame %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x",
		dsm_frame[0], dsm_frame[1], dsm_frame[2], dsm_frame[3], dsm_frame[4], dsm_frame[5], dsm_frame[6], dsm_frame[7],
		dsm_frame[8], dsm_frame[9], dsm_frame[10], dsm_frame[11], dsm_frame[12], dsm_frame[13], dsm_frame[14], dsm_frame[15]);
	*/
	/*
	 * If we have lost signal for at least a second, reset the
	 * format guessing heuristic.
	 */
	if (((frame_time - dsm_last_frame_time) > 1000000) && (dsm_channel_shift != 0)) {
		dsm_guess_format(true);
	}

	/* if we don't know the dsm_frame format, update the guessing state machine */
	if (dsm_channel_shift == 0) {
		if (!dsm_guess_format(false)) {
			return false;
		}
	}

	/*
	 * The first byte represents the rssi in dBm on telemetry receivers with updated
	 * firmware, or fades on others. If the value is less than zero, it's rssi.
	 * We have other ways to detect bad link metrics, so ignore positive values,
	 * but rssi dBm is a useful value.
	 */

	// The SPM4649T with firmware version 1.1RC9 or later will have RSSI in place of fades
	if (rssi_percent) {
		if (((int8_t *)dsm_frame)[0] < 0) {
			/*
			 * RSSI is a signed integer between -42dBm and -92dBm
			 * If signal is lost, the value is -128
			 */
			int8_t dbm = (int8_t)dsm_frame[0];

			if (dbm == -128) {
				*rssi_percent = 0;

			} else {
				*rssi_percent = spek_dbm_to_percent(dbm);
			}

		} else {
			/* if we don't know the rssi, anything over 100 will invalidate it */
			*rssi_percent = 127;
		}
	}

	/*
	 * Each channel is a 16-bit unsigned value containing either a 10-
	 * or 11-bit channel value and a 4-bit channel number, shifted
	 * either 10 or 11 bits. The MSB may also be set to indicate the
	 * second dsm_frame in variants of the protocol where more than
	 * seven channels are being transmitted.
	 */

	px4::Bitset<DSM_MAX_CHANNEL_COUNT> channels_found;

	unsigned channel_decode_failures = 0;

	for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) {

		uint8_t *dp = &dsm_frame[2 + (2 * i)];
		uint16_t raw = (dp[0] << 8) | dp[1];

		// ignore
		if (raw == 0 || raw == 0xffff) {
			continue;
		}

		uint8_t channel = 0;
		uint16_t value = 0;

		if (!dsm_decode_channel(raw, dsm_channel_shift, channel, value)) {
			channel_decode_failures++;
			continue;
		}

		// discard entire frame if at least half of it (4 channels) failed to decode
		if (channel_decode_failures >= 4) {
			return false;
		}

		// abort if channel already found, no duplicate channels per DSM frame
		if (channels_found[channel]) {
			PX4_DEBUG("duplicate channel %d\n\n", channel);
			dsm_guess_format(true);
			return false;

		} else {
			channels_found.set(channel);
		}

		/* reset bit guessing state machine if the channel index is out of bounds */
		if (channel > DSM_MAX_CHANNEL_COUNT) {
			PX4_DEBUG("channel %d > %d (DSM_MAX_CHANNEL_COUNT)", channel, DSM_MAX_CHANNEL_COUNT);
			dsm_guess_format(true);
			return false;
		}

		/* ignore channels out of range */
		if (channel >= max_values) {
			continue;
		}

		/* update the decoded channel count */
		if (channel >= *num_values) {
			*num_values = channel + 1;
		}

		/*
		 * Store the decoded channel into the R/C input buffer, taking into
		 * account the different ideas about channel assignement that we have.
		 *
		 * Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw,
		 * but the first four channels from the DSM receiver are thrust, roll, pitch, yaw.
		 */
		switch (channel) {
		case 0:
			channel = 2; // Spektrum Throttle (0) -> 2
			break;

		case 1:
			channel = 0; // Spektrum Aileron (1) -> 0
			break;

		case 2:
			channel = 1; // Spektrum Elevator (2) -> 1

		default:
			break;
		}

		values[channel] = value;
	}

	/* Set the 11-bit data indicator */
	*dsm_11_bit = (dsm_channel_shift == 11);

	/* we have received something we think is a dsm_frame */
	dsm_last_frame_time = frame_time;

	/*
	 * XXX Note that we may be in failsafe here; we need to work out how to detect that.
	 */

#ifdef DSM_DEBUG
	printf("PARSED PACKET\n");
#endif

	/* check all values */
	for (unsigned i = 0; i < *num_values; i++) {
		// Spektrum range is 903μs to 2097μs (Specification for Spektrum Remote Receiver Interfacing Rev G 9.1)
		if (values[i] < 903 || values[i] > 2097) {
			// if the value is unrealistic, fail the parsing entirely
#ifdef DSM_DEBUG
			printf("DSM: VALUE RANGE FAIL: %d: %d\n", (int)i, (int)values[i]);
#endif
			*num_values = 0;
			return false;
		}
	}

	return true;
}

/**
 * Called periodically to check for input data from the DSM UART
 *
 * The DSM* protocol doesn't provide any explicit framing,
 * so we detect dsm frame boundaries by the inter-dsm frame delay.
 * The minimum dsm frame spacing is 11ms; with 16 bytes at 115200bps
 * dsm frame transmission time is ~1.4ms.
 * We expect to only be called when bytes arrive for processing,
 * and if an interval of more than 5ms passes between calls,
 * the first byte we read will be the first byte of a dsm frame.
 * In the case where byte(s) are dropped from a dsm frame, this also
 * provides a degree of protection. Of course, it would be better
 * if we didn't drop bytes...
 * Upon receiving a full dsm frame we attempt to decode it.
 *
 * @param[out] values pointer to per channel array of decoded values
 * @param[out] num_values pointer to number of raw channel values returned, high order bit 0:10 bit data, 1:11 bit data
 * @param[out] n_butes number of bytes read
 * @param[out] bytes pointer to the buffer of read bytes
 * @param[out] rssi value in percent, if supported, or 127
 * @param[out] frame_drops dropped frames (indication of an unstable link)
 * @param[in] max_values maximum number of channels the receiver can process
 * @return true=decoded raw channel values updated, false=no update
 */
bool dsm_input(int fd, uint16_t *values, uint16_t *num_values, bool *dsm_11_bit, uint8_t *n_bytes, uint8_t **bytes,
	       int8_t *rssi, unsigned *frame_drops, unsigned max_values)
{
	/*
	 * The S.BUS protocol doesn't provide reliable framing,
	 * so we detect frame boundaries by the inter-frame delay.
	 *
	 * The minimum frame spacing is 7ms; with 25 bytes at 100000bps
	 * frame transmission time is ~2ms.
	 *
	 * We expect to only be called when bytes arrive for processing,
	 * and if an interval of more than 3ms passes between calls,
	 * the first byte we read will be the first byte of a frame.
	 *
	 * In the case where byte(s) are dropped from a frame, this also
	 * provides a degree of protection. Of course, it would be better
	 * if we didn't drop bytes...
	 */
	const hrt_abstime now = hrt_absolute_time();

	/*
	 * Fetch bytes, but no more than we would need to complete
	 * a complete frame.
	 */

	int ret = read(fd, &dsm_buf[0], sizeof(dsm_buf) / sizeof(dsm_buf[0]));

	/* if the read failed for any reason, just give up here */
	if (ret < 1) {
		return false;

	} else {
		*n_bytes = ret;
		*bytes = &dsm_buf[0];
	}

	/*
	 * Try to decode something with what we got
	 */
	return dsm_parse(now, &dsm_buf[0], ret, values, num_values, dsm_11_bit, &dsm_frame_drops, rssi, max_values);
}

bool dsm_parse(const uint64_t now, const uint8_t *frame, const unsigned len, uint16_t *values,
	       uint16_t *num_values, bool *dsm_11_bit, unsigned *frame_drops, int8_t *rssi_percent, uint16_t max_channels)
{
	/* this is set by the decoding state machine and will default to false
	 * once everything that was decodable has been decoded.
	 */
	bool decode_ret = false;

	/* ensure there can be no overflows */
	if (max_channels > sizeof(dsm_chan_buf) / sizeof(dsm_chan_buf[0])) {
		max_channels = sizeof(dsm_chan_buf) / sizeof(dsm_chan_buf[0]);
	}

	/* keep decoding until we have consumed the buffer */
	for (unsigned d = 0; d < len; d++) {

		/* overflow check */
		if (dsm_partial_frame_count == sizeof(dsm_frame) / sizeof(dsm_frame[0])) {
			dsm_partial_frame_count = 0;
			dsm_decode_state = DSM_DECODE_STATE_DESYNC;
#ifdef DSM_DEBUG
			printf("DSM: RESET (BUF LIM)\n");
#endif
		}

		if (dsm_partial_frame_count == DSM_FRAME_SIZE) {
			dsm_partial_frame_count = 0;
			dsm_decode_state = DSM_DECODE_STATE_DESYNC;
#ifdef DSM_DEBUG
			printf("DSM: RESET (PACKET LIM)\n");
#endif
		}

#ifdef DSM_DEBUG
#if 1
		printf("dsm state: %s%s, count: %d, val: %02x\n",
		       (dsm_decode_state == DSM_DECODE_STATE_DESYNC) ? "DSM_DECODE_STATE_DESYNC" : "",
		       (dsm_decode_state == DSM_DECODE_STATE_SYNC) ? "DSM_DECODE_STATE_SYNC" : "",
		       dsm_partial_frame_count,
		       (unsigned)frame[d]);
#endif
#endif

		switch (dsm_decode_state) {
		case DSM_DECODE_STATE_DESYNC:

			/* we are de-synced and only interested in the frame marker */
			if ((now - dsm_last_rx_time) > 5000) {
				dsm_decode_state = DSM_DECODE_STATE_SYNC;
				dsm_partial_frame_count = 0;
				dsm_chan_count = 0;
				dsm_frame[dsm_partial_frame_count++] = frame[d];
			}

			break;

		case DSM_DECODE_STATE_SYNC: {
				dsm_frame[dsm_partial_frame_count++] = frame[d];

				/* decode whatever we got and expect */
				if (dsm_partial_frame_count < DSM_FRAME_SIZE) {
					break;
				}

				/*
				 * Great, it looks like we might have a frame.  Go ahead and
				 * decode it.
				 */
				decode_ret = dsm_decode(now, &dsm_chan_buf[0], &dsm_chan_count, dsm_11_bit, max_channels, rssi_percent);

				/* we consumed the partial frame, reset */
				dsm_partial_frame_count = 0;

				/* if decoding failed, set proto to desync */
				if (!decode_ret) {
					dsm_decode_state = DSM_DECODE_STATE_DESYNC;
					dsm_frame_drops++;
				}
			}
			break;

		default:
#ifdef DSM_DEBUG
			printf("UNKNOWN PROTO STATE");
#endif
			decode_ret = false;
		}
	}

	if (frame_drops) {
		*frame_drops = dsm_frame_drops;
	}

	if (decode_ret) {
		// require stable channel count (dsm_chan_count == dsm_chan_count_prev) before considering the decode valid
		if ((dsm_chan_count > 0) && (dsm_chan_count <= DSM_MAX_CHANNEL_COUNT) && (dsm_chan_count == dsm_chan_count_prev)) {
			*num_values = dsm_chan_count;
			memcpy(&values[0], &dsm_chan_buf[0], dsm_chan_count * sizeof(dsm_chan_buf[0]));

		} else {
			decode_ret = false;
		}

		dsm_chan_count_prev = dsm_chan_count;

#ifdef DSM_DEBUG
		printf("PACKET ---------\n");
		printf("frame drops: %u, chan #: %u\n", dsm_frame_drops, dsm_chan_count);

		for (unsigned i = 0; i < dsm_chan_count; i++) {
			printf("dsm_decode: #CH %02u: %u\n", i + 1, values[i]);
		}

#endif
	}

	dsm_last_rx_time = now;

	/* return false as default */
	return decode_ret;
}