Functions.hpp
6.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/****************************************************************************
*
* Copyright (c) 2017 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file Functions.hpp
*
* collection of rather simple mathematical functions that get used over and over again
*/
#pragma once
#include "Limits.hpp"
#include <px4_platform_common/defines.h>
#include <matrix/matrix/math.hpp>
namespace math
{
// Type-safe signum function with zero treated as positive
template<typename T>
int signNoZero(T val)
{
return (T(0) <= val) - (val < T(0));
}
/*
* So called exponential curve function implementation.
* It is essentially a linear combination between a linear and a cubic function.
* @param value [-1,1] input value to function
* @param e [0,1] function parameter to set ratio between linear and cubic shape
* 0 - pure linear function
* 1 - pure cubic function
* @return result of function output
*/
template<typename T>
const T expo(const T &value, const T &e)
{
T x = constrain(value, (T) - 1, (T) 1);
T ec = constrain(e, (T) 0, (T) 1);
return (1 - ec) * x + ec * x * x * x;
}
/*
* So called SuperExpo function implementation.
* It is a 1/(1-x) function to further shape the rc input curve intuitively.
* I enhanced it compared to other implementations to keep the scale between [-1,1].
* @param value [-1,1] input value to function
* @param e [0,1] function parameter to set ratio between linear and cubic shape (see expo)
* @param g [0,1) function parameter to set SuperExpo shape
* 0 - pure expo function
* 0.99 - very strong bent curve, stays zero until maximum stick input
* @return result of function output
*/
template<typename T>
const T superexpo(const T &value, const T &e, const T &g)
{
T x = constrain(value, (T) - 1, (T) 1);
T gc = constrain(g, (T) 0, (T) 0.99);
return expo(x, e) * (1 - gc) / (1 - fabsf(x) * gc);
}
/*
* Deadzone function being linear and continuous outside of the deadzone
* 1 ------
* /
* --
* /
* -1 ------
* -1 -dz +dz 1
* @param value [-1,1] input value to function
* @param dz [0,1) ratio between deazone and complete span
* 0 - no deadzone, linear -1 to 1
* 0.5 - deadzone is half of the span [-0.5,0.5]
* 0.99 - almost entire span is deadzone
*/
template<typename T>
const T deadzone(const T &value, const T &dz)
{
T x = constrain(value, (T) - 1, (T) 1);
T dzc = constrain(dz, (T) 0, (T) 0.99);
// Rescale the input such that we get a piecewise linear function that will be continuous with applied deadzone
T out = (x - matrix::sign(x) * dzc) / (1 - dzc);
// apply the deadzone (values zero around the middle)
return out * (fabsf(x) > dzc);
}
template<typename T>
const T expo_deadzone(const T &value, const T &e, const T &dz)
{
return expo(deadzone(value, dz), e);
}
/*
* Constant, linear, constant function with the two corner points as parameters
* y_high -------
* /
* /
* /
* y_low -------
* x_low x_high
*/
template<typename T>
const T gradual(const T &value, const T &x_low, const T &x_high, const T &y_low, const T &y_high)
{
if (value < x_low) {
return y_low;
} else if (value > x_high) {
return y_high;
} else {
/* linear function between the two points */
T a = (y_high - y_low) / (x_high - x_low);
T b = y_low - a * x_low;
return a * value + b;
}
}
/*
* Constant, linear, linear, constant function with the three corner points as parameters
* y_high -------
* /
* /
* y_middle /
* /
* /
* /
* y_low -------
* x_low x_middle x_high
*/
template<typename T>
const T gradual3(const T &value,
const T &x_low, const T &x_middle, const T &x_high,
const T &y_low, const T &y_middle, const T &y_high)
{
if (value < x_middle) {
return gradual(value, x_low, x_middle, y_low, y_middle);
} else {
return gradual(value, x_middle, x_high, y_middle, y_high);
}
}
/*
* Squareroot, linear function with fixed corner point at intersection (1,1)
* /
* linear /
* /
* 1 /
* /
* sqrt |
* |
* 0 -------
* 0 1
*/
template<typename T>
const T sqrt_linear(const T &value)
{
if (value < static_cast<T>(0)) {
return static_cast<T>(0);
} else if (value < static_cast<T>(1)) {
return sqrtf(value);
} else {
return value;
}
}
/*
* Linear interpolation between 2 points a, and b.
* s=0 return a
* s=1 returns b
* Any value for s is valid.
*/
template<typename T>
const T lerp(const T &a, const T &b, const T &s)
{
return (static_cast<T>(1) - s) * a + s * b;
}
template<typename T>
constexpr T negate(T value)
{
static_assert(sizeof(T) > 2, "implement for T");
return -value;
}
template<>
constexpr int16_t negate<int16_t>(int16_t value)
{
return (value == INT16_MIN) ? INT16_MAX : -value;
}
inline bool isFinite(const float &value)
{
return PX4_ISFINITE(value);
}
inline bool isFinite(const matrix::Vector3f &value)
{
return PX4_ISFINITE(value(0)) && PX4_ISFINITE(value(1)) && PX4_ISFINITE(value(2));
}
} /* namespace math */