ObstacleAvoidance.cpp
10.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/****************************************************************************
*
* Copyright (c) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ObstacleAvoidance.cpp
*/
#include "ObstacleAvoidance.hpp"
#include "bezier/BezierN.hpp"
using namespace matrix;
using namespace time_literals;
/** Timeout in us for trajectory data to get considered invalid */
static constexpr uint64_t TRAJECTORY_STREAM_TIMEOUT_US = 500_ms;
/** If Flighttask fails, keep 0.5 seconds the current setpoint before going into failsafe land */
static constexpr uint64_t TIME_BEFORE_FAILSAFE = 500_ms;
static constexpr uint64_t Z_PROGRESS_TIMEOUT_US = 2_s;
ObstacleAvoidance::ObstacleAvoidance(ModuleParams *parent) :
ModuleParams(parent)
{
_desired_waypoint = empty_trajectory_waypoint;
_failsafe_position.setNaN();
_avoidance_point_not_valid_hysteresis.set_hysteresis_time_from(false, TIME_BEFORE_FAILSAFE);
_no_progress_z_hysteresis.set_hysteresis_time_from(false, Z_PROGRESS_TIMEOUT_US);
}
void ObstacleAvoidance::injectAvoidanceSetpoints(Vector3f &pos_sp, Vector3f &vel_sp, float &yaw_sp,
float &yaw_speed_sp)
{
_sub_vehicle_status.update();
_sub_vehicle_trajectory_waypoint.update();
_sub_vehicle_trajectory_bezier.update();
const auto &wp_msg = _sub_vehicle_trajectory_waypoint.get();
const auto &bezier_msg = _sub_vehicle_trajectory_bezier.get();
const bool avoidance_data_timeout =
hrt_elapsed_time((hrt_abstime *)&wp_msg.timestamp) > TRAJECTORY_STREAM_TIMEOUT_US &&
hrt_elapsed_time((hrt_abstime *)&bezier_msg.timestamp) > hrt_abstime(bezier_msg.control_points[bezier_msg.bezier_order -
1].delta * 1e6f);
const bool avoidance_point_valid = wp_msg.waypoints[vehicle_trajectory_waypoint_s::POINT_0].point_valid;
const bool avoidance_bezier_valid = bezier_msg.bezier_order > 0;
_avoidance_point_not_valid_hysteresis.set_state_and_update(!avoidance_point_valid
&& !avoidance_bezier_valid, hrt_absolute_time());
const bool avoidance_invalid = (avoidance_data_timeout || _avoidance_point_not_valid_hysteresis.get_state());
if ((_sub_vehicle_status.get().nav_state == vehicle_status_s::NAVIGATION_STATE_AUTO_LOITER) && avoidance_invalid) {
// if in nav_state LOITER and avoidance isn't healthy, don't inject setpoints from avoidance system
return;
}
if (avoidance_invalid) {
PX4_WARN("Obstacle Avoidance system failed, loitering");
_publishVehicleCmdDoLoiter();
if (!PX4_ISFINITE(_failsafe_position(0)) || !PX4_ISFINITE(_failsafe_position(1))
|| !PX4_ISFINITE(_failsafe_position(2))) {
// save vehicle position when entering failsafe
_failsafe_position = _position;
}
pos_sp = _failsafe_position;
vel_sp.setNaN();
yaw_sp = NAN;
yaw_speed_sp = NAN;
return;
} else {
_failsafe_position.setNaN();
}
if (avoidance_point_valid) {
const auto &point0 = wp_msg.waypoints[vehicle_trajectory_waypoint_s::POINT_0];
pos_sp = Vector3f(point0.position);
vel_sp = Vector3f(point0.velocity);
if (!_ext_yaw_active) {
// inject yaw setpoints only if weathervane isn't active
yaw_sp = point0.yaw;
yaw_speed_sp = point0.yaw_speed;
}
} else if (avoidance_bezier_valid) {
float yaw = NAN, yaw_speed = NAN;
_generateBezierSetpoints(pos_sp, vel_sp, yaw, yaw_speed);
if (!_ext_yaw_active) {
// inject yaw setpoints only if weathervane isn't active
yaw_sp = yaw;
yaw_speed_sp = yaw_speed;
}
}
}
void ObstacleAvoidance::_generateBezierSetpoints(matrix::Vector3f &position, matrix::Vector3f &velocity,
float &yaw, float &yaw_velocity)
{
const auto &msg = _sub_vehicle_trajectory_bezier.get();
int bezier_order = msg.bezier_order;
matrix::Vector3f bezier_points[bezier_order];
float bezier_yaws[bezier_order];
for (int i = 0; i < bezier_order; i++) {
bezier_points[i] = Vector3f(msg.control_points[i].position);
bezier_yaws[i] = msg.control_points[i].yaw;
}
const float duration_s = msg.control_points[bezier_order - 1].delta;
const hrt_abstime now = hrt_absolute_time();
const hrt_abstime start = msg.timestamp;
const hrt_abstime end = start + hrt_abstime(duration_s * 1e6f);
float T = NAN;
if (bezier::calculateT(start, end, now, T) &&
bezier::calculateBezierPosVel(bezier_points, bezier_order, T, position, velocity) &&
bezier::calculateBezierYaw(bezier_yaws, bezier_order, T, yaw, yaw_velocity)
) {
// translate bezier velocities T [0;1] into real velocities m/s
yaw_velocity /= duration_s;
velocity /= duration_s;
} else {
PX4_WARN("Obstacle Avoidance system failed, bad trajectory");
}
}
void ObstacleAvoidance::updateAvoidanceDesiredWaypoints(const Vector3f &curr_wp, const float curr_yaw,
const float curr_yawspeed, const Vector3f &next_wp, const float next_yaw, const float next_yawspeed,
const bool ext_yaw_active, const int wp_type)
{
_desired_waypoint.timestamp = hrt_absolute_time();
_desired_waypoint.type = vehicle_trajectory_waypoint_s::MAV_TRAJECTORY_REPRESENTATION_WAYPOINTS;
_curr_wp = curr_wp;
_ext_yaw_active = ext_yaw_active;
curr_wp.copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].position);
Vector3f(NAN, NAN, NAN).copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].velocity);
Vector3f(NAN, NAN, NAN).copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].acceleration);
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].yaw = curr_yaw;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].yaw_speed = curr_yawspeed;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].point_valid = true;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_1].type = wp_type;
next_wp.copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].position);
Vector3f(NAN, NAN, NAN).copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].velocity);
Vector3f(NAN, NAN, NAN).copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].acceleration);
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].yaw = next_yaw;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].yaw_speed = next_yawspeed;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_2].point_valid = true;
}
void ObstacleAvoidance::updateAvoidanceDesiredSetpoints(const Vector3f &pos_sp, const Vector3f &vel_sp, const int type)
{
pos_sp.copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_0].position);
vel_sp.copyTo(_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_0].velocity);
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_0].type = type;
_desired_waypoint.waypoints[vehicle_trajectory_waypoint_s::POINT_0].point_valid = true;
_pub_traj_wp_avoidance_desired.publish(_desired_waypoint);
_desired_waypoint = empty_trajectory_waypoint;
}
void ObstacleAvoidance::checkAvoidanceProgress(const Vector3f &pos, const Vector3f &prev_wp,
float target_acceptance_radius, const Vector2f &closest_pt)
{
_position = pos;
position_controller_status_s pos_control_status = {};
pos_control_status.timestamp = hrt_absolute_time();
// vector from previous triplet to current target
Vector2f prev_to_target = Vector2f(_curr_wp - prev_wp);
// vector from previous triplet to the vehicle projected position on the line previous-target triplet
Vector2f prev_to_closest_pt = closest_pt - Vector2f(prev_wp);
// fraction of the previous-tagerget line that has been flown
const float prev_curr_travelled = prev_to_closest_pt.length() / prev_to_target.length();
Vector2f pos_to_target = Vector2f(_curr_wp - _position);
if (prev_curr_travelled > 1.0f) {
// if the vehicle projected position on the line previous-target is past the target waypoint,
// increase the target acceptance radius such that navigator will update the triplets
pos_control_status.acceptance_radius = pos_to_target.length() + 0.5f;
}
const float pos_to_target_z = fabsf(_curr_wp(2) - _position(2));
bool no_progress_z = (pos_to_target_z > _prev_pos_to_target_z);
_no_progress_z_hysteresis.set_state_and_update(no_progress_z, hrt_absolute_time());
if (pos_to_target.length() < target_acceptance_radius && pos_to_target_z > _param_nav_mc_alt_rad.get()
&& _no_progress_z_hysteresis.get_state()) {
// vehicle above or below the target waypoint
pos_control_status.altitude_acceptance = pos_to_target_z + 0.5f;
}
_prev_pos_to_target_z = pos_to_target_z;
// do not check for waypoints yaw acceptance in navigator
pos_control_status.yaw_acceptance = NAN;
_pub_pos_control_status.publish(pos_control_status);
}
void ObstacleAvoidance::_publishVehicleCmdDoLoiter()
{
vehicle_command_s command{};
command.timestamp = hrt_absolute_time();
command.command = vehicle_command_s::VEHICLE_CMD_DO_SET_MODE;
command.param1 = (float)1; // base mode
command.param3 = (float)0; // sub mode
command.target_system = 1;
command.target_component = 1;
command.source_system = 1;
command.source_component = 1;
command.confirmation = false;
command.from_external = false;
command.param2 = (float)PX4_CUSTOM_MAIN_MODE_AUTO;
command.param3 = (float)PX4_CUSTOM_SUB_MODE_AUTO_LOITER;
// publish the vehicle command
_pub_vehicle_command.publish(command);
}