AK09916.cpp
7.37 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/****************************************************************************
*
* Copyright (c) 2019-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "AK09916.hpp"
using namespace time_literals;
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
AK09916::AK09916(I2CSPIBusOption bus_option, int bus, int bus_frequency, enum Rotation rotation) :
I2C(DRV_MAG_DEVTYPE_AK09916, MODULE_NAME, bus, I2C_ADDRESS_DEFAULT, bus_frequency),
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
_px4_mag(get_device_id(), rotation)
{
_px4_mag.set_external(external());
}
AK09916::~AK09916()
{
perf_free(_transfer_perf);
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_magnetic_sensor_overflow_perf);
}
int AK09916::init()
{
int ret = I2C::init();
if (ret != PX4_OK) {
DEVICE_DEBUG("I2C::init failed (%i)", ret);
return ret;
}
return Reset() ? 0 : -1;
}
bool AK09916::Reset()
{
_state = STATE::RESET;
ScheduleClear();
ScheduleNow();
return true;
}
void AK09916::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_transfer_perf);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_magnetic_sensor_overflow_perf);
}
int AK09916::probe()
{
const uint8_t WIA1 = RegisterRead(Register::WIA1);
if (WIA1 != Company_ID) {
DEVICE_DEBUG("unexpected WIA1 0x%02x", WIA1);
return PX4_ERROR;
}
const uint8_t WIA2 = RegisterRead(Register::WIA2);
if (WIA2 != Device_ID) {
DEVICE_DEBUG("unexpected WIA2 0x%02x", WIA2);
return PX4_ERROR;
}
return PX4_OK;
}
void AK09916::RunImpl()
{
switch (_state) {
case STATE::RESET:
// CNTL3 SRST: Soft reset
RegisterWrite(Register::CNTL3, CNTL3_BIT::SRST);
_reset_timestamp = hrt_absolute_time();
_consecutive_failures = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(100_ms);
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::WIA1) == Company_ID) && (RegisterRead(Register::WIA2) == Device_ID)) {
// if reset succeeded then configure
RegisterWrite(Register::CNTL2, CNTL2_BIT::MODE3);
_state = STATE::CONFIGURE;
ScheduleDelayed(100_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 100 ms");
ScheduleDelayed(100_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading
_state = STATE::READ;
ScheduleOnInterval(20_ms, 20_ms); // 50 Hz
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::READ: {
perf_begin(_transfer_perf);
TransferBuffer buffer{};
const hrt_abstime timestamp_sample = hrt_absolute_time();
uint8_t cmd = static_cast<uint8_t>(Register::ST1);
int ret = transfer(&cmd, 1, (uint8_t *)&buffer, sizeof(TransferBuffer));
perf_end(_transfer_perf);
bool success = false;
if (ret == PX4_OK) {
if (buffer.ST2 & ST2_BIT::HOFL) {
perf_count(_magnetic_sensor_overflow_perf);
} else if (buffer.ST1 & ST1_BIT::DRDY) {
const int16_t x = combine(buffer.HXH, buffer.HXL);
const int16_t y = combine(buffer.HYH, buffer.HYL);
const int16_t z = combine(buffer.HZH, buffer.HZL);
// sensor's frame is +X forward (X), +Y right (Y), +Z down (Z)
_px4_mag.update(timestamp_sample, x, y, z);
success = true;
_consecutive_failures = 0;
}
}
if (!success || hrt_elapsed_time(&_last_config_check_timestamp) > 100_ms) {
// check configuration registers periodically or immediately following any failure
if (RegisterCheck(_register_cfg[_checked_register])) {
_last_config_check_timestamp = timestamp_sample;
_checked_register = (_checked_register + 1) % size_register_cfg;
} else {
// register check failed, force reset
perf_count(_bad_register_perf);
Reset();
return;
}
}
if (_consecutive_failures > 10) {
Reset();
}
}
break;
}
}
bool AK09916::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterWrite(reg_cfg.reg, reg_cfg.set_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
// mag resolution is 1.5 milli Gauss per bit (0.15 μT/LSB)
_px4_mag.set_scale(1.5e-3f);
return success;
}
bool AK09916::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
uint8_t AK09916::RegisterRead(Register reg)
{
const uint8_t cmd = static_cast<uint8_t>(reg);
uint8_t buffer{};
transfer(&cmd, 1, &buffer, 1);
return buffer;
}
void AK09916::RegisterWrite(Register reg, uint8_t value)
{
uint8_t buffer[2] { (uint8_t)reg, value };
transfer(buffer, sizeof(buffer), nullptr, 0);
}
void AK09916::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}