FXAS21002C.cpp
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/****************************************************************************
*
* Copyright (c) 2017-2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "FXAS21002C.hpp"
#define DEF_REG(r) {r, #r}
/* default values for this device */
#define FXAS21002C_MAX_RATE 800
#define FXAS21002C_DEFAULT_RATE FXAS21002C_MAX_RATE
#define FXAS21002C_DEFAULT_RANGE_DPS 2000
#define FXAS21002C_DEFAULT_ONCHIP_FILTER_FREQ 64 // ODR dependant
/*
we set the timer interrupt to run a bit faster than the desired
sample rate and then throw away duplicates using the data ready bit.
This time reduction is enough to cope with worst case timing jitter
due to other timers
Typical reductions for the MPU6000 is 20% so 20% of 1/800 is 250 us
*/
#define FXAS21002C_TIMER_REDUCTION 250
/*
list of registers that will be checked in check_registers(). Note
that ADDR_WHO_AM_I must be first in the list.
*/
static constexpr uint8_t _checked_registers[] {
FXAS21002C_WHO_AM_I,
FXAS21002C_F_SETUP,
FXAS21002C_CTRL_REG0,
FXAS21002C_CTRL_REG1,
FXAS21002C_CTRL_REG2,
FXAS21002C_CTRL_REG3,
};
using namespace time_literals;
FXAS21002C::FXAS21002C(device::Device *interface, I2CSPIBusOption bus_option, int bus, enum Rotation rotation,
int i2c_address) :
I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(interface->get_device_id()), bus_option, bus, i2c_address),
_interface(interface),
_px4_gyro(_interface->get_device_id(), rotation),
_sample_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": read")),
_errors(perf_alloc(PC_COUNT, MODULE_NAME": err")),
_bad_registers(perf_alloc(PC_COUNT, MODULE_NAME": bad register")),
_duplicates(perf_alloc(PC_COUNT, MODULE_NAME": duplicate reading"))
{
}
FXAS21002C::~FXAS21002C()
{
perf_free(_sample_perf);
perf_free(_errors);
perf_free(_bad_registers);
perf_free(_duplicates);
}
int
FXAS21002C::init()
{
/* do SPI/I2C init (and probe) first */
if (_interface->init() != OK) {
PX4_ERR("SPI/I2C interface init failed");
return PX4_ERROR;
}
// passed SPI::probe or I2C::probe, which checked WHO_AM_I
// measurements will not start before registers are checked OK
_checked_values[0] = WHO_AM_I;
reset();
start();
return PX4_OK;
}
void FXAS21002C::reset()
{
/* write 0 0 0 000 00 = 0x00 to CTRL_REG1 to place FXOS21002 in Standby
* [6]: RST=0
* [5]: ST=0 self test disabled
* [4-2]: DR[2-0]=000 for 200Hz ODR
* [1-0]: Active=0, Ready=0 for Standby mode
*/
write_reg(FXAS21002C_CTRL_REG1, 0);
/* write 0000 0000 = 0x00 to CTRL_REG0 to configure range and filters
* [7-6]: BW[1-0]=00, LPF 64 @ 800Hz ODR
* [5]: SPIW=0 4 wire SPI
* [4-3]: SEL[1-0]=00 for 10Hz HPF at 200Hz ODR
* [2]: HPF_EN=0 disable HPF
* [1-0]: FS[1-0]=00 for 1600dps (TBD CHANGE TO 2000dps when final trimmed parts available)
*/
write_checked_reg(FXAS21002C_CTRL_REG0, CTRL_REG0_BW_LOW | CTRL_REG0_FS_2000_DPS);
/* write CTRL_REG1 to configure 800Hz ODR and enter Active mode */
write_checked_reg(FXAS21002C_CTRL_REG1, CTRL_REG1_DR_800HZ | CTRL_REG1_ACTIVE);
/* Set the default */
set_samplerate(FXAS21002C_DEFAULT_RATE);
set_range(FXAS21002C_DEFAULT_RANGE_DPS);
set_onchip_lowpass_filter(FXAS21002C_DEFAULT_ONCHIP_FILTER_FREQ);
}
void FXAS21002C::write_checked_reg(unsigned reg, uint8_t value)
{
write_reg(reg, value);
for (uint8_t i = 0; i < FXAS21002C_NUM_CHECKED_REGISTERS; i++) {
if (reg == _checked_registers[i]) {
_checked_values[i] = value;
}
}
}
void FXAS21002C::modify_reg(unsigned reg, uint8_t clearbits, uint8_t setbits)
{
uint8_t val = read_reg(reg);
val &= ~clearbits;
val |= setbits;
write_checked_reg(reg, val);
}
int FXAS21002C::set_range(unsigned max_dps)
{
uint8_t bits = CTRL_REG0_FS_250_DPS;
float new_range_scale_dps_digit;
if (max_dps == 0) {
max_dps = 2000;
}
if (max_dps <= 250) {
//new_range = 250;
new_range_scale_dps_digit = 7.8125e-3f;
bits = CTRL_REG0_FS_250_DPS;
} else if (max_dps <= 500) {
//new_range = 500;
new_range_scale_dps_digit = 15.625e-3f;
bits = CTRL_REG0_FS_500_DPS;
} else if (max_dps <= 1000) {
//new_range = 1000;
new_range_scale_dps_digit = 31.25e-3f;
bits = CTRL_REG0_FS_1000_DPS;
} else if (max_dps <= 2000) {
//new_range = 2000;
new_range_scale_dps_digit = 62.5e-3f;
bits = CTRL_REG0_FS_2000_DPS;
} else {
return -EINVAL;
}
set_standby(_current_rate, true);
_px4_gyro.set_scale(new_range_scale_dps_digit / 180.0f * M_PI_F);
modify_reg(FXAS21002C_CTRL_REG0, CTRL_REG0_FS_MASK, bits);
set_standby(_current_rate, false);
return OK;
}
void FXAS21002C::set_standby(int rate, bool standby_true)
{
uint8_t c = 0;
uint8_t s = 0;
if (standby_true) {
c = CTRL_REG1_ACTIVE | CTRL_REG1_READY;
} else {
s = CTRL_REG1_ACTIVE | CTRL_REG1_READY;
}
modify_reg(FXAS21002C_CTRL_REG1, c, s);
// From the data sheet
int wait_ms = (1000 / rate) + 60 + 1;
usleep(wait_ms * 1000);
}
int FXAS21002C::set_samplerate(unsigned frequency)
{
uint8_t bits = 0;
unsigned last_rate = _current_rate;
if (frequency == 0) {
frequency = FXAS21002C_DEFAULT_RATE;
}
if (frequency <= 13) {
_current_rate = 13;
bits = CTRL_REG1_DR_12_5;
} else if (frequency <= 25) {
_current_rate = 25;
bits = CTRL_REG1_DR_25HZ;
} else if (frequency <= 50) {
_current_rate = 50;
bits = CTRL_REG1_DR_50HZ;
} else if (frequency <= 100) {
_current_rate = 100;
bits = CTRL_REG1_DR_100HZ;
} else if (frequency <= 200) {
_current_rate = 200;
bits = CTRL_REG1_DR_200HZ;
} else if (frequency <= 400) {
_current_rate = 400;
bits = CTRL_REG1_DR_400HZ;
} else if (frequency <= 800) {
_current_rate = 800;
bits = CTRL_REG1_DR_800HZ;
} else {
return -EINVAL;
}
set_standby(last_rate, true);
modify_reg(FXAS21002C_CTRL_REG1, CTRL_REG1_DR_MASK, bits);
set_standby(_current_rate, false);
return OK;
}
void FXAS21002C::set_onchip_lowpass_filter(int frequency_hz)
{
int high = 256 / (800 / _current_rate);
int med = high / 2 ;
int low = med / 2;
if (_current_rate <= 25) {
low = -1;
}
if (_current_rate == 13) {
med = -1;
low = -1;
}
uint8_t filter = CTRL_REG0_BW_HIGH;
if (frequency_hz == 0) {
filter = CTRL_REG0_BW_HIGH;
} else if (frequency_hz <= low) {
filter = CTRL_REG0_BW_LOW;
} else if (frequency_hz <= med) {
filter = CTRL_REG0_BW_MED;
} else if (frequency_hz <= high) {
filter = CTRL_REG0_BW_HIGH;
}
set_standby(_current_rate, true);
modify_reg(FXAS21002C_CTRL_REG1, CTRL_REG0_BW_MASK, filter);
set_standby(_current_rate, false);
}
void FXAS21002C::start()
{
/* start polling at the specified rate */
ScheduleOnInterval((1_s / FXAS21002C_DEFAULT_RATE) - FXAS21002C_TIMER_REDUCTION);
}
void FXAS21002C::check_registers()
{
uint8_t v;
if ((v = read_reg(_checked_registers[_checked_next])) != _checked_values[_checked_next]) {
/*
if we get the wrong value then we know the SPI bus
or sensor is very sick. We set _register_wait to 20
and wait until we have seen 20 good values in a row
before we consider the sensor to be OK again.
*/
perf_count(_bad_registers);
/*
try to fix the bad register value. We only try to
fix one per loop to prevent a bad sensor hogging the
bus. We skip zero as that is the WHO_AM_I, which
is not writeable
*/
if (_checked_next != 0) {
write_reg(_checked_registers[_checked_next], _checked_values[_checked_next]);
}
_register_wait = 20;
}
_checked_next = (_checked_next + 1) % FXAS21002C_NUM_CHECKED_REGISTERS;
}
void FXAS21002C::RunImpl()
{
// start the performance counter
perf_begin(_sample_perf);
check_registers();
if (_register_wait != 0) {
// we are waiting for some good transfers before using
// the sensor again.
_register_wait--;
perf_end(_sample_perf);
return;
}
/* fetch data from the sensor */
RawGyroReport raw_gyro_report{};
const hrt_abstime timestamp_sample = hrt_absolute_time();
_interface->read(FXAS21002C_STATUS, (uint8_t *)&raw_gyro_report, sizeof(raw_gyro_report));
if (!(raw_gyro_report.status & DR_STATUS_ZYXDR)) {
perf_end(_sample_perf);
perf_count(_duplicates);
return;
}
int16_t x_raw = swap16(raw_gyro_report.x);
int16_t y_raw = swap16(raw_gyro_report.y);
int16_t z_raw = swap16(raw_gyro_report.z);
// don't publish duplicated reads
if ((x_raw == _gyro_prev[0]) && (y_raw == _gyro_prev[1]) && (z_raw == _gyro_prev[2])) {
perf_count(_duplicates);
perf_end(_sample_perf);
return;
} else {
_gyro_prev[0] = x_raw;
_gyro_prev[1] = y_raw;
_gyro_prev[2] = z_raw;
}
// report the error count as the number of bad register reads. This allows the higher level
_px4_gyro.set_error_count(perf_event_count(_bad_registers));
_px4_gyro.update(timestamp_sample, x_raw, y_raw, z_raw);
if (hrt_elapsed_time(&_last_temperature_update) > 100_ms) {
/*
* The TEMP register contains an 8-bit 2's complement temperature value with a range
* of –128 °C to +127 °C and a scaling of 1 °C/LSB. The temperature data is only
* compensated (factory trim values applied) when the device is operating in the Active
* mode and actively measuring the angular rate.
*/
const float temperature = read_reg(FXAS21002C_TEMP) * 1.0f;
_px4_gyro.set_temperature(temperature);
_last_temperature_update = timestamp_sample;
}
/* stop the perf counter */
perf_end(_sample_perf);
}
void FXAS21002C::print_status()
{
I2CSPIDriverBase::print_status();
perf_print_counter(_sample_perf);
perf_print_counter(_errors);
perf_print_counter(_bad_registers);
perf_print_counter(_duplicates);
::printf("checked_next: %u\n", _checked_next);
for (uint8_t i = 0; i < FXAS21002C_NUM_CHECKED_REGISTERS; i++) {
uint8_t v = read_reg(_checked_registers[i]);
if (v != _checked_values[i]) {
::printf("reg %02x:%02x should be %02x\n",
(unsigned)_checked_registers[i],
(unsigned)v,
(unsigned)_checked_values[i]);
}
}
}
void
FXAS21002C::print_registers()
{
const struct {
uint8_t reg;
const char *name;
} regmap[] = {
DEF_REG(FXAS21002C_STATUS),
DEF_REG(FXAS21002C_OUT_X_MSB),
DEF_REG(FXAS21002C_OUT_X_LSB),
DEF_REG(FXAS21002C_OUT_Y_MSB),
DEF_REG(FXAS21002C_OUT_Y_LSB),
DEF_REG(FXAS21002C_OUT_Z_MSB),
DEF_REG(FXAS21002C_OUT_Z_LSB),
DEF_REG(FXAS21002C_DR_STATUS),
DEF_REG(FXAS21002C_F_STATUS),
DEF_REG(FXAS21002C_F_SETUP),
DEF_REG(FXAS21002C_F_EVENT),
DEF_REG(FXAS21002C_INT_SRC_FLAG),
DEF_REG(FXAS21002C_WHO_AM_I),
DEF_REG(FXAS21002C_CTRL_REG0),
DEF_REG(FXAS21002C_RT_CFG),
DEF_REG(FXAS21002C_RT_SRC),
DEF_REG(FXAS21002C_RT_THS),
DEF_REG(FXAS21002C_RT_COUNT),
DEF_REG(FXAS21002C_TEMP),
DEF_REG(FXAS21002C_CTRL_REG1),
DEF_REG(FXAS21002C_CTRL_REG2),
DEF_REG(FXAS21002C_CTRL_REG3),
};
for (uint8_t i = 0; i < sizeof(regmap) / sizeof(regmap[0]); i++) {
printf("0x%02x %d:%s\n", read_reg(regmap[i].reg), regmap[i].reg, regmap[i].name);
}
}
void
FXAS21002C::test_error()
{
// trigger an error
write_reg(FXAS21002C_CTRL_REG1, 0);
}