BMI088_Gyroscope.cpp
13.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "BMI088_Gyroscope.hpp"
#include <px4_platform/board_dma_alloc.h>
using namespace time_literals;
namespace Bosch::BMI088::Gyroscope
{
BMI088_Gyroscope::BMI088_Gyroscope(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation,
int bus_frequency, spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio) :
BMI088(DRV_GYR_DEVTYPE_BMI088, "BMI088_Gyroscope", bus_option, bus, device, spi_mode, bus_frequency, drdy_gpio),
_px4_gyro(get_device_id(), rotation)
{
if (drdy_gpio != 0) {
_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME"_gyro: DRDY missed");
}
ConfigureSampleRate(2000);
}
BMI088_Gyroscope::~BMI088_Gyroscope()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_missed_perf);
}
void BMI088_Gyroscope::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void BMI088_Gyroscope::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_missed_perf);
}
int BMI088_Gyroscope::probe()
{
const uint8_t chipid = RegisterRead(Register::GYRO_CHIP_ID);
if (chipid != ID) {
DEVICE_DEBUG("unexpected GYRO_CHIP_ID 0x%02x", chipid);
return PX4_ERROR;
}
return PX4_OK;
}
void BMI088_Gyroscope::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::SELFTEST:
//SelfTest();
_state = STATE::RESET;
ScheduleDelayed(1_ms);
break;
case STATE::RESET:
// GYRO_SOFTRESET: Writing a value of 0xB6 to this register resets the sensor.
// Following a delay of 30 ms, all configuration settings are overwritten with their reset value.
RegisterWrite(Register::GYRO_SOFTRESET, 0xB6);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(30_ms);
break;
case STATE::WAIT_FOR_RESET:
if ((RegisterRead(Register::GYRO_CHIP_ID) == ID)) {
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(1_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
SimpleFIFORead(now);
}
break;
}
}
void BMI088_Gyroscope::ConfigureGyro()
{
const uint8_t GYRO_RANGE = RegisterRead(Register::GYRO_RANGE) & (Bit3 | Bit2 | Bit1 | Bit0);
switch (GYRO_RANGE) {
case gyro_range_2000_dps:
_px4_gyro.set_scale(math::radians(1.f / 16.384f));
_px4_gyro.set_range(math::radians(2000.f));
break;
case gyro_range_1000_dps:
_px4_gyro.set_scale(math::radians(1.f / 32.768f));
_px4_gyro.set_range(math::radians(1000.f));
break;
case gyro_range_500_dps:
_px4_gyro.set_scale(math::radians(1.f / 65.536f));
_px4_gyro.set_range(math::radians(500.f));
break;
case gyro_range_250_dps:
_px4_gyro.set_scale(math::radians(1.f / 131.072f));
_px4_gyro.set_range(math::radians(250.f));
break;
case gyro_range_125_dps:
_px4_gyro.set_scale(math::radians(1.f / 262.144f));
_px4_gyro.set_range(math::radians(125.f));
break;
}
}
void BMI088_Gyroscope::ConfigureSampleRate(int sample_rate)
{
// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
_fifo_samples = math::min((float)_fifo_empty_interval_us / (1e6f / RATE), (float)FIFO_MAX_SAMPLES);
// recompute FIFO empty interval (us) with actual sample limit
_fifo_empty_interval_us = _fifo_samples * (1e6f / RATE);
ConfigureFIFOWatermark(_fifo_samples);
}
void BMI088_Gyroscope::ConfigureFIFOWatermark(uint8_t samples)
{
// FIFO watermark threshold
for (auto &r : _register_cfg) {
if (r.reg == Register::FIFO_CONFIG_0) {
r.set_bits = samples;
r.clear_bits = ~r.set_bits;
}
}
}
bool BMI088_Gyroscope::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
ConfigureGyro();
return success;
}
int BMI088_Gyroscope::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<BMI088_Gyroscope *>(arg)->DataReady();
return 0;
}
void BMI088_Gyroscope::DataReady()
{
uint32_t expected = 0;
if (_drdy_fifo_read_samples.compare_exchange(&expected, _fifo_samples)) {
ScheduleNow();
}
}
bool BMI088_Gyroscope::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}
bool BMI088_Gyroscope::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
bool BMI088_Gyroscope::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
uint8_t BMI088_Gyroscope::RegisterRead(Register reg)
{
uint8_t add = static_cast<uint8_t>(reg);
uint8_t cmd[2] = {add, 0};
transfer(&cmd[0], 1, &cmd[1], 1);
return cmd[1];
}
void BMI088_Gyroscope::RegisterWrite(Register reg, uint8_t value)
{
uint8_t add = static_cast<uint8_t>(reg);
uint8_t cmd[2] = {add, value};
transfer(cmd, sizeof(cmd), nullptr, 0);
}
void BMI088_Gyroscope::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
bool BMI088_Gyroscope::FIFORead(const hrt_abstime ×tamp_sample, uint8_t samples)
{
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 1, FIFO::SIZE);
//PX4_WARN("Estimated transfer size: %d", transfer_size);
if (transfer((uint8_t *)&buffer, 1, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = samples;
gyro.dt = FIFO_SAMPLE_DT;
for (int i = 0; i < samples; i++) {
const FIFO::DATA &fifo_sample = buffer.f[i];
const int16_t gyro_x = combine(fifo_sample.RATE_X_MSB, fifo_sample.RATE_X_LSB);
const int16_t gyro_y = combine(fifo_sample.RATE_Y_MSB, fifo_sample.RATE_Y_LSB);
const int16_t gyro_z = combine(fifo_sample.RATE_Z_MSB, fifo_sample.RATE_Z_LSB);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
gyro.x[i] = gyro_x;
gyro.y[i] = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
gyro.z[i] = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
}
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
_px4_gyro.updateFIFO(gyro);
return true;
}
void BMI088_Gyroscope::FIFOReset()
{
perf_count(_fifo_reset_perf);
// FIFO_CONFIG_0: Writing to water mark level trigger in register 0x3D (FIFO_CONFIG_0) clears the FIFO buffer.
RegisterWrite(Register::FIFO_CONFIG_0, 0);
// FIFO_CONFIG_1: FIFO overrun condition can only be cleared by writing to the FIFO configuration register FIFO_CONFIG_1
RegisterWrite(Register::FIFO_CONFIG_1, 0);
// reset while FIFO is disabled
_drdy_fifo_read_samples.store(0);
// FIFO_CONFIG_0: restore FIFO watermark
// FIFO_CONFIG_1: re-enable FIFO
for (const auto &r : _register_cfg) {
if ((r.reg == Register::FIFO_CONFIG_0) || (r.reg == Register::FIFO_CONFIG_1)) {
RegisterSetAndClearBits(r.reg, r.set_bits, r.clear_bits);
}
}
}
bool BMI088_Gyroscope::SelfTest()
{
//Datasheet page 17 self test
//Set bit0 to enable built in self test
RegisterWrite(Register::SELF_TEST, 0x01);
usleep(10000);
uint8_t res = 0;
uint8_t test_res = false;
while (true) {
res = RegisterRead(Register::SELF_TEST);
if ((res & 0x02) == 0x02) {
if ((res & 0x04) == 0x00) {
PX4_WARN("Gyro Self-test success");
test_res = true;
} else {
PX4_WARN("Gyro Self-test error");
}
break;
}
}
RegisterWrite(Register::SELF_TEST, 0x00);
return test_res;
}
bool BMI088_Gyroscope::NormalRead(const hrt_abstime ×tamp_sample)
{
float x = 0;
float y = 0;
float z = 0;
uint8_t buffer[6] = {0};
uint8_t cmd[1] = {static_cast<uint8_t>(Register::READ_GYRO)};
transfer(&cmd[0], 1, &buffer[0], 6);
uint8_t RATE_X_LSB = buffer[0];
uint8_t RATE_X_MSB = buffer[1];
uint8_t RATE_Y_LSB = buffer[2];
uint8_t RATE_Y_MSB = buffer[3];
uint8_t RATE_Z_LSB = buffer[4];
uint8_t RATE_Z_MSB = buffer[5];
const int16_t gyro_x = combine(RATE_X_MSB, RATE_X_LSB);
const int16_t gyro_y = combine(RATE_Y_MSB, RATE_Y_LSB);
const int16_t gyro_z = combine(RATE_Z_MSB, RATE_Z_LSB);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
x = gyro_x;
y = (gyro_y == INT16_MIN) ? INT16_MAX : -gyro_y;
z = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
_px4_gyro.update(timestamp_sample, x, y, z);
return true;
}
bool BMI088_Gyroscope::SimpleFIFORead(const hrt_abstime ×tamp_sample)
{
uint8_t n_frames;
sensor_gyro_fifo_s gyro{};
gyro.timestamp_sample = timestamp_sample;
gyro.samples = 0;
gyro.dt = FIFO_SAMPLE_DT;
uint8_t data_i[1] = {static_cast<uint8_t>(Register::FIFO_STATUS)};
transfer(&data_i[0], 1, &n_frames, 1);
n_frames &= 0x7F;
int n_frames_to_read = 6;
// don't read more than 8 frames at a time
if (n_frames > n_frames_to_read) {
n_frames = n_frames_to_read;
}
if (n_frames == 0) {
return false;
}
uint8_t data[6 * n_frames];
data[0] = static_cast<uint8_t>(Register::FIFO_DATA);
if (transfer(&data[0], 1, &data[0], 6 * n_frames) != PX4_OK) {
//PX4_WARN("transfer(&data[0], 1, &data[0], fifo_fill_level) != PX4_OK");
return false;
}
for (uint8_t i = 0; i < n_frames; i++) {
const uint8_t *d = &data[i * 6];
int16_t xyz[3] {
int16_t(uint16_t(d[0] | d[1] << 8)),
int16_t(uint16_t(d[2] | d[3] << 8)),
int16_t(uint16_t(d[4] | d[5] << 8))
};
gyro.x[i] = xyz[0];
gyro.y[i] = (xyz[1] == INT16_MIN) ? INT16_MAX : -xyz[1];
gyro.z[i] = (xyz[2] == INT16_MIN) ? INT16_MAX : -xyz[2];
gyro.samples++;
}
_px4_gyro.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (gyro.samples > 0) {
//PX4_WARN("accel.samples: %d", accel.samples);
_px4_gyro.updateFIFO(gyro);
return true;
}
return true;
}
} // namespace Bosch::BMI088::Gyroscope