BMI088_Accelerometer.cpp
26.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/****************************************************************************
*
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "BMI088_Accelerometer.hpp"
#include <ecl/geo/geo.h> // CONSTANTS_ONE_G
using namespace time_literals;
namespace Bosch::BMI088::Accelerometer
{
BMI088_Accelerometer::BMI088_Accelerometer(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation,
int bus_frequency, spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio) :
BMI088(DRV_ACC_DEVTYPE_BMI088, "BMI088_Accelerometer", bus_option, bus, device, spi_mode, bus_frequency, drdy_gpio),
_px4_accel(get_device_id(), rotation)
{
if (drdy_gpio != 0) {
_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME"_accel: DRDY missed");
}
ConfigureSampleRate(1600);
}
BMI088_Accelerometer::~BMI088_Accelerometer()
{
perf_free(_bad_register_perf);
perf_free(_bad_transfer_perf);
perf_free(_fifo_empty_perf);
perf_free(_fifo_overflow_perf);
perf_free(_fifo_reset_perf);
perf_free(_drdy_missed_perf);
}
void BMI088_Accelerometer::exit_and_cleanup()
{
DataReadyInterruptDisable();
I2CSPIDriverBase::exit_and_cleanup();
}
void BMI088_Accelerometer::print_status()
{
I2CSPIDriverBase::print_status();
PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);
perf_print_counter(_bad_register_perf);
perf_print_counter(_bad_transfer_perf);
perf_print_counter(_fifo_empty_perf);
perf_print_counter(_fifo_overflow_perf);
perf_print_counter(_fifo_reset_perf);
perf_print_counter(_drdy_missed_perf);
}
uint8_t BMI088_Accelerometer::RegisterRead(Register reg)
{
uint8_t add = static_cast<uint8_t>(reg);
uint8_t cmd[2] = {add, 0};
transfer(&cmd[0], 1, &cmd[1], 1);
return cmd[1];
}
uint8_t BMI088_Accelerometer::RegisterWrite(Register reg, uint8_t value)
{
uint8_t add = static_cast<uint8_t>(reg);
uint8_t cmd[2] = { add, value};
return transfer(cmd, sizeof(cmd), nullptr, 0);
}
int BMI088_Accelerometer::probe()
{
const uint8_t ACC_CHIP_ID = RegisterRead(Register::ACC_CHIP_ID);
if (ACC_CHIP_ID != ID) {
DEVICE_DEBUG("unexpected ACC_CHIP_ID 0x%02x", ACC_CHIP_ID);
return PX4_ERROR;
}
PX4_WARN("Probe success, ACC_CHIP_ID: 0x%02x", ACC_CHIP_ID);
return PX4_OK;
}
void BMI088_Accelerometer::RunImpl()
{
const hrt_abstime now = hrt_absolute_time();
switch (_state) {
case STATE::SELFTEST:
//PX4_WARN("Selftest state");
//SelfTest();
_state = STATE::RESET;
ScheduleDelayed(10_ms);
break;
case STATE::RESET:
// ACC_SOFTRESET: Writing a value of 0xB6 to this register resets the sensor
RegisterWrite(Register::ACC_SOFTRESET, 0xB6);
_reset_timestamp = now;
_failure_count = 0;
_state = STATE::WAIT_FOR_RESET;
ScheduleDelayed(1_ms); // Following a delay of 1 ms, all configuration settings are overwritten with their reset value.
break;
case STATE::WAIT_FOR_RESET:
if (RegisterRead(Register::ACC_CHIP_ID) == ID) {
// ACC_PWR_CONF: Power on sensor
RegisterWrite(Register::ACC_PWR_CONF, 0);
// if reset succeeded then configure
_state = STATE::CONFIGURE;
ScheduleDelayed(10_ms);
} else {
// RESET not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Reset failed, retrying");
_state = STATE::RESET;
ScheduleDelayed(100_ms);
} else {
PX4_DEBUG("Reset not complete, check again in 10 ms");
ScheduleDelayed(10_ms);
}
}
break;
case STATE::CONFIGURE:
if (Configure()) {
// if configure succeeded then start reading from FIFO
_state = STATE::FIFO_READ;
if (DataReadyInterruptConfigure()) {
_data_ready_interrupt_enabled = true;
// backup schedule as a watchdog timeout
ScheduleDelayed(100_ms);
} else {
_data_ready_interrupt_enabled = false;
ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
}
FIFOReset();
} else {
// CONFIGURE not complete
if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
PX4_DEBUG("Configure failed, resetting");
_state = STATE::RESET;
} else {
PX4_DEBUG("Configure failed, retrying");
}
ScheduleDelayed(100_ms);
}
break;
case STATE::FIFO_READ: {
SimpleFIFORead(now);
}
break;
}
}
void BMI088_Accelerometer::ConfigureAccel()
{
//PX4_WARN("ConfigureAccel");
const uint8_t ACC_RANGE = RegisterRead(Register::ACC_RANGE) & (Bit1 | Bit0);
switch (ACC_RANGE) {
case acc_range_3g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(3.f * CONSTANTS_ONE_G);
break;
case acc_range_6g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(6.f * CONSTANTS_ONE_G);
break;
case acc_range_12g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(12.f * CONSTANTS_ONE_G);
break;
case acc_range_24g:
_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
_px4_accel.set_range(24.f * CONSTANTS_ONE_G);
break;
}
}
void BMI088_Accelerometer::ConfigureSampleRate(int sample_rate)
{
// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
const float min_interval = FIFO_SAMPLE_DT;
_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);
PX4_WARN("_fifo_empty_interval_us %d", _fifo_empty_interval_us);
_fifo_samples = math::min((float)_fifo_empty_interval_us / (1e6f / RATE), (float)FIFO_MAX_SAMPLES);
PX4_WARN("_fifo_samples %d", _fifo_samples);
// recompute FIFO empty interval (us) with actual sample limit
_fifo_empty_interval_us = _fifo_samples * (1e6f / RATE);
PX4_WARN("_fifo_empty_interval_us %d", _fifo_empty_interval_us);
//PX4_WARN("_fifo_samples %d", _fifo_samples);
ConfigureFIFOWatermark(_fifo_samples);
}
void BMI088_Accelerometer::ConfigureFIFOWatermark(uint8_t samples)
{
// FIFO_WTM: 13 bit FIFO watermark level value
// unit of the fifo watermark is one byte
const uint16_t fifo_watermark_threshold = samples * sizeof(FIFO::DATA);
for (auto &r : _register_cfg) {
if (r.reg == Register::FIFO_WTM_0) {
// fifo_water_mark[7:0]
r.set_bits = fifo_watermark_threshold & 0x00FF;
r.clear_bits = ~r.set_bits;
} else if (r.reg == Register::FIFO_WTM_1) {
// fifo_water_mark[12:8]
r.set_bits = (fifo_watermark_threshold & 0x0700) >> 8;
r.clear_bits = ~r.set_bits;
}
}
}
bool BMI088_Accelerometer::Configure()
{
// first set and clear all configured register bits
for (const auto ®_cfg : _register_cfg) {
RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
}
// now check that all are configured
bool success = true;
for (const auto ®_cfg : _register_cfg) {
if (!RegisterCheck(reg_cfg)) {
success = false;
}
}
ConfigureAccel();
return success;
}
int BMI088_Accelerometer::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
static_cast<BMI088_Accelerometer *>(arg)->DataReady();
return 0;
}
void BMI088_Accelerometer::DataReady()
{
uint32_t expected = 0;
if (_drdy_fifo_read_samples.compare_exchange(&expected, _fifo_samples)) {
ScheduleNow();
}
}
bool BMI088_Accelerometer::DataReadyInterruptConfigure()
{
if (_drdy_gpio == 0) {
return false;
}
// Setup data ready on falling edge
return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}
bool BMI088_Accelerometer::DataReadyInterruptDisable()
{
if (_drdy_gpio == 0) {
return false;
}
return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}
bool BMI088_Accelerometer::RegisterCheck(const register_config_t ®_cfg)
{
bool success = true;
const uint8_t reg_value = RegisterRead(reg_cfg.reg);
if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
success = false;
}
if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
success = false;
}
return success;
}
void BMI088_Accelerometer::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
const uint8_t orig_val = RegisterRead(reg);
uint8_t val = (orig_val & ~clearbits) | setbits;
if (orig_val != val) {
RegisterWrite(reg, val);
}
}
uint16_t BMI088_Accelerometer::FIFOReadCount()
{
// FIFO length registers FIFO_LENGTH_1 and FIFO_LENGTH_0 contain the 14 bit FIFO byte
uint8_t fifo_len_buf[2] {};
fifo_len_buf[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0) | DIR_READ;
// fifo_len_buf[1] dummy byte
if (transfer(&fifo_len_buf[0], 1, &fifo_len_buf[0], 2) != PX4_OK) {
perf_count(_bad_transfer_perf);
return 0;
}
const uint8_t FIFO_LENGTH_0 = fifo_len_buf[0]; // fifo_byte_counter[7:0]
const uint8_t FIFO_LENGTH_1 = fifo_len_buf[1] & 0x3F; // fifo_byte_counter[13:8]
return combine(FIFO_LENGTH_1, FIFO_LENGTH_0);
}
bool BMI088_Accelerometer::FIFORead(const hrt_abstime ×tamp_sample, uint8_t samples)
{
FIFOTransferBuffer buffer{};
const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 4, FIFO::SIZE);
if (transfer((uint8_t *)&buffer, 1, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
perf_count(_bad_transfer_perf);
return false;
}
//PX4_WARN("Accel transfer success");
const size_t fifo_byte_counter = combine(buffer.FIFO_LENGTH_1 & 0x3F, buffer.FIFO_LENGTH_0);
// An empty FIFO corresponds to 0x8000
if (fifo_byte_counter == 0x8000) {
perf_count(_fifo_empty_perf);
return false;
} else if (fifo_byte_counter >= FIFO::SIZE) {
perf_count(_fifo_overflow_perf);
return false;
}
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT;
// first find all sensor data frames in the buffer
uint8_t *data_buffer = (uint8_t *)&buffer.f[0];
unsigned fifo_buffer_index = 0; // start of buffer
while (fifo_buffer_index < math::min(fifo_byte_counter, transfer_size - 4)) {
// look for header signature (first 6 bits) followed by two bits indicating the status of INT1 and INT2
switch (data_buffer[fifo_buffer_index] & 0xFC) {
case FIFO::header::sensor_data_frame: {
// Acceleration sensor data frame
// Frame length: 7 bytes (1 byte header + 6 bytes payload)
FIFO::DATA *fifo_sample = (FIFO::DATA *)&data_buffer[fifo_buffer_index];
const int16_t accel_x = combine(fifo_sample->ACC_X_MSB, fifo_sample->ACC_X_LSB);
const int16_t accel_y = combine(fifo_sample->ACC_Y_MSB, fifo_sample->ACC_Y_LSB);
const int16_t accel_z = combine(fifo_sample->ACC_Z_MSB, fifo_sample->ACC_Z_LSB);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
accel.x[accel.samples] = accel_x;
accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
accel.samples++;
fifo_buffer_index += 7; // move forward to next record
}
break;
case FIFO::header::skip_frame:
// Skip Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("Skip Frame");
fifo_buffer_index += 2;
break;
case FIFO::header::sensor_time_frame:
// Sensortime Frame
// Frame length: 4 bytes (1 byte header + 3 bytes payload)
PX4_DEBUG("Sensortime Frame");
fifo_buffer_index += 4;
break;
case FIFO::header::FIFO_input_config_frame:
// FIFO input config Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("FIFO input config Frame");
fifo_buffer_index += 2;
break;
case FIFO::header::sample_drop_frame:
// Sample drop Frame
// Frame length: 2 bytes (1 byte header + 1 byte payload)
PX4_DEBUG("Sample drop Frame");
fifo_buffer_index += 2;
break;
default:
fifo_buffer_index++;
break;
}
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
_px4_accel.updateFIFO(accel);
return true;
}
return false;
}
bool BMI088_Accelerometer::SimpleFIFORead(const hrt_abstime ×tamp_sample)
{
sensor_accel_fifo_s accel{};
accel.timestamp_sample = timestamp_sample;
accel.samples = 0;
accel.dt = FIFO_SAMPLE_DT;
int fifo_fill_level = 0;
uint8_t data_o[2] = { 0, 0 };
uint8_t data_i[1] = {static_cast<uint8_t>(Register::FIFO_LENGTH_0)};
data_i[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0);
transfer(&data_i[0], 1, &data_o[0], 2);
fifo_fill_level = data_o[0] + (data_o[1] << 8);
if (fifo_fill_level & 0x8000) {
return false;
}
int n_frames_to_read = 6;
// don't read more than 6 frames at a time
if (fifo_fill_level > n_frames_to_read * 7) {
fifo_fill_level = n_frames_to_read * 7;
}
if (fifo_fill_level == 0) {
return false;
}
uint8_t data[fifo_fill_level];
data[0] = static_cast<uint8_t>(Register::FIFO_DATA);
if (transfer(&data[0], 1, &data[0], fifo_fill_level) != PX4_OK) {
return false;
}
const uint8_t *p = &data[0];
while (fifo_fill_level >= 7) {
uint8_t frame_len = 2;
switch (p[0] & 0xFC) {
case 0x84: {
// accel frame
frame_len = 7;
const uint8_t *d = p + 1;
int16_t xyz[3] {
int16_t(uint16_t(d[0] | (d[1] << 8))),
int16_t(uint16_t(d[2] | (d[3] << 8))),
int16_t(uint16_t(d[4] | (d[5] << 8)))
};
const int16_t tX[3] = {1, 0, 0};
const int16_t tY[3] = {0, -1, 0};
const int16_t tZ[3] = {0, 0, -1};
float x = 0;
float y = 0;
float z = 0;
x = xyz[0] * tX[0] + xyz[1] * tX[1] + xyz[2] * tX[2];
y = xyz[0] * tY[0] + xyz[1] * tY[1] + xyz[2] * tY[2];
z = xyz[0] * tZ[0] + xyz[1] * tZ[1] + xyz[2] * tZ[2];
accel.x[accel.samples] = x;
accel.y[accel.samples] = y;
accel.z[accel.samples] = z;
accel.samples++;
break;
}
case 0x40:
// skip frame
frame_len = 2;
break;
case 0x44:
// sensortime frame
frame_len = 4;
break;
case 0x48:
// fifo config frame
frame_len = 2;
break;
case 0x50:
// sample drop frame
frame_len = 2;
break;
}
p += frame_len;
fifo_fill_level -= frame_len;
}
_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));
if (accel.samples > 0) {
//PX4_WARN("accel.samples: %d", accel.samples);
_px4_accel.updateFIFO(accel);
return true;
}
return true;
}
void BMI088_Accelerometer::FIFOReset()
{
perf_count(_fifo_reset_perf);
// ACC_SOFTRESET: trigger a FIFO reset by writing 0xB0 to ACC_SOFTRESET (register 0x7E).
RegisterWrite(Register::ACC_SOFTRESET, 0xB0);
// reset while FIFO is disabled
_drdy_fifo_read_samples.store(0);
}
void BMI088_Accelerometer::UpdateTemperature()
{
// stored in an 11-bit value in 2’s complement format
uint8_t temperature_buf[4] {};
temperature_buf[0] = static_cast<uint8_t>(Register::TEMP_MSB) | ACC_I2C_ADDR_PRIMARY;
// temperature_buf[1] dummy byte
if (transfer(&temperature_buf[0], 1, &temperature_buf[0], sizeof(temperature_buf)) != PX4_OK) {
perf_count(_bad_transfer_perf);
return;
}
const uint8_t TEMP_MSB = temperature_buf[2];
const uint8_t TEMP_LSB = temperature_buf[3];
// Datasheet 5.3.7: Register 0x22 – 0x23: Temperature sensor data
uint16_t Temp_uint11 = (TEMP_MSB * 8) + (TEMP_LSB / 32);
int16_t Temp_int11 = 0;
if (Temp_uint11 > 1023) {
Temp_int11 = Temp_uint11 - 2048;
} else {
Temp_int11 = Temp_uint11;
}
float temperature = (Temp_int11 * 0.125f) + 23.f; // Temp_int11 * 0.125°C/LSB + 23°C
if (PX4_ISFINITE(temperature)) {
_px4_accel.set_temperature(temperature);
} else {
perf_count(_bad_transfer_perf);
}
}
bool BMI088_Accelerometer::SelfTest()
{
PX4_WARN("Running self-test with datasheet recomended steps(page 17)");
// Reset
PX4_WARN("Reseting the sensor");
if (RegisterWrite(Register::ACC_SOFTRESET, 0xB6) == PX4_OK) {
PX4_WARN("Reset success");
}
usleep(100000);
PX4_WARN("Accel on");
if (RegisterWrite(Register::ACC_PWR_CTRL, 0x04) == PX4_OK) {
PX4_WARN("Accel on success");
}
usleep(100000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
Configure();
usleep(1000000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
const uint8_t ACC_CHIP_ID = RegisterRead(Register::ACC_CHIP_ID);
PX4_WARN("ACC_CHIP_ID: 0x%02x", ACC_CHIP_ID);
usleep(30000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
if (RegisterWrite(Register::ACC_PWR_CONF, 0) == PX4_OK) {
PX4_WARN("Start sensor success");
PX4_WARN("ACC_PWR_CONF(0): 0x%02x", RegisterRead(Register::ACC_PWR_CONF));
}
usleep(2000000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
if (RegisterWrite(Register::ACC_RANGE, 0x03) == PX4_OK) {
PX4_WARN("Range set success");
PX4_WARN("ACC_RANGE(0x03): 0x%02x", RegisterRead(Register::ACC_RANGE));
}
usleep(100000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
if (RegisterWrite(Register::ACC_CONF, 0xA7) == PX4_OK) {
PX4_WARN("Conf set success");
PX4_WARN("ACC_CONF(0xA7): 0x%02x", RegisterRead(Register::ACC_CONF));
}
usleep(100000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
// Positive sel-test polarity
if (RegisterWrite(Register::ACC_SELF_TEST, 0x0D) == PX4_OK) {
PX4_WARN("Self-test positive mode set success");
PX4_WARN("ACC_SELF_TEST(0x0D): 0x%02x", RegisterRead(Register::ACC_SELF_TEST));
}
usleep(100000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
float *accel_mss = ReadAccelDataFIFO();
PX4_WARN("Positive value");
PX4_WARN("X %f", (double)accel_mss[0]);
PX4_WARN("Y %f", (double)accel_mss[1]);
PX4_WARN("Z %f", (double)accel_mss[2]);
// Negative sel-test polarity
if (RegisterWrite(Register::ACC_SELF_TEST, 0x09) == PX4_OK) {
PX4_WARN("Self-test negative mode set success");
PX4_WARN("ACC_SELF_TEST(0x09): 0x%02x", RegisterRead(Register::ACC_SELF_TEST));
}
usleep(600000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
float *accel_mss2 = ReadAccelDataFIFO();
PX4_WARN("Negative value");
PX4_WARN("X %f", (double)accel_mss2[0]);
PX4_WARN("Y %f", (double)accel_mss2[1]);
PX4_WARN("Z %f", (double)accel_mss2[2]);
// Calculate difference between positive and negative sef-test response
float diff_x = accel_mss[0] - accel_mss2[0];
float diff_y = accel_mss[1] - accel_mss2[1];
float diff_z = accel_mss[2] - accel_mss2[2];
PX4_WARN("Diff value");
PX4_WARN("diff_x %f", (double)diff_x);
PX4_WARN("diff_y %f", (double)diff_y);
PX4_WARN("diff_z %f", (double)diff_z);
if (diff_x >= 1000) {
PX4_WARN("X Axis self-test success");
}
if (diff_y >= 1000) {
PX4_WARN("Y Axis self-test success");
}
if (diff_z >= 500) {
PX4_WARN("Z Axis self-test success");
}
// Disable self-test
RegisterWrite(Register::ACC_SELF_TEST, 0x00);
usleep(60000);
PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
// Reset
//PX4_WARN("Reseting the sensor again");
//RegisterWrite(Register::ACC_SOFTRESET, 0xB6);
//usleep(100000);
return true;
}
float *BMI088_Accelerometer::ReadAccelData()
{
uint8_t cmd[1] = {0x12};
uint8_t buf[6] = {0, 0, 0, 0, 0, 0};
uint8_t *buffer = buf;
int16_t accel[3];
if (transfer(&cmd[0], 1, buffer, sizeof(buf)) == PX4_OK) {
PX4_WARN("ReadAccelData transfer success");
}
for (uint8_t i = 0; i < sizeof(buf); i++) {
PX4_WARN("buf[%d]: %f", i, (double)buf[i]);
}
accel[0] = (buf[1] << 8) | buf[0];
accel[1] = (buf[3] << 8) | buf[2];
accel[2] = (buf[5] << 8) | buf[4];
float *accel_mss = new float[3];
accel_mss[0] = (float) accel[0] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
accel_mss[1] = (float) accel[1] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
accel_mss[2] = (float) accel[2] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
return accel_mss;
}
float *BMI088_Accelerometer::ReadAccelDataFIFO()
{
float *accel_mg = new float[3];
struct FIFO::bmi08x_sensor_data bmi08x_accel;
uint8_t buffer[50] = {0};
PX4_WARN("FIFO mode is stop-at-full");
/* Desired FIFO mode is stop-at-full: set bit #0 to 1 in 0x48. Bit #1 must always be one! */
buffer[0] = 0x00 | 0x02;
RegisterWrite(Register::FIFO_CONFIG_0, buffer[0]);
PX4_WARN("FIFO_CONFIG_0(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_CONFIG_0));
PX4_WARN("Downsampling factor 2**4 = 16");
/* Downsampling factor 2**4 = 16: write 4 into bit #4-6 of reg. 0x45. Bit #7 must always be one! */
buffer[0] = 0x10 | 0x80;
RegisterWrite(Register::FIFO_DOWN_SAMPLING, buffer[0]);
PX4_WARN("FIFO_DOWN_SAMPLING(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_DOWN_SAMPLING));
/* Set water mark to 42 bytes (aka 6 frames, each 7 bytes: 1 byte header + 6 bytes accel data) */
// uint16_t wml = 42;
// buffer[0] = (uint8_t) wml & 0xff;
// buffer[1] = (uint8_t) (wml >> 8) & 0xff;
// uint8_t add = static_cast<uint8_t>(Register::FIFO_WTM_0);
// uint8_t cmd[3] = { add, buffer[0], buffer[1]};
// transfer(cmd, sizeof(cmd), nullptr, 0);
// PX4_WARN("FIFO_WTM_0(0x%02x): 0x%02x",cmd[0], RegisterRead(Register::FIFO_WTM_0));
/* Enable the actual FIFO functionality: write 0x50 to 0x49. Bit #4 must always be one! */
buffer[0] = 0x10 | 0x40;
RegisterWrite(Register::FIFO_CONFIG_1, buffer[0]);
PX4_WARN("FIFO_CONFIG_1(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_CONFIG_1));
usleep(1000000);
int fifo_fill_level = 0;
uint8_t data_o[2] = { 0, 0 };
uint8_t data_i[1] = {static_cast<uint8_t>(Register::FIFO_LENGTH_0)};
data_i[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0);
transfer(&data_i[0], 1, &data_o[0], 2);
fifo_fill_level = data_o[0] + 256 * data_o[1];
PX4_WARN("fifo_fill_level %d", fifo_fill_level);
// while(fifo_fill_level < wml)
// {
// transfer(&data_i[0], 1, &data_o[0], 2);
// fifo_fill_level = data_o[0] + 256 * data_o[1];
// PX4_WARN("fifo_fill_level %d", fifo_fill_level);
// }
uint8_t custom_size = 42;
uint8_t buffer_data[custom_size] = {0};
buffer[0] = static_cast<uint8_t>(Register::FIFO_DATA);
bmi08x_accel.x = 10;
PX4_WARN("bmi08x_accel %d", bmi08x_accel.x);
transfer(&buffer[0], 1, &buffer_data[0], custom_size);
/* This is a super-simple FIFO parsing loop, hoping it will only find valid accel data packets */
for (int i = 1; i < custom_size;) {
/* Header of acceleration sensor data frame: 100001xxb, where x is INT1/INT2 tag, ignored here */
if (buffer_data[i] == (0x84 & 0x8c)) {
UnpackSensorData(&bmi08x_accel, &buffer_data[i + 1]);
PX4_WARN("Frame: %03d ax:%f ay:%f az:%f", i / 6, (double)bmi08x_accel.x, (double)bmi08x_accel.y,
(double)bmi08x_accel.z);
accel_mg[0] = bmi08x_accel.x;
accel_mg[1] = bmi08x_accel.y;
accel_mg[2] = bmi08x_accel.z;
float *data_in_mg = SensorDataTomg(accel_mg);
PX4_WARN("Frame mg: %03d ax:%f ay:%f az:%f", i / 6, (double)data_in_mg[0], (double)data_in_mg[1],
(double)data_in_mg[2]);
i += 7;
} else {
i++;
}
}
return accel_mg;
}
uint8_t BMI088_Accelerometer::CheckSensorErrReg()
{
return RegisterRead(Register::ACC_ERR_REG);
}
void BMI088_Accelerometer::UnpackSensorData(struct FIFO::bmi08x_sensor_data *sens_data, uint8_t *buffer)
{
uint16_t data_lsb;
uint16_t data_msb;
uint16_t start_idx = 0;
/* Gyro raw x data */
data_lsb = buffer[start_idx++];
data_msb = buffer[start_idx++];
sens_data->x = (int16_t)((data_msb << 8) | data_lsb);
/* Gyro raw y data */
data_lsb = buffer[start_idx++];
data_msb = buffer[start_idx++];
sens_data->y = (int16_t)((data_msb << 8) | data_lsb);
/* Gyro raw z data */
data_lsb = buffer[start_idx++];
data_msb = buffer[start_idx++];
sens_data->z = (int16_t)((data_msb << 8) | data_lsb);
}
float *BMI088_Accelerometer::SensorDataTomg(float *data)
{
data[0] = (float) data[0] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
data[1] = (float) data[1] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
data[2] = (float) data[2] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
return data;
}
bool BMI088_Accelerometer::NormalRead(const hrt_abstime ×tamp_sample)
{
const int16_t tX[3] = {1, 0, 0};
const int16_t tY[3] = {0, -1, 0};
const int16_t tZ[3] = {0, 0, -1};
float x = 0;
float y = 0;
float z = 0;
uint8_t buffer[6] = {0};
uint8_t cmd[1] = {static_cast<uint8_t>(Register::ACC_READ)};
transfer(&cmd[0], 1, &buffer[0], 6);
uint8_t RATE_X_LSB = buffer[0];
uint8_t RATE_X_MSB = buffer[1];
uint8_t RATE_Y_LSB = buffer[2];
uint8_t RATE_Y_MSB = buffer[3];
uint8_t RATE_Z_LSB = buffer[4];
uint8_t RATE_Z_MSB = buffer[5];
const int16_t accel_x = combine(RATE_X_MSB, RATE_X_LSB);
const int16_t accel_y = combine(RATE_Y_MSB, RATE_Y_LSB);
const int16_t accel_z = combine(RATE_Z_MSB, RATE_Z_LSB);
// sensor's frame is +x forward, +y left, +z up
// flip y & z to publish right handed with z down (x forward, y right, z down)
x = accel_x * tX[0] + accel_y * tX[1] + accel_z * tX[2];
y = accel_x * tY[0] + accel_y * tY[1] + accel_z * tY[2];
z = accel_x * tZ[0] + accel_y * tZ[1] + accel_z * tZ[2];
//PX4_WARN("x: %f | y: %f | z: %f", (double)x, (double)y ,(double)z);
_px4_accel.update(timestamp_sample, x, y, z);
return true;
}
} // namespace Bosch::BMI088::Accelerometer