BMI088_Accelerometer.cpp 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/****************************************************************************
 *
 *   Copyright (c) 2020 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "BMI088_Accelerometer.hpp"

#include <ecl/geo/geo.h> // CONSTANTS_ONE_G

using namespace time_literals;

namespace Bosch::BMI088::Accelerometer
{
BMI088_Accelerometer::BMI088_Accelerometer(I2CSPIBusOption bus_option, int bus, uint32_t device, enum Rotation rotation,
		int bus_frequency, spi_mode_e spi_mode, spi_drdy_gpio_t drdy_gpio) :
	BMI088(DRV_ACC_DEVTYPE_BMI088, "BMI088_Accelerometer", bus_option, bus, device, spi_mode, bus_frequency, drdy_gpio),
	_px4_accel(get_device_id(), rotation)
{
	if (drdy_gpio != 0) {
		_drdy_missed_perf = perf_alloc(PC_COUNT, MODULE_NAME"_accel: DRDY missed");
	}

	ConfigureSampleRate(1600);
}

BMI088_Accelerometer::~BMI088_Accelerometer()
{
	perf_free(_bad_register_perf);
	perf_free(_bad_transfer_perf);
	perf_free(_fifo_empty_perf);
	perf_free(_fifo_overflow_perf);
	perf_free(_fifo_reset_perf);
	perf_free(_drdy_missed_perf);
}

void BMI088_Accelerometer::exit_and_cleanup()
{
	DataReadyInterruptDisable();
	I2CSPIDriverBase::exit_and_cleanup();
}

void BMI088_Accelerometer::print_status()
{
	I2CSPIDriverBase::print_status();

	PX4_INFO("FIFO empty interval: %d us (%.1f Hz)", _fifo_empty_interval_us, 1e6 / _fifo_empty_interval_us);

	perf_print_counter(_bad_register_perf);
	perf_print_counter(_bad_transfer_perf);
	perf_print_counter(_fifo_empty_perf);
	perf_print_counter(_fifo_overflow_perf);
	perf_print_counter(_fifo_reset_perf);
	perf_print_counter(_drdy_missed_perf);
}

uint8_t BMI088_Accelerometer::RegisterRead(Register reg)
{
	uint8_t add = static_cast<uint8_t>(reg);
	uint8_t cmd[2] = {add, 0};
	transfer(&cmd[0], 1, &cmd[1], 1);
	return cmd[1];
}

uint8_t BMI088_Accelerometer::RegisterWrite(Register reg, uint8_t value)
{
	uint8_t add = static_cast<uint8_t>(reg);
	uint8_t cmd[2] = { add, value};
	return transfer(cmd, sizeof(cmd), nullptr, 0);
}

int BMI088_Accelerometer::probe()
{
	const uint8_t ACC_CHIP_ID = RegisterRead(Register::ACC_CHIP_ID);

	if (ACC_CHIP_ID != ID) {
		DEVICE_DEBUG("unexpected ACC_CHIP_ID 0x%02x", ACC_CHIP_ID);
		return PX4_ERROR;
	}

	PX4_WARN("Probe success, ACC_CHIP_ID: 0x%02x", ACC_CHIP_ID);

	return PX4_OK;
}

void BMI088_Accelerometer::RunImpl()
{
	const hrt_abstime now = hrt_absolute_time();

	switch (_state) {
	case STATE::SELFTEST:
		//PX4_WARN("Selftest state");
		//SelfTest();
		_state = STATE::RESET;
		ScheduleDelayed(10_ms);
		break;

	case STATE::RESET:
		// ACC_SOFTRESET: Writing a value of 0xB6 to this register resets the sensor
		RegisterWrite(Register::ACC_SOFTRESET, 0xB6);
		_reset_timestamp = now;
		_failure_count = 0;
		_state = STATE::WAIT_FOR_RESET;


		ScheduleDelayed(1_ms); // Following a delay of 1 ms, all configuration settings are overwritten with their reset value.

		break;

	case STATE::WAIT_FOR_RESET:
		if (RegisterRead(Register::ACC_CHIP_ID) == ID) {
			// ACC_PWR_CONF: Power on sensor
			RegisterWrite(Register::ACC_PWR_CONF, 0);

			// if reset succeeded then configure
			_state = STATE::CONFIGURE;
			ScheduleDelayed(10_ms);

		} else {
			// RESET not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Reset failed, retrying");
				_state = STATE::RESET;
				ScheduleDelayed(100_ms);

			} else {
				PX4_DEBUG("Reset not complete, check again in 10 ms");
				ScheduleDelayed(10_ms);
			}
		}

		break;

	case STATE::CONFIGURE:
		if (Configure()) {
			// if configure succeeded then start reading from FIFO
			_state = STATE::FIFO_READ;

			if (DataReadyInterruptConfigure()) {
				_data_ready_interrupt_enabled = true;

				// backup schedule as a watchdog timeout
				ScheduleDelayed(100_ms);

			} else {
				_data_ready_interrupt_enabled = false;
				ScheduleOnInterval(_fifo_empty_interval_us, _fifo_empty_interval_us);
			}

			FIFOReset();

		} else {
			// CONFIGURE not complete
			if (hrt_elapsed_time(&_reset_timestamp) > 1000_ms) {
				PX4_DEBUG("Configure failed, resetting");
				_state = STATE::RESET;

			} else {
				PX4_DEBUG("Configure failed, retrying");
			}

			ScheduleDelayed(100_ms);
		}

		break;

	case STATE::FIFO_READ: {
			SimpleFIFORead(now);
		}
		break;
	}
}

void BMI088_Accelerometer::ConfigureAccel()
{
	//PX4_WARN("ConfigureAccel");
	const uint8_t ACC_RANGE = RegisterRead(Register::ACC_RANGE) & (Bit1 | Bit0);

	switch (ACC_RANGE) {
	case acc_range_3g:
		_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
		_px4_accel.set_range(3.f * CONSTANTS_ONE_G);
		break;

	case acc_range_6g:
		_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
		_px4_accel.set_range(6.f * CONSTANTS_ONE_G);
		break;

	case acc_range_12g:
		_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
		_px4_accel.set_range(12.f * CONSTANTS_ONE_G);
		break;

	case acc_range_24g:
		_px4_accel.set_scale(CONSTANTS_ONE_G * (powf(2, ACC_RANGE + 1) * 1.5f) / 32768.f);
		_px4_accel.set_range(24.f * CONSTANTS_ONE_G);
		break;
	}
}

void BMI088_Accelerometer::ConfigureSampleRate(int sample_rate)
{
	// round down to nearest FIFO sample dt * SAMPLES_PER_TRANSFER
	const float min_interval = FIFO_SAMPLE_DT;
	_fifo_empty_interval_us = math::max(roundf((1e6f / (float)sample_rate) / min_interval) * min_interval, min_interval);

	PX4_WARN("_fifo_empty_interval_us %d", _fifo_empty_interval_us);
	_fifo_samples = math::min((float)_fifo_empty_interval_us / (1e6f / RATE), (float)FIFO_MAX_SAMPLES);

	PX4_WARN("_fifo_samples %d", _fifo_samples);
	// recompute FIFO empty interval (us) with actual sample limit
	_fifo_empty_interval_us = _fifo_samples * (1e6f / RATE);

	PX4_WARN("_fifo_empty_interval_us %d", _fifo_empty_interval_us);
	//PX4_WARN("_fifo_samples %d", _fifo_samples);
	ConfigureFIFOWatermark(_fifo_samples);
}

void BMI088_Accelerometer::ConfigureFIFOWatermark(uint8_t samples)
{
	// FIFO_WTM: 13 bit FIFO watermark level value
	// unit of the fifo watermark is one byte
	const uint16_t fifo_watermark_threshold = samples * sizeof(FIFO::DATA);

	for (auto &r : _register_cfg) {
		if (r.reg == Register::FIFO_WTM_0) {
			// fifo_water_mark[7:0]
			r.set_bits = fifo_watermark_threshold & 0x00FF;
			r.clear_bits = ~r.set_bits;

		} else if (r.reg == Register::FIFO_WTM_1) {
			// fifo_water_mark[12:8]
			r.set_bits = (fifo_watermark_threshold & 0x0700) >> 8;
			r.clear_bits = ~r.set_bits;
		}
	}
}

bool BMI088_Accelerometer::Configure()
{

	// first set and clear all configured register bits
	for (const auto &reg_cfg : _register_cfg) {
		RegisterSetAndClearBits(reg_cfg.reg, reg_cfg.set_bits, reg_cfg.clear_bits);
	}

	// now check that all are configured
	bool success = true;

	for (const auto &reg_cfg : _register_cfg) {
		if (!RegisterCheck(reg_cfg)) {
			success = false;
		}
	}

	ConfigureAccel();

	return success;
}

int BMI088_Accelerometer::DataReadyInterruptCallback(int irq, void *context, void *arg)
{
	static_cast<BMI088_Accelerometer *>(arg)->DataReady();
	return 0;
}

void BMI088_Accelerometer::DataReady()
{
	uint32_t expected = 0;

	if (_drdy_fifo_read_samples.compare_exchange(&expected, _fifo_samples)) {
		ScheduleNow();
	}
}

bool BMI088_Accelerometer::DataReadyInterruptConfigure()
{
	if (_drdy_gpio == 0) {
		return false;
	}

	// Setup data ready on falling edge
	return px4_arch_gpiosetevent(_drdy_gpio, false, true, true, &DataReadyInterruptCallback, this) == 0;
}

bool BMI088_Accelerometer::DataReadyInterruptDisable()
{
	if (_drdy_gpio == 0) {
		return false;
	}

	return px4_arch_gpiosetevent(_drdy_gpio, false, false, false, nullptr, nullptr) == 0;
}

bool BMI088_Accelerometer::RegisterCheck(const register_config_t &reg_cfg)
{
	bool success = true;

	const uint8_t reg_value = RegisterRead(reg_cfg.reg);

	if (reg_cfg.set_bits && ((reg_value & reg_cfg.set_bits) != reg_cfg.set_bits)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not set)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.set_bits);
		success = false;
	}

	if (reg_cfg.clear_bits && ((reg_value & reg_cfg.clear_bits) != 0)) {
		PX4_DEBUG("0x%02hhX: 0x%02hhX (0x%02hhX not cleared)", (uint8_t)reg_cfg.reg, reg_value, reg_cfg.clear_bits);
		success = false;
	}

	return success;
}

void BMI088_Accelerometer::RegisterSetAndClearBits(Register reg, uint8_t setbits, uint8_t clearbits)
{
	const uint8_t orig_val = RegisterRead(reg);

	uint8_t val = (orig_val & ~clearbits) | setbits;

	if (orig_val != val) {
		RegisterWrite(reg, val);
	}
}

uint16_t BMI088_Accelerometer::FIFOReadCount()
{
	// FIFO length registers FIFO_LENGTH_1 and FIFO_LENGTH_0 contain the 14 bit FIFO byte
	uint8_t fifo_len_buf[2] {};
	fifo_len_buf[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0) | DIR_READ;
	// fifo_len_buf[1] dummy byte

	if (transfer(&fifo_len_buf[0], 1, &fifo_len_buf[0], 2) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return 0;
	}

	const uint8_t FIFO_LENGTH_0 = fifo_len_buf[0];        // fifo_byte_counter[7:0]
	const uint8_t FIFO_LENGTH_1 = fifo_len_buf[1] & 0x3F; // fifo_byte_counter[13:8]

	return combine(FIFO_LENGTH_1, FIFO_LENGTH_0);
}

bool BMI088_Accelerometer::FIFORead(const hrt_abstime &timestamp_sample, uint8_t samples)
{
	FIFOTransferBuffer buffer{};
	const size_t transfer_size = math::min(samples * sizeof(FIFO::DATA) + 4, FIFO::SIZE);

	if (transfer((uint8_t *)&buffer, 1, (uint8_t *)&buffer, transfer_size) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return false;
	}

	//PX4_WARN("Accel transfer success");
	const size_t fifo_byte_counter = combine(buffer.FIFO_LENGTH_1 & 0x3F, buffer.FIFO_LENGTH_0);

	// An empty FIFO corresponds to 0x8000
	if (fifo_byte_counter == 0x8000) {
		perf_count(_fifo_empty_perf);
		return false;

	} else if (fifo_byte_counter >= FIFO::SIZE) {
		perf_count(_fifo_overflow_perf);
		return false;
	}

	sensor_accel_fifo_s accel{};
	accel.timestamp_sample = timestamp_sample;
	accel.samples = 0;
	accel.dt = FIFO_SAMPLE_DT;

	// first find all sensor data frames in the buffer
	uint8_t *data_buffer = (uint8_t *)&buffer.f[0];
	unsigned fifo_buffer_index = 0; // start of buffer

	while (fifo_buffer_index < math::min(fifo_byte_counter, transfer_size - 4)) {
		// look for header signature (first 6 bits) followed by two bits indicating the status of INT1 and INT2
		switch (data_buffer[fifo_buffer_index] & 0xFC) {
		case FIFO::header::sensor_data_frame: {
				// Acceleration sensor data frame
				// Frame length: 7 bytes (1 byte header + 6 bytes payload)

				FIFO::DATA *fifo_sample = (FIFO::DATA *)&data_buffer[fifo_buffer_index];
				const int16_t accel_x = combine(fifo_sample->ACC_X_MSB, fifo_sample->ACC_X_LSB);
				const int16_t accel_y = combine(fifo_sample->ACC_Y_MSB, fifo_sample->ACC_Y_LSB);
				const int16_t accel_z = combine(fifo_sample->ACC_Z_MSB, fifo_sample->ACC_Z_LSB);

				// sensor's frame is +x forward, +y left, +z up
				//  flip y & z to publish right handed with z down (x forward, y right, z down)
				accel.x[accel.samples] = accel_x;
				accel.y[accel.samples] = (accel_y == INT16_MIN) ? INT16_MAX : -accel_y;
				accel.z[accel.samples] = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
				accel.samples++;

				fifo_buffer_index += 7; // move forward to next record
			}
			break;

		case FIFO::header::skip_frame:
			// Skip Frame
			// Frame length: 2 bytes (1 byte header + 1 byte payload)
			PX4_DEBUG("Skip Frame");
			fifo_buffer_index += 2;
			break;

		case FIFO::header::sensor_time_frame:
			// Sensortime Frame
			// Frame length: 4 bytes (1 byte header + 3 bytes payload)
			PX4_DEBUG("Sensortime Frame");
			fifo_buffer_index += 4;
			break;

		case FIFO::header::FIFO_input_config_frame:
			// FIFO input config Frame
			// Frame length: 2 bytes (1 byte header + 1 byte payload)
			PX4_DEBUG("FIFO input config Frame");
			fifo_buffer_index += 2;
			break;

		case FIFO::header::sample_drop_frame:
			// Sample drop Frame
			// Frame length: 2 bytes (1 byte header + 1 byte payload)
			PX4_DEBUG("Sample drop Frame");
			fifo_buffer_index += 2;
			break;

		default:
			fifo_buffer_index++;
			break;
		}
	}

	_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
				   perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));

	if (accel.samples > 0) {
		_px4_accel.updateFIFO(accel);
		return true;
	}

	return false;
}

bool BMI088_Accelerometer::SimpleFIFORead(const hrt_abstime &timestamp_sample)
{
	sensor_accel_fifo_s accel{};
	accel.timestamp_sample = timestamp_sample;
	accel.samples = 0;
	accel.dt = FIFO_SAMPLE_DT;

	int fifo_fill_level = 0;

	uint8_t data_o[2] = { 0, 0 };
	uint8_t data_i[1] = {static_cast<uint8_t>(Register::FIFO_LENGTH_0)};
	data_i[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0);

	transfer(&data_i[0], 1, &data_o[0], 2);
	fifo_fill_level = data_o[0] + (data_o[1] << 8);

	if (fifo_fill_level & 0x8000) {
		return false;
	}

	int n_frames_to_read = 6;

	// don't read more than 6 frames at a time
	if (fifo_fill_level > n_frames_to_read * 7) {
		fifo_fill_level = n_frames_to_read * 7;
	}

	if (fifo_fill_level == 0) {
		return false;
	}

	uint8_t data[fifo_fill_level];

	data[0] = static_cast<uint8_t>(Register::FIFO_DATA);

	if (transfer(&data[0], 1, &data[0], fifo_fill_level) != PX4_OK) {
		return false;
	}

	const uint8_t *p = &data[0];

	while (fifo_fill_level >= 7) {
		uint8_t frame_len = 2;

		switch (p[0] & 0xFC) {
		case 0x84: {
				// accel frame
				frame_len = 7;
				const uint8_t *d = p + 1;
				int16_t xyz[3] {
					int16_t(uint16_t(d[0] | (d[1] << 8))),
					int16_t(uint16_t(d[2] | (d[3] << 8))),
					int16_t(uint16_t(d[4] | (d[5] << 8)))
				};


				const int16_t tX[3] = {1, 0, 0};
				const int16_t tY[3] = {0, -1, 0};
				const int16_t tZ[3] = {0, 0, -1};

				float x = 0;
				float y = 0;
				float z = 0;

				x = xyz[0] * tX[0] + xyz[1] * tX[1] + xyz[2] * tX[2];
				y = xyz[0] * tY[0] + xyz[1] * tY[1] + xyz[2] * tY[2];
				z = xyz[0] * tZ[0] + xyz[1] * tZ[1] + xyz[2] * tZ[2];

				accel.x[accel.samples] = x;
				accel.y[accel.samples] = y;
				accel.z[accel.samples] = z;
				accel.samples++;

				break;
			}

		case 0x40:
			// skip frame
			frame_len = 2;
			break;

		case 0x44:
			// sensortime frame
			frame_len = 4;
			break;

		case 0x48:
			// fifo config frame
			frame_len = 2;
			break;

		case 0x50:
			// sample drop frame
			frame_len = 2;
			break;
		}

		p += frame_len;
		fifo_fill_level -= frame_len;
	}

	_px4_accel.set_error_count(perf_event_count(_bad_register_perf) + perf_event_count(_bad_transfer_perf) +
				   perf_event_count(_fifo_empty_perf) + perf_event_count(_fifo_overflow_perf));

	if (accel.samples > 0) {
		//PX4_WARN("accel.samples: %d", accel.samples);
		_px4_accel.updateFIFO(accel);
		return true;
	}

	return true;
}

void BMI088_Accelerometer::FIFOReset()
{
	perf_count(_fifo_reset_perf);

	// ACC_SOFTRESET: trigger a FIFO reset by writing 0xB0 to ACC_SOFTRESET (register 0x7E).
	RegisterWrite(Register::ACC_SOFTRESET, 0xB0);

	// reset while FIFO is disabled
	_drdy_fifo_read_samples.store(0);
}

void BMI088_Accelerometer::UpdateTemperature()
{
	// stored in an 11-bit value in 2’s complement format
	uint8_t temperature_buf[4] {};
	temperature_buf[0] = static_cast<uint8_t>(Register::TEMP_MSB) | ACC_I2C_ADDR_PRIMARY;
	// temperature_buf[1] dummy byte

	if (transfer(&temperature_buf[0], 1, &temperature_buf[0], sizeof(temperature_buf)) != PX4_OK) {
		perf_count(_bad_transfer_perf);
		return;
	}

	const uint8_t TEMP_MSB = temperature_buf[2];
	const uint8_t TEMP_LSB = temperature_buf[3];

	// Datasheet 5.3.7: Register 0x22 – 0x23: Temperature sensor data
	uint16_t Temp_uint11 = (TEMP_MSB * 8) + (TEMP_LSB / 32);
	int16_t Temp_int11 = 0;

	if (Temp_uint11 > 1023) {
		Temp_int11 = Temp_uint11 - 2048;

	} else {
		Temp_int11 = Temp_uint11;
	}

	float temperature = (Temp_int11 * 0.125f) + 23.f; // Temp_int11 * 0.125°C/LSB + 23°C

	if (PX4_ISFINITE(temperature)) {
		_px4_accel.set_temperature(temperature);

	} else {
		perf_count(_bad_transfer_perf);
	}
}

bool BMI088_Accelerometer::SelfTest()
{
	PX4_WARN("Running self-test with datasheet recomended steps(page 17)");
	// Reset
	PX4_WARN("Reseting the sensor");

	if (RegisterWrite(Register::ACC_SOFTRESET, 0xB6) == PX4_OK) {
		PX4_WARN("Reset success");
	}

	usleep(100000);
	PX4_WARN("Accel on");

	if (RegisterWrite(Register::ACC_PWR_CTRL, 0x04) == PX4_OK) {
		PX4_WARN("Accel on success");
	}

	usleep(100000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
	Configure();
	usleep(1000000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
	const uint8_t ACC_CHIP_ID = RegisterRead(Register::ACC_CHIP_ID);
	PX4_WARN("ACC_CHIP_ID: 0x%02x", ACC_CHIP_ID);
	usleep(30000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());

	if (RegisterWrite(Register::ACC_PWR_CONF, 0) == PX4_OK) {
		PX4_WARN("Start sensor success");
		PX4_WARN("ACC_PWR_CONF(0): 0x%02x", RegisterRead(Register::ACC_PWR_CONF));
	}

	usleep(2000000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());

	if (RegisterWrite(Register::ACC_RANGE, 0x03) == PX4_OK) {
		PX4_WARN("Range set success");
		PX4_WARN("ACC_RANGE(0x03): 0x%02x", RegisterRead(Register::ACC_RANGE));
	}

	usleep(100000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());

	if (RegisterWrite(Register::ACC_CONF, 0xA7) == PX4_OK) {
		PX4_WARN("Conf set success");
		PX4_WARN("ACC_CONF(0xA7): 0x%02x", RegisterRead(Register::ACC_CONF));
	}

	usleep(100000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());

	// Positive sel-test polarity
	if (RegisterWrite(Register::ACC_SELF_TEST, 0x0D) == PX4_OK) {
		PX4_WARN("Self-test positive mode set success");
		PX4_WARN("ACC_SELF_TEST(0x0D): 0x%02x", RegisterRead(Register::ACC_SELF_TEST));
	}

	usleep(100000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());

	float *accel_mss = ReadAccelDataFIFO();
	PX4_WARN("Positive value");
	PX4_WARN("X %f", (double)accel_mss[0]);
	PX4_WARN("Y %f", (double)accel_mss[1]);
	PX4_WARN("Z %f", (double)accel_mss[2]);

	// Negative sel-test polarity
	if (RegisterWrite(Register::ACC_SELF_TEST, 0x09) == PX4_OK) {
		PX4_WARN("Self-test negative mode set success");
		PX4_WARN("ACC_SELF_TEST(0x09): 0x%02x", RegisterRead(Register::ACC_SELF_TEST));
	}

	usleep(600000);
	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
	float *accel_mss2 = ReadAccelDataFIFO();
	PX4_WARN("Negative value");
	PX4_WARN("X %f", (double)accel_mss2[0]);
	PX4_WARN("Y %f", (double)accel_mss2[1]);
	PX4_WARN("Z %f", (double)accel_mss2[2]);

	// Calculate difference between positive and negative sef-test response
	float diff_x = accel_mss[0] - accel_mss2[0];
	float diff_y = accel_mss[1] - accel_mss2[1];
	float diff_z = accel_mss[2] - accel_mss2[2];

	PX4_WARN("Diff value");
	PX4_WARN("diff_x %f", (double)diff_x);
	PX4_WARN("diff_y %f", (double)diff_y);
	PX4_WARN("diff_z %f", (double)diff_z);


	if (diff_x >= 1000) {
		PX4_WARN("X Axis self-test success");
	}

	if (diff_y >= 1000) {
		PX4_WARN("Y Axis self-test success");
	}

	if (diff_z >= 500) {
		PX4_WARN("Z Axis self-test success");
	}


	// Disable self-test
	RegisterWrite(Register::ACC_SELF_TEST, 0x00);
	usleep(60000);

	PX4_WARN("Sensor ErrReg: 0x%02x", CheckSensorErrReg());
	// Reset
	//PX4_WARN("Reseting the sensor again");
	//RegisterWrite(Register::ACC_SOFTRESET, 0xB6);
	//usleep(100000);
	return true;
}

float *BMI088_Accelerometer::ReadAccelData()
{
	uint8_t cmd[1] = {0x12};

	uint8_t buf[6] = {0, 0, 0, 0, 0, 0};
	uint8_t *buffer = buf;

	int16_t accel[3];

	if (transfer(&cmd[0], 1, buffer, sizeof(buf)) == PX4_OK) {
		PX4_WARN("ReadAccelData transfer success");
	}

	for (uint8_t i = 0; i < sizeof(buf); i++) {
		PX4_WARN("buf[%d]: %f", i, (double)buf[i]);
	}

	accel[0] = (buf[1] << 8) | buf[0];
	accel[1] = (buf[3] << 8) | buf[2];
	accel[2] = (buf[5] << 8) | buf[4];

	float *accel_mss = new float[3];

	accel_mss[0] = (float) accel[0] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
	accel_mss[1] = (float) accel[1] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
	accel_mss[2] = (float) accel[2] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;

	return accel_mss;
}

float *BMI088_Accelerometer::ReadAccelDataFIFO()
{
	float *accel_mg = new float[3];
	struct FIFO::bmi08x_sensor_data bmi08x_accel;
	uint8_t buffer[50] = {0};

	PX4_WARN("FIFO mode is stop-at-full");
	/* Desired FIFO mode is stop-at-full: set bit #0 to 1 in 0x48. Bit #1 must always be one! */
	buffer[0] = 0x00 | 0x02;
	RegisterWrite(Register::FIFO_CONFIG_0, buffer[0]);
	PX4_WARN("FIFO_CONFIG_0(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_CONFIG_0));

	PX4_WARN("Downsampling factor 2**4 = 16");
	/* Downsampling factor 2**4 = 16: write 4 into bit #4-6 of reg. 0x45. Bit #7 must always be one! */
	buffer[0] = 0x10 | 0x80;
	RegisterWrite(Register::FIFO_DOWN_SAMPLING, buffer[0]);
	PX4_WARN("FIFO_DOWN_SAMPLING(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_DOWN_SAMPLING));

	/* Set water mark to 42 bytes (aka 6 frames, each 7 bytes: 1 byte header + 6 bytes accel data) */
	// uint16_t wml = 42;
	// buffer[0] = (uint8_t) wml & 0xff;
	// buffer[1] = (uint8_t) (wml >> 8) & 0xff;
	// uint8_t add = static_cast<uint8_t>(Register::FIFO_WTM_0);
	// uint8_t cmd[3] = { add, buffer[0], buffer[1]};
	// transfer(cmd, sizeof(cmd), nullptr, 0);
	// PX4_WARN("FIFO_WTM_0(0x%02x): 0x%02x",cmd[0], RegisterRead(Register::FIFO_WTM_0));

	/* Enable the actual FIFO functionality: write 0x50 to 0x49. Bit #4 must always be one! */
	buffer[0] = 0x10 | 0x40;
	RegisterWrite(Register::FIFO_CONFIG_1, buffer[0]);
	PX4_WARN("FIFO_CONFIG_1(0x%02x): 0x%02x", buffer[0], RegisterRead(Register::FIFO_CONFIG_1));
	usleep(1000000);

	int fifo_fill_level = 0;

	uint8_t data_o[2] = { 0, 0 };
	uint8_t data_i[1] = {static_cast<uint8_t>(Register::FIFO_LENGTH_0)};
	data_i[0] = static_cast<uint8_t>(Register::FIFO_LENGTH_0);

	transfer(&data_i[0], 1, &data_o[0], 2);
	fifo_fill_level = data_o[0] + 256 * data_o[1];
	PX4_WARN("fifo_fill_level %d", fifo_fill_level);

	// while(fifo_fill_level < wml)
	// {
	// 	transfer(&data_i[0], 1, &data_o[0], 2);
	// 	fifo_fill_level = data_o[0] + 256 * data_o[1];
	// 	PX4_WARN("fifo_fill_level %d", fifo_fill_level);
	// }

	uint8_t custom_size = 42;
	uint8_t buffer_data[custom_size] = {0};
	buffer[0] = static_cast<uint8_t>(Register::FIFO_DATA);
	bmi08x_accel.x = 10;
	PX4_WARN("bmi08x_accel %d", bmi08x_accel.x);
	transfer(&buffer[0], 1, &buffer_data[0], custom_size);

	/* This is a super-simple FIFO parsing loop, hoping it will only find valid accel data packets */
	for (int i = 1; i < custom_size;) {
		/* Header of acceleration sensor data frame: 100001xxb, where x is INT1/INT2 tag, ignored here */
		if (buffer_data[i] == (0x84 & 0x8c)) {
			UnpackSensorData(&bmi08x_accel, &buffer_data[i + 1]);
			PX4_WARN("Frame: %03d ax:%f ay:%f az:%f", i / 6, (double)bmi08x_accel.x, (double)bmi08x_accel.y,
				 (double)bmi08x_accel.z);
			accel_mg[0] = bmi08x_accel.x;
			accel_mg[1] = bmi08x_accel.y;
			accel_mg[2] = bmi08x_accel.z;
			float *data_in_mg = SensorDataTomg(accel_mg);
			PX4_WARN("Frame mg: %03d ax:%f ay:%f az:%f", i / 6, (double)data_in_mg[0], (double)data_in_mg[1],
				 (double)data_in_mg[2]);
			i += 7;

		} else {
			i++;
		}
	}

	return accel_mg;
}

uint8_t  BMI088_Accelerometer::CheckSensorErrReg()
{
	return RegisterRead(Register::ACC_ERR_REG);
}

void BMI088_Accelerometer::UnpackSensorData(struct FIFO::bmi08x_sensor_data *sens_data, uint8_t *buffer)
{
	uint16_t data_lsb;
	uint16_t data_msb;
	uint16_t start_idx = 0;
	/* Gyro raw x data */
	data_lsb = buffer[start_idx++];
	data_msb = buffer[start_idx++];
	sens_data->x = (int16_t)((data_msb << 8) | data_lsb);
	/* Gyro raw y data */
	data_lsb = buffer[start_idx++];
	data_msb = buffer[start_idx++];
	sens_data->y = (int16_t)((data_msb << 8) | data_lsb);
	/* Gyro raw z data */
	data_lsb = buffer[start_idx++];
	data_msb = buffer[start_idx++];
	sens_data->z = (int16_t)((data_msb << 8) | data_lsb);
}

float *BMI088_Accelerometer::SensorDataTomg(float *data)
{
	data[0] = (float) data[0] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
	data[1] = (float) data[1] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
	data[2] = (float) data[2] / 32768.0f * 1000.0f * powf(2.0f, 24.0f + 1.0f) * 1.50f;
	return data;
}

bool BMI088_Accelerometer::NormalRead(const hrt_abstime &timestamp_sample)
{
	const int16_t tX[3] = {1, 0, 0};
	const int16_t tY[3] = {0, -1, 0};
	const int16_t tZ[3] = {0, 0, -1};

	float x = 0;
	float y = 0;
	float z = 0;
	uint8_t buffer[6] = {0};
	uint8_t cmd[1] = {static_cast<uint8_t>(Register::ACC_READ)};

	transfer(&cmd[0], 1, &buffer[0], 6);

	uint8_t RATE_X_LSB = buffer[0];
	uint8_t RATE_X_MSB = buffer[1];

	uint8_t RATE_Y_LSB = buffer[2];
	uint8_t RATE_Y_MSB = buffer[3];

	uint8_t RATE_Z_LSB = buffer[4];
	uint8_t RATE_Z_MSB = buffer[5];

	const int16_t accel_x = combine(RATE_X_MSB, RATE_X_LSB);
	const int16_t accel_y = combine(RATE_Y_MSB, RATE_Y_LSB);
	const int16_t accel_z = combine(RATE_Z_MSB, RATE_Z_LSB);

	// sensor's frame is +x forward, +y left, +z up
	//  flip y & z to publish right handed with z down (x forward, y right, z down)
	x = accel_x * tX[0] + accel_y * tX[1] + accel_z * tX[2];
	y = accel_x * tY[0] + accel_y * tY[1] + accel_z * tY[2];
	z = accel_x * tZ[0] + accel_y * tZ[1] + accel_z * tZ[2];

	//PX4_WARN("x: %f | y: %f | z: %f", (double)x, (double)y ,(double)z);
	_px4_accel.update(timestamp_sample, x, y, z);

	return true;
}

} // namespace Bosch::BMI088::Accelerometer