VL53L0X.cpp 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/****************************************************************************
 *
 *   Copyright (c) 2018 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

#include "VL53L0X.hpp"

/* VL53L0X Registers addresses */
#define VHV_CONFIG_PAD_SCL_SDA_EXTSUP_HW_REG            0x89
#define MSRC_CONFIG_CONTROL_REG                         0x60
#define FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT_REG 0x44
#define SYSTEM_SEQUENCE_CONFIG_REG                      0x01
#define DYNAMIC_SPAD_REF_EN_START_OFFSET_REG            0x4F
#define DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD_REG         0x4E
#define GLOBAL_CONFIG_REF_EN_START_SELECT_REG           0xB6
#define GLOBAL_CONFIG_SPAD_ENABLES_REF_0_REG            0xB0
#define SYSTEM_INTERRUPT_CONFIG_GPIO_REG                0x0A
#define SYSTEM_SEQUENCE_CONFIG_REG                      0x01
#define SYSRANGE_START_REG                              0x00
#define RESULT_INTERRUPT_STATUS_REG                     0x13
#define SYSTEM_INTERRUPT_CLEAR_REG                      0x0B
#define GLOBAL_CONFIG_SPAD_ENABLES_REF_0_REG            0xB0
#define GPIO_HV_MUX_ACTIVE_HIGH_REG                     0x84
#define SYSTEM_INTERRUPT_CLEAR_REG                      0x0B
#define RESULT_RANGE_STATUS_REG                         0x14
#define VL53L0X_RA_IDENTIFICATION_MODEL_ID              0xC0
#define VL53L0X_IDENTIFICATION_MODEL_ID                 0xEEAA

#define VL53L0X_US                                      1000    // 1ms
#define VL53L0X_SAMPLE_RATE                             50000   // 50ms

#define VL53L0X_BUS_CLOCK                               400000 // 400kHz bus clock speed

VL53L0X::VL53L0X(I2CSPIBusOption bus_option, const int bus, const uint8_t rotation, int bus_frequency, int address) :
	I2C(DRV_DIST_DEVTYPE_VL53L0X, MODULE_NAME, bus, address, bus_frequency),
	I2CSPIDriver(MODULE_NAME, px4::device_bus_to_wq(get_device_id()), bus_option, bus),
	_px4_rangefinder(get_device_id(), rotation)
{
	// VL53L0X typical range 0-2 meters with 25 degree field of view
	_px4_rangefinder.set_min_distance(0.f);
	_px4_rangefinder.set_max_distance(2.f);
	_px4_rangefinder.set_fov(math::radians(25.f));

	// Allow 3 retries as the device typically misses the first measure attempts.
	I2C::_retries = 3;

	_px4_rangefinder.set_device_type(DRV_DIST_DEVTYPE_VL53L0X);
}

VL53L0X::~VL53L0X()
{
	// free perf counters
	perf_free(_sample_perf);
	perf_free(_comms_errors);
}

int VL53L0X::collect()
{
	// Read from the sensor.
	uint8_t val[2] {};
	perf_begin(_sample_perf);

	_collect_phase = false;

	const hrt_abstime timestamp_sample = hrt_absolute_time();

	if (transfer(nullptr, 0, &val[0], 2) != PX4_OK) {
		perf_count(_comms_errors);
		perf_end(_sample_perf);
		return PX4_ERROR;
	}

	perf_end(_sample_perf);

	uint16_t distance_mm = (val[0] << 8) | val[1];
	float distance_m = distance_mm / 1000.f;

	_px4_rangefinder.update(timestamp_sample, distance_m);

	return PX4_OK;
}

int VL53L0X::measure()
{
	uint8_t wait_for_measurement = 0;
	uint8_t system_start = 0;

	// Send the command to begin a measurement.
	const uint8_t cmd = RESULT_RANGE_STATUS_REG + 10;

	if (_new_measurement) {

		_new_measurement = false;

		writeRegister(0x80, 0x01);
		writeRegister(0xFF, 0x01);
		writeRegister(0x00, 0x00);
		writeRegister(0x91, _stop_variable);
		writeRegister(0x00, 0x01);
		writeRegister(0xFF, 0x00);
		writeRegister(0x80, 0x00);

		writeRegister(SYSRANGE_START_REG, 0x01);

		readRegister(SYSRANGE_START_REG, system_start);

		if ((system_start & 0x01) == 1) {
			ScheduleDelayed(VL53L0X_US);
			return PX4_OK;

		} else {
			_measurement_started = true;
		}
	}

	if (!_collect_phase && !_measurement_started) {

		readRegister(SYSRANGE_START_REG, system_start);

		if ((system_start & 0x01) == 1) {
			ScheduleDelayed(VL53L0X_US);
			return PX4_OK;

		} else {
			_measurement_started = true;
		}
	}

	readRegister(RESULT_INTERRUPT_STATUS_REG, wait_for_measurement);

	if ((wait_for_measurement & 0x07) == 0) {
		ScheduleDelayed(VL53L0X_US); // reschedule every 1 ms until measurement is ready
		return PX4_OK;
	}

	_collect_phase = true;

	int ret = transfer(&cmd, sizeof(cmd), nullptr, 0);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		DEVICE_LOG("i2c::transfer returned %d", ret);
		return ret;
	}

	return PX4_OK;
}

void VL53L0X::print_status()
{
	I2CSPIDriverBase::print_status();
	perf_print_counter(_comms_errors);
	perf_print_counter(_sample_perf);
}

int VL53L0X::probe()
{
	if (sensorInit() == PX4_OK) {
		return PX4_OK;
	}

	// Device not found on any address.
	return -EIO;
}

int VL53L0X::readRegister(const uint8_t reg_address, uint8_t &value)
{
	// Write register address to the sensor.
	int ret = transfer(&reg_address, sizeof(reg_address), nullptr, 0);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	// Read from the sensor.
	ret = transfer(nullptr, 0, &value, 1);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	return PX4_OK;
}

int VL53L0X::readRegisterMulti(const uint8_t reg_address, uint8_t *value, const uint8_t length)
{
	// Write register address to the sensor.
	int ret = transfer(&reg_address, 1, nullptr, 0);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	// Read from the sensor.
	ret = transfer(nullptr, 0, &value[0], length);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	return PX4_OK;
}

void VL53L0X::RunImpl()
{
	measure();

	if (_collect_phase) {

		_collect_phase = false;
		_new_measurement = true;

		collect();

		ScheduleDelayed(VL53L0X_SAMPLE_RATE);
	}
}

int VL53L0X::spadCalculations()
{
	uint8_t val = 0;
	uint8_t spad_count = 0;
	uint8_t ref_spad_map[6] = {};

	bool spad_type_is_aperture = false;

	writeRegister(0x80, 0x01);
	writeRegister(0xFF, 0x01);
	writeRegister(0x00, 0x00);
	writeRegister(0xFF, 0x06);

	readRegister(0x83, val);
	writeRegister(0x83, val | 0x04);

	writeRegister(0xFF, 0x07);
	writeRegister(0x81, 0x01);
	writeRegister(0x80, 0x01);
	writeRegister(0x94, 0x6b);
	writeRegister(0x83, 0x00);

	readRegister(0x83, val);

	while (val == 0x00) {
		readRegister(0x83, val);
	}

	writeRegister(0x83, 0x01);
	readRegister(0x92, val);

	spad_count = val & 0x7f;
	spad_type_is_aperture = (val >> 7) & 0x01;

	writeRegister(0x81, 0x00);
	writeRegister(0xFF, 0x06);

	readRegister(0x83, val);
	writeRegister(0x83, val  & ~0x04);

	writeRegister(0xFF, 0x01);
	writeRegister(0x00, 0x01);
	writeRegister(0xFF, 0x00);
	writeRegister(0x80, 0x00);

	readRegisterMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0_REG, &ref_spad_map[0], 6);

	writeRegister(0xFF, 0x01);
	writeRegister(DYNAMIC_SPAD_REF_EN_START_OFFSET_REG, 0x00);
	writeRegister(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD_REG, 0x2C);
	writeRegister(0xFF, 0x00);
	writeRegister(GLOBAL_CONFIG_REF_EN_START_SELECT_REG, 0xB4);

	uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0;
	uint8_t spads_enabled = 0;

	for (uint8_t i = 0; i < 48; i++) {
		if (i < first_spad_to_enable || spads_enabled == spad_count) {
			ref_spad_map[i / 8] &= ~(1 << (i % 8));

		} else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) {
			spads_enabled++;
		}
	}

	writeRegisterMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0_REG, &ref_spad_map[0], 6);

	sensorTuning();

	writeRegister(SYSTEM_INTERRUPT_CONFIG_GPIO_REG, 4);		// 4: GPIO interrupt on new data.
	readRegister(GPIO_HV_MUX_ACTIVE_HIGH_REG, val);

	writeRegister(GPIO_HV_MUX_ACTIVE_HIGH_REG, val & ~0x10);	// Active low.
	writeRegister(SYSTEM_INTERRUPT_CLEAR_REG, 0x01);
	writeRegister(SYSTEM_SEQUENCE_CONFIG_REG, 0xE8);
	writeRegister(SYSTEM_SEQUENCE_CONFIG_REG, 0x01);

	singleRefCalibration(0x40);

	writeRegister(SYSTEM_SEQUENCE_CONFIG_REG, 0x02);

	singleRefCalibration(0x00);

	writeRegister(SYSTEM_SEQUENCE_CONFIG_REG, 0xE8);		// Restore config.

	return OK;
}

int VL53L0X::sensorInit()
{
	uint8_t val = 0;

	// I2C at 2.8V on sensor side of level shifter
	int ret = PX4_OK;
	ret |= readRegister(VHV_CONFIG_PAD_SCL_SDA_EXTSUP_HW_REG, val);

	if (ret != PX4_OK) {
		return PX4_ERROR;
	}

	ret |= writeRegister(VHV_CONFIG_PAD_SCL_SDA_EXTSUP_HW_REG, val | 0x01);

	// set I2C to standard mode
	ret |= writeRegister(0x88, 0x00);
	ret |= writeRegister(0x80, 0x01);
	ret |= writeRegister(0xFF, 0x01);
	ret |= writeRegister(0x00, 0x00);
	ret |= readRegister(0x91, val);
	ret |= writeRegister(0x00, 0x01);
	ret |= writeRegister(0xFF, 0x00);
	ret |= writeRegister(0x80, 0x00);

	if (ret != PX4_OK) {
		return PX4_ERROR;
	}

	_stop_variable = val;

	// Disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
	readRegister(MSRC_CONFIG_CONTROL_REG, val);
	writeRegister(MSRC_CONFIG_CONTROL_REG, val | 0x12);

	// Set signal rate limit to 0.1
	float rate_limit = 0.1 * 65536;
	uint8_t rate_limit_split[2] = {};

	rate_limit_split[0] = (((uint16_t)rate_limit) >> 8);
	rate_limit_split[1] = (uint16_t)rate_limit;

	writeRegisterMulti(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT_REG, &rate_limit_split[0], 2);
	writeRegister(SYSTEM_SEQUENCE_CONFIG_REG, 0xFF);

	spadCalculations();

	return PX4_OK;
}

int VL53L0X::sensorTuning()
{
	// Magic register settings taken from the ST Micro API.
	writeRegister(0xFF, 0x01);
	writeRegister(0x00, 0x00);
	writeRegister(0xFF, 0x00);
	writeRegister(0x09, 0x00);
	writeRegister(0x10, 0x00);
	writeRegister(0x11, 0x00);
	writeRegister(0x24, 0x01);
	writeRegister(0x25, 0xFF);
	writeRegister(0x75, 0x00);
	writeRegister(0xFF, 0x01);
	writeRegister(0x4E, 0x2C);
	writeRegister(0x48, 0x00);
	writeRegister(0x30, 0x20);
	writeRegister(0xFF, 0x00);
	writeRegister(0x30, 0x09);
	writeRegister(0x54, 0x00);
	writeRegister(0x31, 0x04);
	writeRegister(0x32, 0x03);
	writeRegister(0x40, 0x83);
	writeRegister(0x46, 0x25);
	writeRegister(0x60, 0x00);
	writeRegister(0x27, 0x00);
	writeRegister(0x50, 0x06);
	writeRegister(0x51, 0x00);
	writeRegister(0x52, 0x96);
	writeRegister(0x56, 0x08);
	writeRegister(0x57, 0x30);
	writeRegister(0x61, 0x00);
	writeRegister(0x62, 0x00);
	writeRegister(0x64, 0x00);
	writeRegister(0x65, 0x00);
	writeRegister(0x66, 0xA0);
	writeRegister(0xFF, 0x01);
	writeRegister(0x22, 0x32);
	writeRegister(0x47, 0x14);
	writeRegister(0x49, 0xFF);
	writeRegister(0x4A, 0x00);
	writeRegister(0xFF, 0x00);
	writeRegister(0x7A, 0x0A);
	writeRegister(0x7B, 0x00);
	writeRegister(0x78, 0x21);
	writeRegister(0xFF, 0x01);
	writeRegister(0x23, 0x34);
	writeRegister(0x42, 0x00);
	writeRegister(0x44, 0xFF);
	writeRegister(0x45, 0x26);
	writeRegister(0x46, 0x05);
	writeRegister(0x40, 0x40);
	writeRegister(0x0E, 0x06);
	writeRegister(0x20, 0x1A);
	writeRegister(0x43, 0x40);
	writeRegister(0xFF, 0x00);
	writeRegister(0x34, 0x03);
	writeRegister(0x35, 0x44);
	writeRegister(0xFF, 0x01);
	writeRegister(0x31, 0x04);
	writeRegister(0x4B, 0x09);
	writeRegister(0x4C, 0x05);
	writeRegister(0x4D, 0x04);
	writeRegister(0xFF, 0x00);
	writeRegister(0x44, 0x00);
	writeRegister(0x45, 0x20);
	writeRegister(0x47, 0x08);
	writeRegister(0x48, 0x28);
	writeRegister(0x67, 0x00);
	writeRegister(0x70, 0x04);
	writeRegister(0x71, 0x01);
	writeRegister(0x72, 0xFE);
	writeRegister(0x76, 0x00);
	writeRegister(0x77, 0x00);
	writeRegister(0xFF, 0x01);
	writeRegister(0x0D, 0x01);
	writeRegister(0xFF, 0x00);
	writeRegister(0x80, 0x01);
	writeRegister(0x01, 0xF8);
	writeRegister(0xFF, 0x01);
	writeRegister(0x8E, 0x01);
	writeRegister(0x00, 0x01);
	writeRegister(0xFF, 0x00);
	writeRegister(0x80, 0x00);

	return PX4_OK;
}

int VL53L0X::singleRefCalibration(const uint8_t byte)
{
	uint8_t val = 0;

	writeRegister(SYSRANGE_START_REG, byte | 0x01);         // VL53L0X_REG_SYSRANGE_MODE_START_STOP
	readRegister(RESULT_INTERRUPT_STATUS_REG, val);

	while ((val & 0x07) == 0) {
		readRegister(RESULT_INTERRUPT_STATUS_REG, val);
	}

	writeRegister(SYSTEM_INTERRUPT_CLEAR_REG, 0x01);
	writeRegister(SYSRANGE_START_REG, 0x00);

	return PX4_OK;
}

void VL53L0X::start()
{
	// Schedule the first cycle.
	ScheduleNow();
}

int VL53L0X::writeRegister(const uint8_t reg_address, const uint8_t value)
{
	uint8_t cmd[2] {reg_address, value};
	int ret = transfer(&cmd[0], 2, nullptr, 0);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	return PX4_OK;
}

int VL53L0X::writeRegisterMulti(const uint8_t reg_address, const uint8_t *value, const uint8_t length)
{
	if (length > 6 || length < 1) {
		DEVICE_LOG("VL53L0X::writeRegisterMulti length out of range");
		return PX4_ERROR;
	}

	/* be careful: for uint16_t to send first higher byte */
	uint8_t cmd[7] {};
	cmd[0] = reg_address;

	memcpy(&cmd[1], &value[0], length);

	int ret = transfer(&cmd[0], length + 1, nullptr, 0);

	if (ret != PX4_OK) {
		perf_count(_comms_errors);
		return ret;
	}

	return PX4_OK;
}

void VL53L0X::print_usage()
{
	PRINT_MODULE_USAGE_NAME("vl53l0x", "driver");
	PRINT_MODULE_USAGE_SUBCATEGORY("distance_sensor");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_PARAMS_I2C_SPI_DRIVER(true, false);
	PRINT_MODULE_USAGE_PARAM_INT('R', 25, 0, 25, "Sensor rotation - downward facing by default", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
}

I2CSPIDriverBase *VL53L0X::instantiate(const BusCLIArguments &cli, const BusInstanceIterator &iterator,
				       int runtime_instance)
{
	VL53L0X *instance = new VL53L0X(iterator.configuredBusOption(), iterator.bus(), cli.orientation, cli.bus_frequency);

	if (instance == nullptr) {
		PX4_ERR("alloc failed");
		return nullptr;
	}

	if (instance->init() != PX4_OK) {
		delete instance;
		return nullptr;
	}

	instance->start();
	return instance;
}

extern "C" __EXPORT int vl53l0x_main(int argc, char *argv[])
{
	int ch;
	using ThisDriver = VL53L0X;
	BusCLIArguments cli{true, false};
	cli.default_i2c_frequency = 400000;
	cli.orientation = distance_sensor_s::ROTATION_DOWNWARD_FACING;

	while ((ch = cli.getopt(argc, argv, "R:")) != EOF) {
		switch (ch) {
		case 'R':
			cli.orientation = atoi(cli.optarg());
			break;
		}
	}

	const char *verb = cli.optarg();

	if (!verb) {
		ThisDriver::print_usage();
		return -1;
	}

	BusInstanceIterator iterator(MODULE_NAME, cli, DRV_DIST_DEVTYPE_VL53L0X);

	if (!strcmp(verb, "start")) {
		return ThisDriver::module_start(cli, iterator);
	}

	if (!strcmp(verb, "stop")) {
		return ThisDriver::module_stop(iterator);
	}

	if (!strcmp(verb, "status")) {
		return ThisDriver::module_status(iterator);
	}

	ThisDriver::print_usage();
	return -1;
}