adc.cpp
7.06 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/****************************************************************************
*
* Copyright (C) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <board_config.h>
#include <stdint.h>
#include <drivers/drv_adc.h>
#include <drivers/drv_hrt.h>
#include <px4_arch/adc.h>
#include <stm32_adc.h>
#include <stm32_gpio.h>
/*
* Register accessors.
* For now, no reason not to just use ADC1.
*/
#define REG(base, _reg) (*(volatile uint32_t *)((base) + (_reg)))
#define rSR(base) REG((base), STM32_ADC_SR_OFFSET)
#define rCR1(base) REG((base), STM32_ADC_CR1_OFFSET)
#define rCR2(base) REG((base), STM32_ADC_CR2_OFFSET)
#define rSMPR1(base) REG((base), STM32_ADC_SMPR1_OFFSET)
#define rSMPR2(base) REG((base), STM32_ADC_SMPR2_OFFSET)
#define rJOFR1(base) REG((base), STM32_ADC_JOFR1_OFFSET)
#define rJOFR2(base) REG((base), STM32_ADC_JOFR2_OFFSET)
#define rJOFR3(base) REG((base), STM32_ADC_JOFR3_OFFSET)
#define rJOFR4(base) REG((base), STM32_ADC_JOFR4_OFFSET)
#define rHTR(base) REG((base), STM32_ADC_HTR_OFFSET)
#define rLTR(base) REG((base), STM32_ADC_LTR_OFFSET)
#define rSQR1(base) REG((base), STM32_ADC_SQR1_OFFSET)
#define rSQR2(base) REG((base), STM32_ADC_SQR2_OFFSET)
#define rSQR3(base) REG((base), STM32_ADC_SQR3_OFFSET)
#define rJSQR(base) REG((base), STM32_ADC_JSQR_OFFSET)
#define rJDR1(base) REG((base), STM32_ADC_JDR1_OFFSET)
#define rJDR2(base) REG((base), STM32_ADC_JDR2_OFFSET)
#define rJDR3(base) REG((base), STM32_ADC_JDR3_OFFSET)
#define rJDR4(base) REG((base), STM32_ADC_JDR4_OFFSET)
#define rDR(base) REG((base), STM32_ADC_DR_OFFSET)
#ifdef STM32_ADC_CCR
# define rCCR(base) REG((STM32_ADCCMN_BASE), STM32_ADC_CCR_OFFSET)
/* Assuming VDC 2.4 - 3.6 */
#define ADC_MAX_FADC 36000000
# if STM32_PCLK2_FREQUENCY/2 <= ADC_MAX_FADC
# define ADC_CCR_ADCPRE_DIV ADC_CCR_ADCPRE_DIV2
# elif STM32_PCLK2_FREQUENCY/4 <= ADC_MAX_FADC
# define ADC_CCR_ADCPRE_DIV ADC_CCR_ADCPRE_DIV4
# elif STM32_PCLK2_FREQUENCY/6 <= ADC_MAX_FADC
# define ADC_CCR_ADCPRE_DIV ADC_CCR_ADCPRE_DIV6
# elif STM32_PCLK2_FREQUENCY/8 <= ADC_MAX_FADC
# define ADC_CCR_ADCPRE_DIV ADC_CCR_ADCPRE_DIV8
# else
# error "ADC PCLK2 too high - no divisor found "
# endif
#endif
int px4_arch_adc_init(uint32_t base_address)
{
/* Perform ADC init once per ADC */
static uint32_t once[SYSTEM_ADC_COUNT] {};
uint32_t *free = nullptr;
for (uint32_t i = 0; i < SYSTEM_ADC_COUNT; i++) {
if (once[i] == base_address) {
/* This one was done already */
return OK;
}
/* Use first free slot */
if (free == nullptr && once[i] == 0) {
free = &once[i];
}
}
if (free == nullptr) {
/* ADC misconfigured SYSTEM_ADC_COUNT too small */;
PANIC();
}
*free = base_address;
/* do calibration if supported */
#ifdef ADC_CR2_CAL
rCR2(base_address) |= ADC_CR2_CAL;
px4_usleep(100);
if (rCR2(base_address) & ADC_CR2_CAL) {
return -1;
}
#endif
/* arbitrarily configure all channels for 55 cycle sample time */
rSMPR1(base_address) = 0b00000011011011011011011011011011;
rSMPR2(base_address) = 0b00011011011011011011011011011011;
/* XXX for F2/4, might want to select 12-bit mode? */
rCR1(base_address) = 0;
/* enable the temperature sensor / Vrefint channel if supported*/
rCR2(base_address) =
#ifdef ADC_CR2_TSVREFE
/* enable the temperature sensor in CR2 */
ADC_CR2_TSVREFE |
#endif
0;
/* Soc have CCR */
#ifdef STM32_ADC_CCR
# ifdef ADC_CCR_TSVREFE
/* enable temperature sensor in CCR */
rCCR(base_address) = ADC_CCR_TSVREFE | ADC_CCR_ADCPRE_DIV;
# else
rCCR(base_address) = ADC_CCR_ADCPRE_DIV;
# endif
#endif
/* configure for a single-channel sequence */
rSQR1(base_address) = 0;
rSQR2(base_address) = 0;
rSQR3(base_address) = 0; /* will be updated with the channel each tick */
/* power-cycle the ADC and turn it on */
rCR2(base_address) &= ~ADC_CR2_ADON;
px4_usleep(10);
rCR2(base_address) |= ADC_CR2_ADON;
px4_usleep(10);
rCR2(base_address) |= ADC_CR2_ADON;
px4_usleep(10);
/* kick off a sample and wait for it to complete */
hrt_abstime now = hrt_absolute_time();
rCR2(base_address) |= ADC_CR2_SWSTART;
while (!(rSR(base_address) & ADC_SR_EOC)) {
/* don't wait for more than 500us, since that means something broke - should reset here if we see this */
if ((hrt_absolute_time() - now) > 500) {
return -1;
}
}
/* Read out result, clear EOC */
(void) rDR(base_address);
return 0;
}
void px4_arch_adc_uninit(uint32_t base_address)
{
// nothing to do
}
uint32_t px4_arch_adc_sample(uint32_t base_address, unsigned channel)
{
irqstate_t flags = px4_enter_critical_section();
/* clear any previous EOC */
if (rSR(base_address) & ADC_SR_EOC) {
rSR(base_address) &= ~ADC_SR_EOC;
}
/* run a single conversion right now - should take about 60 cycles (a few microseconds) max */
rSQR3(base_address) = channel;
rCR2(base_address) |= ADC_CR2_SWSTART;
/* wait for the conversion to complete */
const hrt_abstime now = hrt_absolute_time();
while (!(rSR(base_address) & ADC_SR_EOC)) {
/* don't wait for more than 50us, since that means something broke - should reset here if we see this */
if ((hrt_absolute_time() - now) > 50) {
px4_leave_critical_section(flags);
return UINT32_MAX;
}
}
/* read the result and clear EOC */
uint32_t result = rDR(base_address);
px4_leave_critical_section(flags);
return result;
}
float px4_arch_adc_reference_v()
{
return BOARD_ADC_POS_REF_V; // TODO: provide true vref
}
uint32_t px4_arch_adc_temp_sensor_mask()
{
return 1 << PX4_ADC_INTERNAL_TEMP_SENSOR_CHANNEL;
}
uint32_t px4_arch_adc_dn_fullcount()
{
return 1 << 12; // 12 bit ADC
}