hrt.c
24.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/****************************************************************************
*
* Copyright (c) 2016-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file drv_hrt.c
* Author: Peter van der Perk <peter.vanderperk@nxp.com>
* David Sidrane <david_s5@nscdg.com>
*
* High-resolution timer callouts and timekeeping.
*
* This can use any S32K FTM timer.
*
* Note that really, this could use systick too, but that's
* monopolised by NuttX and stealing it would just be awkward.
*
* We don't use the NuttX S32K driver per se; rather, we
* claim the timer and then drive it directly.
*/
#include <px4_platform_common/px4_config.h>
#include <systemlib/px4_macros.h>
#include <lib/perf/perf_counter.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include <sys/types.h>
#include <stdbool.h>
#include <assert.h>
#include <debug.h>
#include <time.h>
#include <queue.h>
#include <errno.h>
#include <string.h>
#include <board_config.h>
#include <drivers/drv_hrt.h>
#include "hardware/s32k1xx_ftm.h"
#undef PPM_DEBUG
#ifdef CONFIG_DEBUG_HRT
# define hrtinfo _info
#else
# define hrtinfo(x...)
#endif
#define CAT3_(A, B, C) A##B##C
#define CAT3(A, B, C) CAT3_(A, B, C)
#ifdef HRT_TIMER
#define HRT_TIMER_FREQ 1000000
/* HRT configuration */
#define HRT_TIMER_CLOCK BOARD_FTM_FREQ /* The input clock frequency to the FTM block */
#define HRT_TIMER_BASE CAT(CAT(S32K1XX_FTM, HRT_TIMER), _BASE) /* The Base address of the FTM */
/* The FTM Interrupt vector */
#if defined(CONFIG_ARCH_CHIP_S32K14X)
# if (HRT_TIMER_CHANNEL == 0) || (HRT_TIMER_CHANNEL == 1)
# define HRT_TIMER_VECTOR CAT(CAT(S32K1XX_IRQ_FTM, HRT_TIMER), _CH0_1)
# elif (HRT_TIMER_CHANNEL == 2) || (HRT_TIMER_CHANNEL == 3)
# define HRT_TIMER_VECTOR CAT(CAT(S32K1XX_IRQ_FTM, HRT_TIMER), _CH2_3)
# elif (HRT_TIMER_CHANNEL == 4) || (HRT_TIMER_CHANNEL == 5)
# define HRT_TIMER_VECTOR CAT(CAT(S32K1XX_IRQ_FTM, HRT_TIMER), _CH4_5)
# elif (HRT_TIMER_CHANNEL == 6) || (HRT_TIMER_CHANNEL == 7)
# define HRT_TIMER_VECTOR CAT(CAT(S32K1XX_IRQ_FTM, HRT_TIMER), _CH6_7)
# endif
#elif defined(CONFIG_ARCH_CHIP_S32K11X)
# define HRT_TIMER_VECTOR CAT(CAT(S32K1XX_IRQ_FTM, HRT_TIMER), _CH0_7)
#endif
#define LOG_1(n) (((n) >= 2) ? 1 : 0)
#define LOG_2(n) (((n) >= 1<<2) ? (2 + LOG_1((n)>>2)) : LOG_1(n))
#if HRT_TIMER == 0 && defined(CONFIG_S32K1XX_FTM0)
# error must not set CONFIG_S32K1XX_FTM0=y and HRT_TIMER=0
#elif HRT_TIMER == 1 && defined(CONFIG_S32K1XX_FTM1)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=1
#elif HRT_TIMER == 2 && defined(CONFIG_S32K1XX_FTM2)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=2
#elif HRT_TIMER == 3 && defined(CONFIG_S32K1XX_FTM3)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=3
#elif HRT_TIMER == 4 && defined(CONFIG_S32K1XX_FTM4)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=4
#elif HRT_TIMER == 5 && defined(CONFIG_S32K1XX_FTM5)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=5
#elif HRT_TIMER == 6 && defined(CONFIG_S32K1XX_FTM6)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=6
#elif HRT_TIMER == 7 && defined(CONFIG_S32K1XX_FTM7)
# error must not set CONFIG_S32K1XX_FTM1=y and HRT_TIMER=7
#endif
/*
* HRT clock must be a multiple of 1MHz greater than 1MHz
*/
#if (HRT_TIMER_CLOCK % HRT_TIMER_FREQ) != 0
# error HRT_TIMER_CLOCK must be a multiple of 1MHz
#endif
#if HRT_TIMER_CLOCK <= HRT_TIMER_FREQ
# error HRT_TIMER_CLOCK must be greater than 1MHz
#endif
/**
* Minimum/maximum deadlines.
*
* These are suitable for use with a 16-bit timer/counter clocked
* at 1MHz. The high-resolution timer need only guarantee that it
* not wrap more than once in the 50ms period for absolute time to
* be consistently maintained.
*
* The minimum deadline must be such that the time taken between
* reading a time and writing a deadline to the timer cannot
* result in missing the deadline.
*/
#define HRT_INTERVAL_MIN 50
#define HRT_INTERVAL_MAX 50000
/*
* Period of the free-running counter, in microseconds.
*/
#define HRT_COUNTER_PERIOD 65536
/*
* Scaling factor(s) for the free-running counter; convert an input
* in counts to a time in microseconds.
*/
#define HRT_COUNTER_SCALE(_c) (_c)
/* Register accessors */
#define _REG(_addr) (*(volatile uint32_t *)(_addr))
/* Timer register accessors */
#define REG(_reg) _REG(HRT_TIMER_BASE + (_reg))
#define rSC REG(S32K1XX_FTM_SC_OFFSET)
#define rCNT REG(S32K1XX_FTM_CNT_OFFSET)
#define rMOD REG(S32K1XX_FTM_MOD_OFFSET)
#define rC0SC REG(S32K1XX_FTM_C0SC_OFFSET)
#define rC0V REG(S32K1XX_FTM_C0V_OFFSET)
#define rC1SC REG(S32K1XX_FTM_C1SC_OFFSET)
#define rC1V REG(S32K1XX_FTM_C1V_OFFSET)
#define rC2SC REG(S32K1XX_FTM_C2SC_OFFSET)
#define rC2V REG(S32K1XX_FTM_C2V_OFFSET)
#define rC3SC REG(S32K1XX_FTM_C3SC_OFFSET)
#define rC3V REG(S32K1XX_FTM_C3V_OFFSET)
#define rC4SC REG(S32K1XX_FTM_C4SC_OFFSET)
#define rC4V REG(S32K1XX_FTM_C4V_OFFSET)
#define rC5SC REG(S32K1XX_FTM_C5SC_OFFSET)
#define rC5V REG(S32K1XX_FTM_C5V_OFFSET)
#define rC6SC REG(S32K1XX_FTM_C6SC_OFFSET)
#define rC6V REG(S32K1XX_FTM_C6V_OFFSET)
#define rC7SC REG(S32K1XX_FTM_C7SC_OFFSET)
#define rC7V REG(S32K1XX_FTM_C7V_OFFSET)
#define rSTATUS REG(S32K1XX_FTM_STATUS_OFFSET)
#define rCOMBINE REG(S32K1XX_FTM_COMBINE_OFFSET)
#define rPOL REG(S32K1XX_FTM_POL_OFFSET)
#define rFILTER REG(S32K1XX_FTM_FILTER_OFFSET)
#define rQDCTRL REG(S32K1XX_FTM_QDCTRL_OFFSET)
#define rCONF REG(S32K1XX_FTM_CONF_OFFSET)
/*
* Specific registers and bits used by HRT sub-functions
*/
# define rCNV_HRT CAT3(rC, HRT_TIMER_CHANNEL, V) /* Channel Value Register used by HRT */
# define rCNSC_HRT CAT3(rC, HRT_TIMER_CHANNEL, SC) /* Channel Status and Control Register used by HRT */
# define STATUS_HRT CAT3(FTM_STATUS_CH, HRT_TIMER_CHANNEL, F) /* Capture and Compare Status Register used by HRT */
#if HRT_TIMER_CHANNEL > 7
# error HRT_TIMER_CHANNEL must be a value between 0 and 7
#endif
/*
* Queue of callout entries.
*/
static struct sq_queue_s callout_queue;
/* latency baseline (last compare value applied) */
static uint16_t latency_baseline;
/* timer count at interrupt (for latency purposes) */
static uint16_t latency_actual;
/* latency histogram */
const uint16_t latency_bucket_count = LATENCY_BUCKET_COUNT;
const uint16_t latency_buckets[LATENCY_BUCKET_COUNT] = { 1, 2, 5, 10, 20, 50, 100, 1000 };
__EXPORT uint32_t latency_counters[LATENCY_BUCKET_COUNT + 1];
/* timer-specific functions */
static void hrt_tim_init(void);
static int hrt_tim_isr(int irq, void *context, void *args);
static void hrt_latency_update(void);
/* callout list manipulation */
static void hrt_call_internal(struct hrt_call *entry, hrt_abstime deadline, hrt_abstime interval, hrt_callout callout,
void *arg);
static void hrt_call_enter(struct hrt_call *entry);
static void hrt_call_reschedule(void);
static void hrt_call_invoke(void);
#if !defined(HRT_PPM_CHANNEL)
/* When HRT_PPM_CHANNEL provide null operations */
# define STATUS_PPM 0
# define POL_PPM 0
# define CNSC_PPM 0
#else
/* Specific registers and bits used by PPM sub-functions */
#define rCNV_PPM CAT3(rC, HRT_PPM_CHANNEL, V) /* Channel Value Register used by PPM */
#define rCNSC_PPM CAT3(rC, HRT_PPM_CHANNEL, SC) /* Channel Status and Control Register used by PPM */
#define STATUS_PPM CAT3(FTM_STATUS_CH, HRT_PPM_CHANNEL, F) /* Capture and Compare Status Register used by PPM */
#define CNSC_PPM (FTM_CNSC_CHIE | FTM_CNSC_ELSB | FTM_CNSC_ELSA) /* Input Capture configuration both Edges, interrupt */
/* Sanity checking */
#if HRT_PPM_CHANNEL > 7
# error HRT_PPM_CHANNEL must be a value between 0 and 7
#endif
# if (HRT_PPM_CHANNEL == HRT_TIMER_CHANNEL)
# error HRT_PPM_CHANNEL must not be the same as HRT_TIMER_CHANNEL
# endif
/*
* PPM decoder tuning parameters
*/
# define PPM_MIN_PULSE_WIDTH 200 /**< minimum width of a valid first pulse */
# define PPM_MAX_PULSE_WIDTH 600 /**< maximum width of a valid first pulse */
# define PPM_MIN_CHANNEL_VALUE 800 /**< shortest valid channel signal */
# define PPM_MAX_CHANNEL_VALUE 2200 /**< longest valid channel signal */
# define PPM_MIN_START 2300 /**< shortest valid start gap (only 2nd part of pulse) */
/* decoded PPM buffer */
# define PPM_MIN_CHANNELS 5
# define PPM_MAX_CHANNELS 20
/** Number of same-sized frames required to 'lock' */
# define PPM_CHANNEL_LOCK 4 /**< should be less than the input timeout */
__EXPORT uint16_t ppm_buffer[PPM_MAX_CHANNELS];
__EXPORT uint16_t ppm_frame_length = 0;
__EXPORT unsigned ppm_decoded_channels = 0;
__EXPORT uint64_t ppm_last_valid_decode = 0;
# if defined(PPM_DEBUG)
#define EDGE_BUFFER_COUNT 32
/* PPM edge history */
__EXPORT uint16_t ppm_edge_history[EDGE_BUFFER_COUNT];
unsigned ppm_edge_next;
/* PPM pulse history */
__EXPORT uint16_t ppm_pulse_history[EDGE_BUFFER_COUNT];
unsigned ppm_pulse_next;
# endif
static uint16_t ppm_temp_buffer[PPM_MAX_CHANNELS];
/** PPM decoder state machine */
struct {
uint16_t last_edge; /**< last capture time */
uint16_t last_mark; /**< last significant edge */
uint16_t frame_start; /**< the frame width */
unsigned next_channel; /**< next channel index */
enum {
UNSYNCH = 0,
ARM,
ACTIVE,
INACTIVE
} phase;
} ppm;
static void hrt_ppm_decode(uint32_t status);
#endif /* HRT_PPM_CHANNEL */
/**
* Initialize the timer we are going to use.
*/
static void hrt_tim_init(void)
{
/* FTM clock should be configured in s32k1xx_periphclocks.c */
/* claim our interrupt vector */
irq_attach(HRT_TIMER_VECTOR, hrt_tim_isr, NULL);
/* disable and configure the timer */
rSC = FTM_SC_TOF;
rCNT = 0;
rMOD = HRT_COUNTER_PERIOD - 1;
rCNSC_HRT = (FTM_CNSC_CHF | FTM_CNSC_CHIE | FTM_CNSC_MSA);
#ifdef HRT_PPM_CHANNEL
rCNSC_PPM = (FTM_CNSC_CHF | CNSC_PPM);
#endif
rCOMBINE = 0;
rPOL = 0;
rFILTER = 0;
rQDCTRL = 0;
rCONF = 0x03 << FTM_CONF_BDMMODE_SHIFT; /* FTM continues when chip is in debug mode */
/* set an initial capture a little ways off */
#ifdef HRT_PPM_CHANNEL
rCNV_PPM = 0;
#endif
rCNV_HRT = 1000;
/* Use external clock source (selected in periphclocks.c) and enable the timer. Set prescaler for HRT_TIMER_FREQ */
rSC |= (FTM_SC_TOIE | FTM_SC_CLKS_EXTCLK |
(LOG_2(HRT_TIMER_CLOCK / HRT_TIMER_FREQ) << FTM_SC_PS_SHIFT
& FTM_SC_PS_MASK));
/* enable interrupts */
up_enable_irq(HRT_TIMER_VECTOR);
}
#ifdef HRT_PPM_CHANNEL
/**
* Handle the PPM decoder state machine.
*/
static void hrt_ppm_decode(uint32_t status)
{
uint16_t count = rCNV_PPM;
uint16_t width;
uint16_t interval;
unsigned i;
/* how long since the last edge? - this handles counter wrapping implicitly. */
width = count - ppm.last_edge;
#if PPM_DEBUG
ppm_edge_history[ppm_edge_next++] = width;
if (ppm_edge_next >= EDGE_BUFFER_COUNT) {
ppm_edge_next = 0;
}
#endif
/*
* if this looks like a start pulse, then push the last set of values
* and reset the state machine
*/
if (width >= PPM_MIN_START) {
/*
* If the number of channels changes unexpectedly, we don't want
* to just immediately jump on the new count as it may be a result
* of noise or dropped edges. Instead, take a few frames to settle.
*/
if (ppm.next_channel != ppm_decoded_channels) {
static unsigned new_channel_count;
static unsigned new_channel_holdoff;
if (new_channel_count != ppm.next_channel) {
/* start the lock counter for the new channel count */
new_channel_count = ppm.next_channel;
new_channel_holdoff = PPM_CHANNEL_LOCK;
} else if (new_channel_holdoff > 0) {
/* this frame matched the last one, decrement the lock counter */
new_channel_holdoff--;
} else {
/* we have seen PPM_CHANNEL_LOCK frames with the new count, accept it */
ppm_decoded_channels = new_channel_count;
new_channel_count = 0;
}
} else {
/* frame channel count matches expected, let's use it */
if (ppm.next_channel >= PPM_MIN_CHANNELS) {
for (i = 0; i < ppm.next_channel; i++) {
ppm_buffer[i] = ppm_temp_buffer[i];
}
ppm_last_valid_decode = hrt_absolute_time();
}
}
/* reset for the next frame */
ppm.next_channel = 0;
/* next edge is the reference for the first channel */
ppm.phase = ARM;
ppm.last_edge = count;
return;
}
switch (ppm.phase) {
case UNSYNCH:
/* we are waiting for a start pulse - nothing useful to do here */
break;
case ARM:
/* we expect a pulse giving us the first mark */
if (width < PPM_MIN_PULSE_WIDTH || width > PPM_MAX_PULSE_WIDTH) {
goto error; /* pulse was too short or too long */
}
/* record the mark timing, expect an inactive edge */
ppm.last_mark = ppm.last_edge;
/* frame length is everything including the start gap */
ppm_frame_length = (uint16_t)(ppm.last_edge - ppm.frame_start);
ppm.frame_start = ppm.last_edge;
ppm.phase = ACTIVE;
break;
case INACTIVE:
/* we expect a short pulse */
if (width < PPM_MIN_PULSE_WIDTH || width > PPM_MAX_PULSE_WIDTH) {
goto error; /* pulse was too short or too long */
}
/* this edge is not interesting, but now we are ready for the next mark */
ppm.phase = ACTIVE;
break;
case ACTIVE:
/* determine the interval from the last mark */
interval = count - ppm.last_mark;
ppm.last_mark = count;
#if PPM_DEBUG
ppm_pulse_history[ppm_pulse_next++] = interval;
if (ppm_pulse_next >= EDGE_BUFFER_COUNT) {
ppm_pulse_next = 0;
}
#endif
/* if the mark-mark timing is out of bounds, abandon the frame */
if ((interval < PPM_MIN_CHANNEL_VALUE) || (interval > PPM_MAX_CHANNEL_VALUE)) {
goto error;
}
/* if we have room to store the value, do so */
if (ppm.next_channel < PPM_MAX_CHANNELS) {
ppm_temp_buffer[ppm.next_channel++] = interval;
}
ppm.phase = INACTIVE;
break;
}
ppm.last_edge = count;
return;
/* the state machine is corrupted; reset it */
error:
/* we don't like the state of the decoder, reset it and try again */
ppm.phase = UNSYNCH;
ppm_decoded_channels = 0;
}
#endif /* HRT_PPM_CHANNEL */
/**
* Handle the compare interrupt by calling the callout dispatcher
* and then re-scheduling the next deadline.
*/
static int
hrt_tim_isr(int irq, void *context, void *arg)
{
/* grab the timer for latency tracking purposes */
latency_actual = rCNT;
/* copy interrupt status */
uint32_t status = rSTATUS;
/* ack the interrupts we just read */
rSTATUS = 0x00;
#ifdef HRT_PPM_CHANNEL
/* was this a PPM edge? */
if (status & (STATUS_PPM)) {
rCNSC_PPM = rCNSC_PPM & ~(FTM_SC_RF);
hrt_ppm_decode(status);
}
#endif
/* was this a timer tick? */
if (status & STATUS_HRT) {
rCNSC_HRT = rCNSC_HRT & ~(FTM_SC_RF);
/* do latency calculations */
hrt_latency_update();
/* run any callouts that have met their deadline */
hrt_call_invoke();
/* and schedule the next interrupt */
hrt_call_reschedule();
}
return OK;
}
/**
* Fetch a never-wrapping absolute time value in microseconds from
* some arbitrary epoch shortly after system start.
*/
hrt_abstime
hrt_absolute_time(void)
{
hrt_abstime abstime;
uint32_t count;
irqstate_t flags;
/*
* Counter state. Marked volatile as they may change
* inside this routine but outside the irqsave/restore
* pair. Discourage the compiler from moving loads/stores
* to these outside of the protected range.
*/
static volatile hrt_abstime base_time;
static volatile uint32_t last_count;
/* prevent re-entry */
flags = px4_enter_critical_section();
/* get the current counter value */
count = rCNT;
/*
* Determine whether the counter has wrapped since the
* last time we're called.
*
* This simple test is sufficient due to the guarantee that
* we are always called at least once per counter period.
*/
if (count < last_count) {
base_time += HRT_COUNTER_PERIOD;
}
/* save the count for next time */
last_count = count;
/* compute the current time */
abstime = HRT_COUNTER_SCALE(base_time + count);
px4_leave_critical_section(flags);
return abstime;
}
/**
* Convert a timespec to absolute time
*/
hrt_abstime
ts_to_abstime(const struct timespec *ts)
{
hrt_abstime result;
result = (hrt_abstime)(ts->tv_sec) * 1000000;
result += ts->tv_nsec / 1000;
return result;
}
/**
* Convert absolute time to a timespec.
*/
void
abstime_to_ts(struct timespec *ts, hrt_abstime abstime)
{
ts->tv_sec = abstime / 1000000;
abstime -= ts->tv_sec * 1000000;
ts->tv_nsec = abstime * 1000;
}
/**
* Compare a time value with the current time as atomic operation.
*/
hrt_abstime
hrt_elapsed_time_atomic(const volatile hrt_abstime *then)
{
irqstate_t flags = px4_enter_critical_section();
hrt_abstime delta = hrt_absolute_time() - *then;
px4_leave_critical_section(flags);
return delta;
}
/**
* Store the absolute time in an interrupt-safe fashion
*/
void
hrt_store_absolute_time(volatile hrt_abstime *t)
{
irqstate_t flags = px4_enter_critical_section();
*t = hrt_absolute_time();
px4_leave_critical_section(flags);
}
/**
* Initialize the high-resolution timing module.
*/
void
hrt_init(void)
{
sq_init(&callout_queue);
hrt_tim_init();
#ifdef HRT_PPM_CHANNEL
/* configure the PPM input pin */
px4_arch_configgpio(GPIO_PPM_IN);
#endif
}
/**
* Call callout(arg) after interval has elapsed.
*/
void
hrt_call_after(struct hrt_call *entry, hrt_abstime delay, hrt_callout callout, void *arg)
{
hrt_call_internal(entry,
hrt_absolute_time() + delay,
0,
callout,
arg);
}
/**
* Call callout(arg) at calltime.
*/
void
hrt_call_at(struct hrt_call *entry, hrt_abstime calltime, hrt_callout callout, void *arg)
{
hrt_call_internal(entry, calltime, 0, callout, arg);
}
/**
* Call callout(arg) every period.
*/
void
hrt_call_every(struct hrt_call *entry, hrt_abstime delay, hrt_abstime interval, hrt_callout callout, void *arg)
{
hrt_call_internal(entry,
hrt_absolute_time() + delay,
interval,
callout,
arg);
}
static void
hrt_call_internal(struct hrt_call *entry, hrt_abstime deadline, hrt_abstime interval, hrt_callout callout, void *arg)
{
irqstate_t flags = px4_enter_critical_section();
/* if the entry is currently queued, remove it */
/* note that we are using a potentially uninitialized
entry->link here, but it is safe as sq_rem() doesn't
dereference the passed node unless it is found in the
list. So we potentially waste a bit of time searching the
queue for the uninitialized entry->link but we don't do
anything actually unsafe.
*/
if (entry->deadline != 0) {
sq_rem(&entry->link, &callout_queue);
}
entry->deadline = deadline;
entry->period = interval;
entry->callout = callout;
entry->arg = arg;
hrt_call_enter(entry);
px4_leave_critical_section(flags);
}
/**
* If this returns true, the call has been invoked and removed from the callout list.
*
* Always returns false for repeating callouts.
*/
bool
hrt_called(struct hrt_call *entry)
{
return (entry->deadline == 0);
}
/**
* Remove the entry from the callout list.
*/
void
hrt_cancel(struct hrt_call *entry)
{
irqstate_t flags = px4_enter_critical_section();
sq_rem(&entry->link, &callout_queue);
entry->deadline = 0;
/* if this is a periodic call being removed by the callout, prevent it from
* being re-entered when the callout returns.
*/
entry->period = 0;
px4_leave_critical_section(flags);
}
static void
hrt_call_enter(struct hrt_call *entry)
{
struct hrt_call *call, *next;
call = (struct hrt_call *)sq_peek(&callout_queue);
if ((call == NULL) || (entry->deadline < call->deadline)) {
sq_addfirst(&entry->link, &callout_queue);
hrtinfo("call enter at head, reschedule\n");
/* we changed the next deadline, reschedule the timer event */
hrt_call_reschedule();
} else {
do {
next = (struct hrt_call *)sq_next(&call->link);
if ((next == NULL) || (entry->deadline < next->deadline)) {
hrtinfo("call enter after head\n");
sq_addafter(&call->link, &entry->link, &callout_queue);
break;
}
} while ((call = next) != NULL);
}
hrtinfo("scheduled\n");
}
static void
hrt_call_invoke(void)
{
struct hrt_call *call;
hrt_abstime deadline;
while (true) {
/* get the current time */
hrt_abstime now = hrt_absolute_time();
call = (struct hrt_call *)sq_peek(&callout_queue);
if (call == NULL) {
break;
}
if (call->deadline > now) {
break;
}
sq_rem(&call->link, &callout_queue);
hrtinfo("call pop\n");
/* save the intended deadline for periodic calls */
deadline = call->deadline;
/* zero the deadline, as the call has occurred */
call->deadline = 0;
/* invoke the callout (if there is one) */
if (call->callout) {
hrtinfo("call %p: %p(%p)\n", call, call->callout, call->arg);
call->callout(call->arg);
}
/* if the callout has a non-zero period, it has to be re-entered */
if (call->period != 0) {
// re-check call->deadline to allow for
// callouts to re-schedule themselves
// using hrt_call_delay()
if (call->deadline <= now) {
call->deadline = deadline + call->period;
}
hrt_call_enter(call);
}
}
}
/**
* Reschedule the next timer interrupt.
*
* This routine must be called with interrupts disabled.
*/
static void
hrt_call_reschedule()
{
hrt_abstime now = hrt_absolute_time();
struct hrt_call *next = (struct hrt_call *)sq_peek(&callout_queue);
hrt_abstime deadline = now + HRT_INTERVAL_MAX;
/*
* Determine what the next deadline will be.
*
* Note that we ensure that this will be within the counter
* period, so that when we truncate all but the low 16 bits
* the next time the compare matches it will be the deadline
* we want.
*
* It is important for accurate timekeeping that the compare
* interrupt fires sufficiently often that the base_time update in
* hrt_absolute_time runs at least once per timer period.
*/
if (next != NULL) {
hrtinfo("entry in queue\n");
if (next->deadline <= (now + HRT_INTERVAL_MIN)) {
hrtinfo("pre-expired\n");
/* set a minimal deadline so that we call ASAP */
deadline = now + HRT_INTERVAL_MIN;
} else if (next->deadline < deadline) {
hrtinfo("due soon\n");
deadline = next->deadline;
}
}
hrtinfo("schedule for %u at %u\n", (unsigned)(deadline & 0xffffffff), (unsigned)(now & 0xffffffff));
/* set the new compare value and remember it for latency tracking */
rCNV_HRT = latency_baseline = deadline & 0xffff;
}
static void
hrt_latency_update(void)
{
uint16_t latency = latency_actual - latency_baseline;
unsigned index;
/* bounded buckets */
for (index = 0; index < LATENCY_BUCKET_COUNT; index++) {
if (latency <= latency_buckets[index]) {
latency_counters[index]++;
return;
}
}
/* catch-all at the end */
latency_counters[index]++;
}
void
hrt_call_init(struct hrt_call *entry)
{
memset(entry, 0, sizeof(*entry));
}
void
hrt_call_delay(struct hrt_call *entry, hrt_abstime delay)
{
entry->deadline = hrt_absolute_time() + delay;
}
#endif /* HRT_TIMER */