adc.cpp
7.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/****************************************************************************
*
* Copyright (C) 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <board_config.h>
#include <drivers/drv_adc.h>
#include <drivers/drv_hrt.h>
#include <px4_arch/adc.h>
#include <nuttx/analog/adc.h>
#include <kinetis.h>
#include <hardware/kinetis_sim.h>
#include <hardware/kinetis_adc.h>
#define _REG(_addr) (*(volatile uint32_t *)(_addr))
/* ADC register accessors */
#define REG(a, _reg) _REG(KINETIS_ADC##a##_BASE + (_reg))
#define rSC1A(adc) REG(adc, KINETIS_ADC_SC1A_OFFSET) /* ADC status and control registers 1 */
#define rSC1B(adc) REG(adc, KINETIS_ADC_SC1B_OFFSET) /* ADC status and control registers 1 */
#define rCFG1(adc) REG(adc, KINETIS_ADC_CFG1_OFFSET) /* ADC configuration register 1 */
#define rCFG2(adc) REG(adc, KINETIS_ADC_CFG2_OFFSET) /* Configuration register 2 */
#define rRA(adc) REG(adc, KINETIS_ADC_RA_OFFSET) /* ADC data result register */
#define rRB(adc) REG(adc, KINETIS_ADC_RB_OFFSET) /* ADC data result register */
#define rCV1(adc) REG(adc, KINETIS_ADC_CV1_OFFSET) /* Compare value registers */
#define rCV2(adc) REG(adc, KINETIS_ADC_CV2_OFFSET) /* Compare value registers */
#define rSC2(adc) REG(adc, KINETIS_ADC_SC2_OFFSET) /* Status and control register 2 */
#define rSC3(adc) REG(adc, KINETIS_ADC_SC3_OFFSET) /* Status and control register 3 */
#define rOFS(adc) REG(adc, KINETIS_ADC_OFS_OFFSET) /* ADC offset correction register */
#define rPG(adc) REG(adc, KINETIS_ADC_PG_OFFSET) /* ADC plus-side gain register */
#define rMG(adc) REG(adc, KINETIS_ADC_MG_OFFSET) /* ADC minus-side gain register */
#define rCLPD(adc) REG(adc, KINETIS_ADC_CLPD_OFFSET) /* ADC plus-side general calibration value register */
#define rCLPS(adc) REG(adc, KINETIS_ADC_CLPS_OFFSET) /* ADC plus-side general calibration value register */
#define rCLP4(adc) REG(adc, KINETIS_ADC_CLP4_OFFSET) /* ADC plus-side general calibration value register */
#define rCLP3(adc) REG(adc, KINETIS_ADC_CLP3_OFFSET) /* ADC plus-side general calibration value register */
#define rCLP2(adc) REG(adc, KINETIS_ADC_CLP2_OFFSET) /* ADC plus-side general calibration value register */
#define rCLP1(adc) REG(adc, KINETIS_ADC_CLP1_OFFSET) /* ADC plus-side general calibration value register */
#define rCLP0(adc) REG(adc, KINETIS_ADC_CLP0_OFFSET) /* ADC plus-side general calibration value register */
#define rCLMD(adc) REG(adc, KINETIS_ADC_CLMD_OFFSET) /* ADC minus-side general calibration value register */
#define rCLMS(adc) REG(adc, KINETIS_ADC_CLMS_OFFSET) /* ADC minus-side general calibration value register */
#define rCLM4(adc) REG(adc, KINETIS_ADC_CLM4_OFFSET) /* ADC minus-side general calibration value register */
#define rCLM3(adc) REG(adc, KINETIS_ADC_CLM3_OFFSET) /* ADC minus-side general calibration value register */
#define rCLM2(adc) REG(adc, KINETIS_ADC_CLM2_OFFSET) /* ADC minus-side general calibration value register */
#define rCLM1(adc) REG(adc, KINETIS_ADC_CLM1_OFFSET) /* ADC minus-side general calibration value register */
#define rCLM0(adc) REG(adc, KINETIS_ADC_CLM0_OFFSET) /* ADC minus-side general calibration value register */
int px4_arch_adc_init(uint32_t base_address)
{
/* Input is Buss Clock 56 Mhz We will use /8 for 7 Mhz */
irqstate_t flags = px4_enter_critical_section();
_REG(KINETIS_SIM_SCGC3) |= SIM_SCGC3_ADC1;
rCFG1(1) = ADC_CFG1_ADICLK_BUSCLK | ADC_CFG1_MODE_1213BIT | ADC_CFG1_ADIV_DIV8;
rCFG2(1) = 0;
rSC2(1) = ADC_SC2_REFSEL_DEFAULT;
px4_leave_critical_section(flags);
/* Clear the CALF and begin the calibration */
rSC3(1) = ADC_SC3_CAL | ADC_SC3_CALF;
while ((rSC1A(1) & ADC_SC1_COCO) == 0) {
usleep(100);
if (rSC3(1) & ADC_SC3_CALF) {
return -1;
}
}
/* dummy read to clear COCO of calibration */
int32_t r = rRA(1);
/* Check the state of CALF at the end of calibration */
if (rSC3(1) & ADC_SC3_CALF) {
return -1;
}
/* Calculate the calibration values for single ended positive */
r = rCLP0(1) + rCLP1(1) + rCLP2(1) + rCLP3(1) + rCLP4(1) + rCLPS(1) ;
r = 0x8000U | (r >> 1U);
rPG(1) = r;
/* Calculate the calibration values for double ended Negitive */
r = rCLM0(1) + rCLM1(1) + rCLM2(1) + rCLM3(1) + rCLM4(1) + rCLMS(1) ;
r = 0x8000U | (r >> 1U);
rMG(1) = r;
/* kick off a sample and wait for it to complete */
hrt_abstime now = hrt_absolute_time();
rSC1A(1) = ADC_SC1_ADCH(ADC_SC1_ADCH_TEMP);
while (!(rSC1A(1) & ADC_SC1_COCO)) {
/* don't wait for more than 500us, since that means something broke - should reset here if we see this */
if ((hrt_absolute_time() - now) > 500) {
return -1;
}
}
return 0;
}
void px4_arch_adc_uninit(uint32_t base_address)
{
irqstate_t flags = px4_enter_critical_section();
_REG(KINETIS_SIM_SCGC3) &= ~SIM_SCGC3_ADC1;
px4_leave_critical_section(flags);
}
uint32_t px4_arch_adc_sample(uint32_t base_address, unsigned channel)
{
irqstate_t flags = px4_enter_critical_section();
/* clear any previous COCC */
rRA(1);
/* run a single conversion right now - should take about 35 cycles (5 microseconds) max */
rSC1A(1) = ADC_SC1_ADCH(channel);
/* wait for the conversion to complete */
const hrt_abstime now = hrt_absolute_time();
while (!(rSC1A(1) & ADC_SC1_COCO)) {
/* don't wait for more than 10us, since that means something broke - should reset here if we see this */
if ((hrt_absolute_time() - now) > 10) {
px4_leave_critical_section(flags);
return 0xffff;
}
}
/* read the result and clear EOC */
uint32_t result = rRA(1);
px4_leave_critical_section(flags);
return result;
}
float px4_arch_adc_reference_v()
{
return BOARD_ADC_POS_REF_V; // TODO: provide true vref
}
uint32_t px4_arch_adc_temp_sensor_mask()
{
return 1 << (ADC_SC1_ADCH_TEMP >> ADC_SC1_ADCH_SHIFT);
}
uint32_t px4_arch_adc_dn_fullcount()
{
return 1 << 12; // 12 bit ADC
}