emtion-recognition-landmarks_TEST1.ipynb 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import dlib\n",
    "import cv2\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import tensorflow as tf\n",
    "import math\n",
    "import os\n",
    "import pathlib\n",
    "import time\n",
    "import pandas as pd\n",
    "import tensorflow as tf\n",
    "from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img\n",
    "from tensorflow.keras.models import load_model\n",
    "from tensorflow.keras import regularizers\n",
    "from tensorflow import keras\n",
    "from imutils import face_utils"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "## face detector와 landmark predictor 정의\n",
    "detector = dlib.get_frontal_face_detector()\n",
    "predictor = dlib.shape_predictor(\"./models/shape_predictor_68_face_landmarks.dat\")\n",
    "facerec = dlib.face_recognition_model_v1('models/dlib_face_recognition_resnet_model_v1.dat')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "       happy   sad  fear  surprise  neutral  angry\n",
      "train   7215  4830  4097      3171     4965   3995\n",
      "      happy   sad  fear  surprise  neutral  angry\n",
      "test   1774  1247  1024       831     1233    958\n"
     ]
    }
   ],
   "source": [
    "train_dir = '../fer2013/train/'\n",
    "test_dir = '../fer2013/test/'\n",
    "\n",
    "row, col = 48, 48\n",
    "classes = 7\n",
    "\n",
    "def count_exp(path, set_):\n",
    "    dict_={}\n",
    "    for expression in os.listdir(path):\n",
    "        dir_ = path + expression\n",
    "        dict_[expression] = len(os.listdir(dir_))\n",
    "    df = pd.DataFrame(dict_, index=[set_])\n",
    "    return df\n",
    "train_count = count_exp(train_dir, 'train')\n",
    "test_count = count_exp(test_dir, 'test')\n",
    "print(train_count)\n",
    "print(test_count)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def euclidean_distance(pt1, pt2):\n",
    "    distance = 0\n",
    "    for i in range(2):\n",
    "        distance += (pt1[i] - pt2[i]) ** 2\n",
    "    return math.sqrt(distance)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "26388\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n"
     ]
    },
    {
     "ename": "AttributeError",
     "evalue": "'numpy.ndarray' object has no attribute 'append'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m\u001b[0m",
      "\u001b[0;31mAttributeError\u001b[0mTraceback (most recent call last)",
      "\u001b[0;32m<ipython-input-5-babf77cb1751>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     24\u001b[0m             \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m                 \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m                     \u001b[0mDistLandmark\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0meuclidean_distance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     27\u001b[0m             \u001b[0mDistLandmark\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDistLandmark\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     28\u001b[0m             \u001b[0mDistExpression\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDistExpression\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDistLandmark\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'append'"
     ]
    }
   ],
   "source": [
    "# train set 전처리작업\n",
    "# train 이미지 얼굴 인식 및 랜드마크 추출해서 각 점에 해당하는 랜드마크 거리 계산\n",
    "#define DLIB_GIF_SUPPORT \n",
    "\n",
    "for expression in os.listdir(train_dir):\n",
    "    DistExpression = np.empty((0, 4624), float)\n",
    "    filename = '../fer2013_Distance/train/' + expression + '/landmarkDist.npy'\n",
    "    print(len(os.listdir(train_dir + expression)))\n",
    "    for k in range(len(os.listdir(train_dir + expression))):\n",
    "        DistLandmark = []\n",
    "        if(k % 100 == 0):\n",
    "            print(k)\n",
    "        img = dlib.load_rgb_image(train_dir + expression + '/' + os.listdir(train_dir + expression)[k])\n",
    "        faces = detector(img, 1)\n",
    "        # 인식된 얼굴 개수 출력 \n",
    "        # print(\"Number of faces detected: {}\".format(len(faces)))\n",
    "\n",
    "        # For each detected face, find the landmark.\n",
    "        for (d, face) in enumerate(faces):\n",
    "            # Make the prediction and transfom it to numpy array\n",
    "            shape = predictor(img, face)\n",
    "            shape = face_utils.shape_to_np(shape)\n",
    "\n",
    "            for i in range(len(shape)):\n",
    "                for j in range(len(shape)):\n",
    "                    DistLandmark.append(euclidean_distance(shape[i], shape[j]))\n",
    "            DistLandmark = np.array(DistLandmark).reshape((1, -1))\n",
    "            DistExpression = np.append(DistExpression, DistLandmark, axis = 0)\n",
    "    print(DistExpression.shape)\n",
    "    np.save(filename, DistExpression)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "958\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n",
      "(642, 4624)\n",
      "1024\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n",
      "1000\n",
      "(646, 4624)\n",
      "831\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "(611, 4624)\n",
      "1247\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n",
      "1000\n",
      "1100\n",
      "1200\n",
      "(665, 4624)\n",
      "1233\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n",
      "1000\n",
      "1100\n",
      "1200\n",
      "(931, 4624)\n",
      "1774\n",
      "0\n",
      "100\n",
      "200\n",
      "300\n",
      "400\n",
      "500\n",
      "600\n",
      "700\n",
      "800\n",
      "900\n",
      "1000\n",
      "1100\n",
      "1200\n",
      "1300\n",
      "1400\n",
      "1500\n",
      "1600\n",
      "1700\n",
      "(1381, 4624)\n"
     ]
    }
   ],
   "source": [
    "# test set 전처리작업\n",
    "# test 이미지 얼굴 인식 및 랜드마크 추출해서 각 점에 해당하는 랜드마크 거리 계산\n",
    "\n",
    "for expression in os.listdir(test_dir):\n",
    "    DistExpression = np.empty((0, 4624), float)\n",
    "    filename = '../fer2013_Distance/test/' + expression + '/landmarkDist.npy'\n",
    "    print(len(os.listdir(test_dir + expression)))\n",
    "    for k in range(len(os.listdir(test_dir + expression))):\n",
    "        DistLandmark = []\n",
    "        if(k % 100 == 0):\n",
    "            print(k)\n",
    "        img = dlib.load_rgb_image(test_dir + expression + '/' + os.listdir(test_dir + expression)[k])\n",
    "        faces = detector(img, 1)\n",
    "        # 인식된 얼굴 개수 출력 \n",
    "        # print(\"Number of faces detected: {}\".format(len(faces)))\n",
    "\n",
    "        # For each detected face, find the landmark.\n",
    "        for (d, face) in enumerate(faces):\n",
    "            # Make the prediction and transfom it to numpy array\n",
    "            shape = predictor(img, face)\n",
    "            shape = face_utils.shape_to_np(shape)\n",
    "\n",
    "            for i in range(len(shape)):\n",
    "                for j in range(len(shape)):\n",
    "                    DistLandmark.append(euclidean_distance(shape[i], shape[j]))\n",
    "            DistLandmark = np.array(DistLandmark).reshape((1, -1))\n",
    "            DistExpression = np.append(DistExpression, DistLandmark, axis = 0)\n",
    "    print(DistExpression.shape)\n",
    "    np.save(filename, DistExpression)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of faces detected: 1\n"
     ]
    },
    {
     "ename": "error",
     "evalue": "OpenCV(4.5.1) /tmp/pip-req-build-_a0ur5ao/opencv/modules/highgui/src/window.cpp:651: error: (-2:Unspecified error) The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function 'cvShowImage'\n",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m\u001b[0m",
      "\u001b[0;31merror\u001b[0mTraceback (most recent call last)",
      "\u001b[0;32m<ipython-input-97-5173bf530f2f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m     \u001b[0;31m# Show the image\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m     \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Output\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     19\u001b[0m     \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcmap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'gray'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m     \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31merror\u001b[0m: OpenCV(4.5.1) /tmp/pip-req-build-_a0ur5ao/opencv/modules/highgui/src/window.cpp:651: error: (-2:Unspecified error) The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function 'cvShowImage'\n"
     ]
    }
   ],
   "source": [
    "for expression in os.listdir(train_dir):\n",
    "    img = dlib.load_rgb_image(train_dir + expression + '/' + os.listdir(train_dir + expression)[1])\n",
    "    faces = detector(img, 1)\n",
    "    # 인식된 얼굴 개수 출력 \n",
    "    print(\"Number of faces detected: {}\".format(len(faces)))\n",
    "\n",
    "    # For each detected face, find the landmark.\n",
    "    for (i, face) in enumerate(faces):\n",
    "        # Make the prediction and transfom it to numpy array\n",
    "        shape = predictor(img, face)\n",
    "        shape = face_utils.shape_to_np(shape)\n",
    "\n",
    "        for x, y in shape:\n",
    "            cv2.line(img, (x, y), (x, y), (0, 0, 255), 1)\n",
    "\n",
    "        \n",
    "    # Show the image\n",
    "    cv2.imshow(\"Output\", img)\n",
    "    plt.imshow(img, cmap='gray')\n",
    "    plt.show()\n",
    "\n",
    "    k = cv2.waitKey(5) & 0xFF\n",
    "    if k == 27:\n",
    "        break\n",
    "\n",
    "for i in range(1, 5):\n",
    "    cv2.destroyAllWindows()\n",
    "    cv2.waitKey(1)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "labels_dict_ = {'angry': 0, 'fear': 1, 'happy': 2, 'neutral': 3, 'sad': 4, 'surprise': 5}\n",
    "def get_key(val):\n",
    "    for key, value in labels_dict_.items():\n",
    "        if(value == val):\n",
    "            return key"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "title =  매트릭스 2 - 네오 vs 스미스들 2\n",
      "video.rating =  4.9316239\n",
      "video.duration =  00:03:54\n",
      "best.resolution 1280x534\n",
      "frame_size=(1280, 534)\n",
      "fps=23\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-6-ca51bcf4e2ca>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     74\u001b[0m     \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'frame'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mframeBGR\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     75\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 76\u001b[0;31m     \u001b[0mkey\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwaitKey\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m25\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     77\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m27\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     78\u001b[0m         \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "import cv2\n",
    " \n",
    "########### 카메라 대신 youtube영상으로 대체 ############\n",
    "import pafy\n",
    "url = 'https://www.youtube.com/watch?v=BtkzHvIJFKc'\n",
    "video = pafy.new(url)\n",
    "print('title = ', video.title)\n",
    "print('video.rating = ', video.rating)\n",
    "print('video.duration = ', video.duration)\n",
    " \n",
    "best = video.getbest(preftype='mp4')     # 'webm','3gp'\n",
    "print('best.resolution', best.resolution)\n",
    " \n",
    "cap=cv2.VideoCapture(best.url)\n",
    "#########################################################\n",
    " \n",
    "#cap = cv2.VideoCapture(0) # 0번 카메라\n",
    " \n",
    "# 동영상 크기(frame정보)를 읽어옴\n",
    "frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
    "frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
    "\n",
    "_, img_bgr = cap.read() # (800, 1920, 3)\n",
    "padding_size = 0\n",
    "resized_width = 1920\n",
    "video_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1]))\n",
    "output_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1] + padding_size * 2))\n",
    "\n",
    "# 동영상 프레임을 캡쳐\n",
    "frameRate = int(cap.get(cv2.CAP_PROP_FPS))\n",
    " \n",
    "frame_size = (frameWidth, frameHeight)\n",
    "print('frame_size={}'.format(frame_size))\n",
    "print('fps={}'.format(frameRate))\n",
    "\n",
    "# 코덱 설정하기\n",
    "#fourcc = cv2.VideoWriter_fourcc(*'DIVX')  # ('D', 'I', 'V', 'X')\n",
    "fourcc = cv2.VideoWriter_fourcc(*'XVID')\n",
    "timestamps = [cap.get(cv2.CAP_PROP_POS_MSEC)]\n",
    "prev_time = 0\n",
    "FPS = frameRate\n",
    "\n",
    "# 이미지 저장하기 위한 영상 파일 생성\n",
    "out1 = cv2.VideoWriter('./data/record0.mp4',fourcc, frameRate, frame_size)\n",
    "\n",
    "# efficientnet model 로드\n",
    "model = load_model('../checkpoint/er-best-efficientNet1-bt32-model-SGD.h5')\n",
    "\n",
    "\n",
    "while True:\n",
    "    retval, frameBGR = cap.read()\t# 영상을 한 frame씩 읽어오기\n",
    "    current_time = time.time() - prev_time\n",
    "    \n",
    "    frame = cv2.resize(frameBGR, video_size)\n",
    "    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
    "    \n",
    "    if (retval is True) :\n",
    "        prev_time = time.time()\n",
    "#         faces = detector(frame, 1)\n",
    "#         if(len(faces) > 0):\n",
    "#             print(\"Number of faces detected: {}\".format(len(faces)))\n",
    "#             print(timestamps)\n",
    "#             for (i, face) in enumerate(faces):\n",
    "#                 img = cv2.resize(frame[face.top():face.bottom(), face.left():face.right()], dsize=(224, 224), interpolation = cv2.INTER_CUBIC)\n",
    "#                 imgarr = np.array(img).reshape(1, 224, 224, 3) /255\n",
    "#                 print(get_key(model.predict_classes(imgarr)))\n",
    "#             print(cap.get(cv2.CAP_PROP_POS_MSEC) / 60)\n",
    "    #         timestamps.append(cap.get(cv2.CAP_PROP_POS_MSEC))\n",
    "\n",
    "\n",
    "        # 동영상 파일에 쓰기\n",
    "    out1.write(frameBGR)\n",
    "\n",
    "        # 모니터에 출력\n",
    "    cv2.imshow('frame', frameBGR)\n",
    "\n",
    "    key = cv2.waitKey(25)\n",
    "    if key == 27 :\n",
    "        break\n",
    "        \n",
    "if cap.isOpened():\n",
    "    cap.release()\n",
    "    out1.release()\n",
    "\n",
    "for i in range(1,5):\n",
    "    cv2.destroyAllWindows()\n",
    "    cv2.waitKey(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.6666666666666666\n"
     ]
    }
   ],
   "source": [
    "import cv2\n",
    "import dlib, cv2\n",
    "import numpy as np\n",
    "\n",
    " \n",
    "detector = dlib.get_frontal_face_detector()\n",
    "predictor = dlib.shape_predictor(\"./models/shape_predictor_68_face_landmarks.dat\")\n",
    "facerec = dlib.face_recognition_model_v1('models/dlib_face_recognition_resnet_model_v1.dat')\n",
    "model = load_model('../checkpoint/er-best-efficientNet1-bt32-model-SGD.h5')\n",
    "    \n",
    "    \n",
    "descs = np.load('img/descs2.npy', allow_pickle=True)[()]\n",
    " \n",
    "video_path = './data/zoom_0.mp4'\n",
    "cap=cv2.VideoCapture(video_path)\n",
    " \n",
    "#cap = cv2.VideoCapture(0) # 0번 카메라\n",
    " \n",
    "# 동영상 크기(frame정보)를 읽어옴\n",
    "frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
    "frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
    "frame_size = (frameWidth, frameHeight)\n",
    "fps = cap.get((cv2.CAP_PROP_FPS))\n",
    "\n",
    "\n",
    "_, img_bgr = cap.read() # (800, 1920, 3)\n",
    "padding_size = 0\n",
    "resized_width = 1920\n",
    "video_size = (resized_width, int(img_bgr.shape[0] * resized_width // img_bgr.shape[1]))\n",
    "timestamps = [cap.get(cv2.CAP_PROP_POS_MSEC)]\n",
    "prev_time = 0\n",
    "\n",
    "fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')\n",
    "out1 = cv2.VideoWriter('./data/record0.mp4',fourcc, fps, frame_size)\n",
    "\n",
    "while True:\n",
    "    retval, frameBGR = cap.read()\t# 영상을 한 frame씩 읽어오기\n",
    "    current_time = time.time() - prev_time\n",
    "    \n",
    "    frameBGR = cv2.resize(frameBGR, video_size)\n",
    "    frame = cv2.cvtColor(frameBGR, cv2.COLOR_BGR2RGB)\n",
    "    \n",
    "    if (retval is True) and (current_time > 3) :\n",
    "        prev_time = time.time()\n",
    "        faces = detector(frame, 1)\n",
    "        \n",
    "        for (i, face) in enumerate(faces):\n",
    "            shape = predictor(frame, face)\n",
    "            face_descriptor = facerec.compute_face_descriptor(frame, shape)\n",
    "            \n",
    "            img = cv2.resize(frame[face.top():face.bottom(), face.left():face.right()], dsize=(224, 224), interpolation = cv2.INTER_CUBIC)\n",
    "            imgarr = np.array(img).reshape(1, 224, 224, 3) /255\n",
    "            print(get_key(model.predict_classes(imgarr)))\n",
    "            \n",
    "            last_found = {'name': 'unknown', 'dist': 0.6, 'color': (0,0,255)}\n",
    "            \n",
    "            for name, saved_desc in descs.items():\n",
    "                dist = np.linalg.norm([face_descriptor] - saved_desc, axis=1)\n",
    "                if dist < last_found['dist']:\n",
    "                    last_found = {'name': name, 'dist': dist, 'color': (255,255,255)}\n",
    "            \n",
    "            cv2.rectangle(frameBGR, pt1=(face.left(), face.top()), pt2=(face.right(), face.bottom()), color=last_found['color'], thickness=2)\n",
    "            cv2.putText(frameBGR, last_found['name'] + ',' + get_key(model.predict_classes(imgarr)) , org=(face.left(), face.top()), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2)\n",
    "        \n",
    "        print(cap.get(cv2.CAP_PROP_POS_MSEC) / 60)\n",
    "    #         timestamps.append(cap.get(cv2.CAP_PROP_POS_MSEC))\n",
    "\n",
    "\n",
    "        # 동영상 파일에 쓰기\n",
    "    out1.write(frameBGR)\n",
    "\n",
    "        # 모니터에 출력\n",
    "    cv2.imshow('frame', frameBGR)\n",
    "\n",
    "    key = cv2.waitKey(25)\n",
    "    if key == 27 :\n",
    "        break\n",
    "        \n",
    "if cap.isOpened():\n",
    "    cap.release()\n",
    "    out1.release()\n",
    "\n",
    "for i in range(1,5):\n",
    "    cv2.destroyAllWindows()\n",
    "    cv2.waitKey(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}