video2.py 4.8 KB
import dlib
import cv2
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import math
import os
import pathlib
import time
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img
from tensorflow.keras.models import load_model
from tensorflow.keras import regularizers
from tensorflow import keras
import time


# predictor = dlib.shape_predictor(
#     'face_emotion_recognition/models/shape_predictor_68_face_landmarks.dat')
# facerec = dlib.face_recognition_model_v1(
#     'face_emotion_recognition/models/dlib_face_recognition_resnet_model_v1.dat')
# model = load_model(
#     'checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5')


def get_key(val):
    for key, value in labels_dict_.items():
        if(value == val):
            return key


def convertMillis(millis):
    seconds = (millis/1000) % 60
    minutes = (millis/(1000*60)) % 60
    hours = (millis/(1000*60*60)) % 24
    return seconds, int(minutes), int(hours)


def videoDetector(input_fps, video_name):

    # face & emotion model load
    predictor = dlib.shape_predictor(
        'face_emotion_recognition/models/shape_predictor_68_face_landmarks.dat')
    facerec = dlib.face_recognition_model_v1(
        'face_emotion_recognition/models/dlib_face_recognition_resnet_model_v1.dat')
    model = load_model(
        'checkpoint/er-best-mobilenet1-bt32-model-classweight-adam.h5')

    start = time.time()
    detector = dlib.get_frontal_face_detector()

    # face & emotion detection time dict
    descs = np.load('../static/img/descs.npy', allow_pickle=True)[()]
    labels_dict_ = {0: 'angry', 1: 'fear',  2: 'happy',
                    3: 'neutral', 4:  'sad', 5: 'surprise'}
    face_emotion_dict = {}
    for name, saved_desc in descs.items():
        face_emotion_dict[name] = {'angry': [], 'fear': [
        ], 'happy': [], 'neutral': [], 'sad': [], 'surprise': []}

    # video 정보 불러오기
    video_path = '../static/video/' + video_name + '.mp4'
    cap = cv2.VideoCapture(video_path)
    _, img_bgr = cap.read()  # (800, 1920, 3)
    resized_width = 1920
    video_size = (resized_width, int(
        img_bgr.shape[0] * resized_width // img_bgr.shape[1]))
    prev_time = 0

    while True:
        retval, frameBGR = cap.read()  # 영상을 한 frame씩 읽어오기
        current_time = time.time() - prev_time

        if(type(frameBGR) == type(None)):
            pass
        else:
            frameBGR = cv2.resize(frameBGR, video_size)
            frame = cv2.cvtColor(frameBGR, cv2.COLOR_BGR2RGB)

            if (retval is True) and (current_time > input_fps):
                prev_time = time.time()
                faces = detector(frame, 1)

                for (i, face) in enumerate(faces):
                    shape = predictor(frame, face)
                    face_descriptor = facerec.compute_face_descriptor(
                        frame, shape)

                    img = cv2.resize(frame[face.top():face.bottom(), face.left(
                    ):face.right()], dsize=(224, 224), interpolation=cv2.INTER_CUBIC)
                    imgarr = np.array(img).reshape(1, 224, 224, 3) / 255
                    emotion = labels_dict_[
                        model.predict(imgarr).argmax(axis=-1)[0]]

                    last_found = {'name': 'unknown',
                                  'dist': 0.6, 'color': (0, 0, 255)}

                    for name, saved_desc in descs.items():
                        dist = np.linalg.norm(
                            [face_descriptor] - saved_desc, axis=1)
                        if dist < last_found['dist']:
                            last_found = {
                                'name': name, 'dist': dist, 'color': (255, 255, 255)}

                    cv2.rectangle(frameBGR, pt1=(face.left(), face.top()), pt2=(
                        face.right(), face.bottom()), color=last_found['color'], thickness=2)
                    cv2.putText(frameBGR, last_found['name'] + ',' + emotion, org=(face.left(), face.top(
                    )), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=last_found['color'], thickness=2)

                    con_sec, con_min, con_hour = convertMillis(
                        cap.get(cv2.CAP_PROP_POS_MSEC))
                    face_emotion_dict[last_found['name']][emotion].append(
                        "{0}:{1}:{2}".format(con_hour, con_min, round(con_sec, 3)))
                    print("{0}:{1}:{2} {3}".format(
                        con_hour, con_min, round(con_sec, 3), emotion))

            cv2.imshow('frame', frameBGR)

        key = cv2.waitKey(25)
        if key == 27:
            break

    print(face_emotion_dict)
    print("총 시간 : ", time.time() - start)
    if cap.isOpened():
        cap.release()

    for i in range(1, 5):
        cv2.destroyAllWindows()
        cv2.waitKey(1)