text2vec.py
800 Bytes
from file_parser import parse_keywords
import numpy as np
from scipy import spatial
def avg_feature_vector(text, model, num_features, index2word_set):
words = parse_keywords(text)
feature_vec = np.zeros((num_features, ), dtype='float32')
n_words = 0
for word in words:
if word in index2word_set:
n_words += 1
feature_vec = np.add(feature_vec, model[word])
if (n_words > 0):
feature_vec = np.divide(feature_vec, n_words)
return feature_vec
def get_similarity(text1, text2, model, num_features):
index2word_set = set(model.index_to_key)
s1 = avg_feature_vector(text1, model, num_features, index2word_set)
s2 = avg_feature_vector(text2, model, num_features, index2word_set)
return abs(1 - spatial.distance.cosine(s1, s2))