calculate_mAP.py 20.9 KB
# # # [1]
# # # install dependencies: 
# !pip install pyyaml==5.1
# import torch, torchvision
# print(torch.__version__, torch.cuda.is_available())
# !gcc --version
# # opencv is pre-installed on colab

# # # [2]
# # # install detectron2: (Colab has CUDA 10.1 + torch 1.8)
# # # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
# import torch
# assert torch.__version__.startswith("1.8")   # need to manually install torch 1.8 if Colab changes its default version
# !pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html
# # exit(0)  # After installation, you need to "restart runtime" in Colab. This line can also restart runtime

# # # [3]
# # # Some basic setup:
# # # Setup detectron2 logger
# import detectron2
# from detectron2.utils.logger import setup_logger
# setup_logger()

# import some common libraries
import torch
import numpy as np
import os, json, cv2, random, math
from PIL import Image
from torch.nn.utils.rnn import pad_sequence

# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.modeling import build_model, build_backbone
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.utils.visualizer import Visualizer
import detectron2.data.transforms as T

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools.mask import encode
import argparse

parser = argparse.ArgumentParser(description="PyTorch CARN")
parser.add_argument("--data_path", type=str, default = "/home/ubuntu/JH/exp1/dataset")
parser.add_argument("--valid_data_path", type=str)
parser.add_argument("--rescale_factor", type=int, default=4, help="rescale factor for using in training")
parser.add_argument("--model_name", type=str,choices= ["VDSR", "CARN", "SRRN","FRGAN"], default='CARN', help="Feature type for usingin training")
parser.add_argument("--loss_type", type=str, choices= ["MSE", "L1", "SmoothL1","vgg_loss","ssim_loss","adv_loss","lpips"], default='MSE', help="loss type in training")
parser.add_argument('--batch_size', type=int, default=256)
opt = parser.parse_args()
print(opt)


def myRound(x): # 양수와 음수에 대해 0을 대칭으로 rounding
  abs_x = abs(x)
  val = np.int16(abs_x + 0.5)
  val2 = np.choose(
      x < 0,
      [
        val, val*(-1)
      ]
  )
  return val2

def myClip(x, maxV):
  val = np.choose(
      x > maxV,
      [
        x, maxV
      ]
  )
  return val

image_idx = 0
cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")

model = build_model(cfg)
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
model.eval()

image_idx = 0
anns = 0

# Original_8bit

image_files = ['001000', '002153', '008021', '009769', '009891', '015335', '017627', '018150', '018837', '022589']
image_files.extend(['022935', '023230', '024610', '025560', '025593', '027620', '155341', '161397', '165336', '166287'])
image_files.extend(['166642', '169996', '172330', '172648', '176606', '176701', '179765', '180101', '186296', '250758'])
image_files.extend(['259382', '267191', '287545', '287649', '289741', '293245', '308328', '309452', '335529', '337987'])
image_files.extend(['338625', '344029', '350122', '389933', '393226', '395343', '395633', '401862', '402473', '402992'])
image_files.extend(['404568', '406997', '408112', '410650', '414385', '414795', '415194', '415536', '416104', '416758'])
image_files.extend(['427055', '428562', '430073', '433204', '447200', '447313', '448448', '452321', '453001', '458755'])
image_files.extend(['462904', '463522', '464089', '468965', '469192', '469246', '471450', '474078', '474881', '475678'])
image_files.extend(['475779', '537802', '542625', '543043', '543300', '543528', '547502', '550691', '553669', '567740'])
image_files.extend(['570688', '570834', '571943', '573391', '574315', '575372', '575970', '578093', '579158', '581100'])


for iter in range(0, 100):

  image_file_number = image_files[image_idx]
  aug = T.ResizeShortestEdge(
  #  [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
  #  [480, 480], cfg.INPUT.MAX_SIZE_TEST
    [768, 768], cfg.INPUT.MAX_SIZE_TEST
  )
  image_prefix = "COCO_val2017_"
  image = cv2.imread(opt.valid_data_path + '000000'+ image_file_number +'.jpg')
  # image = cv2.imread('./dataset/validset_100/000000'+ image_file_number +'.jpg')
  height, width = image.shape[:2]
  image = aug.get_transform(image).apply_image(image)
  image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
  inputs = [{"image": image, "height": height, "width": width}]
  with torch.no_grad():
      images = model.preprocess_image(inputs)  # don't forget to preprocess
      features = model.backbone(images.tensor)  # set of cnn features


  p2_feature_original = features['p2'].to("cpu")
  p3_feature_original = features['p3'].to("cpu")
  p4_feature_original = features['p4'].to("cpu")

  bitDepth = 8
  maxRange = [0, 0, 0, 0, 0]

  def maxVal(x):
    return pow(2, x)
  def offsetVal(x):
    return pow(2, x-1)

  def maxRange_layer(x):
    absolute_arr = torch.abs(x) * 2
    max_arr = torch.max(absolute_arr)
    return torch.ceil(max_arr)


  act2 = p2_feature_original.squeeze()
  maxRange[0] = maxRange_layer(act2)

  act3 = p3_feature_original.squeeze()
  maxRange[1] = maxRange_layer(act3)

  act4 = p4_feature_original.squeeze()
  maxRange[2] = maxRange_layer(act4)

  globals()['maxRange_{}'.format(image_file_number)] = maxRange

  # p2_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p2.png'
  # p2_feature_img = Image.open('./result/{}/inference/{}_p2x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
  p2_feature_img = Image.open('/content/drive/MyDrive/result/inference/LR_2/p2/' + image_prefix + '000000' + image_file_number + '_p2' +'.png')
  # # y_p2, cb, cr = p2_feature_img.split()
  p2_feature_arr = np.array(p2_feature_img)
  p2_feature_arr_round = myRound(p2_feature_arr)

  # p3_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p3.png')

  # p3_feature_img = Image.open('./result/{}/inference/{}_p3x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
  p3_feature_img = Image.open('/content/drive/MyDrive/result/inference/LR_2/p3/' + image_prefix + '000000' + image_file_number + '_p3'  +'.png')
  # # y_p3, cb2, cr2 = p3_feature_img.split()
  p3_feature_arr = np.array(p3_feature_img)
  p3_feature_arr_round = myRound(p3_feature_arr)

  # p4_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p4.png')
  # p4_feature_img = Image.open('./result/{}/inference/{}_p4x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
  p4_feature_img = Image.open('/content/drive/MyDrive/result/inference/LR_2/p4/' + image_prefix + '000000' + image_file_number + '_p4' +'.png')
  # y_p4, cb3, cr3 = p4_feature_img.split()
  p4_feature_arr = np.array(p4_feature_img)
  p4_feature_arr_round = myRound(p4_feature_arr)


  # 복원
  recon_p2 = (((p2_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[0].numpy())
  recon_p3 = (((p3_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[1].numpy())
  recon_p4 = (((p4_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[2].numpy())

  tensor_value = recon_p2
  tensor_value2 = recon_p3
  tensor_value3 = recon_p4

  # # MSB 코드 끝

  # lsb 및 원래 코드
  # 복원
  # recon_p2 = (((p2_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[0].numpy())
  # recon_p3 = (((p3_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[1].numpy())
  # recon_p4 = (((p4_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[2].numpy())
  # recon_p5 = (((p5_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[3].numpy())
  # recon_p6 = (((p6_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[4].numpy())

  tensor_value = torch.as_tensor(recon_p2.astype("float32"))
  tensor_value2 = torch.as_tensor(recon_p3.astype("float32"))
  tensor_value3 = torch.as_tensor(recon_p4.astype("float32"))
  #lsb 및 원래 코드 끝

  t = [None] * 16
  t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9], t[10], t[11], t[12], t[13], t[14], t[15] = torch.chunk(tensor_value, 16, dim=0)
  p2 = [None] * 256

  t2 = [None] * 16
  t2[0], t2[1], t2[2], t2[3], t2[4], t2[5], t2[6], t2[7], t2[8], t2[9], t2[10], t2[11], t2[12], t2[13], t2[14], t2[15] = torch.chunk(tensor_value2, 16, dim=0)
  p3 = [None] * 256

  t3 = [None] * 16
  t3[0], t3[1], t3[2], t3[3], t3[4], t3[5], t3[6], t3[7], t3[8], t3[9], t3[10], t3[11], t3[12], t3[13], t3[14], t3[15] = torch.chunk(tensor_value3, 16, dim=0)
  p4 = [None] * 256

  p2[0], p2[1], p2[2], p2[3], p2[4], p2[5], p2[6], p2[7], p2[8], p2[9], p2[10], p2[11], p2[12], p2[13], p2[14], p2[15] = torch.chunk(t[0], 16, dim=1)
  p2[16], p2[17], p2[18], p2[19], p2[20], p2[21], p2[22], p2[23], p2[24], p2[25], p2[26], p2[27], p2[28], p2[29], p2[30], p2[31] = torch.chunk(t[1], 16, dim=1)
  p2[32], p2[33], p2[34], p2[35], p2[36], p2[37], p2[38], p2[39], p2[40], p2[41], p2[42], p2[43], p2[44], p2[45], p2[46], p2[47] = torch.chunk(t[2], 16, dim=1)
  p2[48], p2[49], p2[50], p2[51], p2[52], p2[53], p2[54], p2[55], p2[56], p2[57], p2[58], p2[59], p2[60], p2[61], p2[62], p2[63] = torch.chunk(t[3], 16, dim=1)
  p2[64], p2[65], p2[66], p2[67], p2[68], p2[69], p2[70], p2[71], p2[72], p2[73], p2[74], p2[75], p2[76], p2[77], p2[78], p2[79] = torch.chunk(t[4], 16, dim=1)
  p2[80], p2[81], p2[82], p2[83], p2[84], p2[85], p2[86], p2[87], p2[88], p2[89], p2[90], p2[91], p2[92], p2[93], p2[94], p2[95] = torch.chunk(t[5], 16, dim=1)
  p2[96], p2[97], p2[98], p2[99], p2[100], p2[101], p2[102], p2[103], p2[104], p2[105], p2[106], p2[107], p2[108], p2[109], p2[110], p2[111] = torch.chunk(t[6], 16, dim=1)
  p2[112], p2[113], p2[114], p2[115], p2[116], p2[117], p2[118], p2[119], p2[120], p2[121], p2[122], p2[123], p2[124], p2[125], p2[126], p2[127] = torch.chunk(t[7], 16, dim=1)
  p2[128], p2[129], p2[130], p2[131], p2[132], p2[133], p2[134], p2[135], p2[136], p2[137], p2[138], p2[139], p2[140], p2[141], p2[142], p2[143] = torch.chunk(t[8], 16, dim=1)
  p2[144], p2[145], p2[146], p2[147], p2[148], p2[149], p2[150], p2[151], p2[152], p2[153], p2[154], p2[155], p2[156], p2[157], p2[158], p2[159] = torch.chunk(t[9], 16, dim=1)
  p2[160], p2[161], p2[162], p2[163], p2[164], p2[165], p2[166], p2[167], p2[168], p2[169], p2[170], p2[171], p2[172], p2[173], p2[174], p2[175] = torch.chunk(t[10], 16, dim=1)
  p2[176], p2[177], p2[178], p2[179], p2[180], p2[181], p2[182], p2[183], p2[184], p2[185], p2[186], p2[187], p2[188], p2[189], p2[190], p2[191] = torch.chunk(t[11], 16, dim=1)
  p2[192], p2[193], p2[194], p2[195], p2[196], p2[197], p2[198], p2[199], p2[200], p2[201], p2[202], p2[203], p2[204], p2[205], p2[206], p2[207] = torch.chunk(t[12], 16, dim=1)
  p2[208], p2[209], p2[210], p2[211], p2[212], p2[213], p2[214], p2[215], p2[216], p2[217], p2[218], p2[219], p2[220], p2[221], p2[222], p2[223] = torch.chunk(t[13], 16, dim=1)
  p2[224], p2[225], p2[226], p2[227], p2[228], p2[229], p2[230], p2[231], p2[232], p2[233], p2[234], p2[235], p2[236], p2[237], p2[238], p2[239] = torch.chunk(t[14], 16, dim=1)
  p2[240], p2[241], p2[242], p2[243], p2[244], p2[245], p2[246], p2[247], p2[248], p2[249], p2[250], p2[251], p2[252], p2[253], p2[254], p2[255] = torch.chunk(t[15], 16, dim=1)

  p3[0], p3[1], p3[2], p3[3], p3[4], p3[5], p3[6], p3[7], p3[8], p3[9], p3[10], p3[11], p3[12], p3[13], p3[14], p3[15] = torch.chunk(t2[0], 16, dim=1)
  p3[16], p3[17], p3[18], p3[19], p3[20], p3[21], p3[22], p3[23], p3[24], p3[25], p3[26], p3[27], p3[28], p3[29], p3[30], p3[31] = torch.chunk(t2[1], 16, dim=1)
  p3[32], p3[33], p3[34], p3[35], p3[36], p3[37], p3[38], p3[39], p3[40], p3[41], p3[42], p3[43], p3[44], p3[45], p3[46], p3[47] = torch.chunk(t2[2], 16, dim=1)
  p3[48], p3[49], p3[50], p3[51], p3[52], p3[53], p3[54], p3[55], p3[56], p3[57], p3[58], p3[59], p3[60], p3[61], p3[62], p3[63] = torch.chunk(t2[3], 16, dim=1)
  p3[64], p3[65], p3[66], p3[67], p3[68], p3[69], p3[70], p3[71], p3[72], p3[73], p3[74], p3[75], p3[76], p3[77], p3[78], p3[79] = torch.chunk(t2[4], 16, dim=1)
  p3[80], p3[81], p3[82], p3[83], p3[84], p3[85], p3[86], p3[87], p3[88], p3[89], p3[90], p3[91], p3[92], p3[93], p3[94], p3[95] = torch.chunk(t2[5], 16, dim=1)
  p3[96], p3[97], p3[98], p3[99], p3[100], p3[101], p3[102], p3[103], p3[104], p3[105], p3[106], p3[107], p3[108], p3[109], p3[110], p3[111] = torch.chunk(t2[6], 16, dim=1)
  p3[112], p3[113], p3[114], p3[115], p3[116], p3[117], p3[118], p3[119], p3[120], p3[121], p3[122], p3[123], p3[124], p3[125], p3[126], p3[127] = torch.chunk(t2[7], 16, dim=1)
  p3[128], p3[129], p3[130], p3[131], p3[132], p3[133], p3[134], p3[135], p3[136], p3[137], p3[138], p3[139], p3[140], p3[141], p3[142], p3[143] = torch.chunk(t2[8], 16, dim=1)
  p3[144], p3[145], p3[146], p3[147], p3[148], p3[149], p3[150], p3[151], p3[152], p3[153], p3[154], p3[155], p3[156], p3[157], p3[158], p3[159] = torch.chunk(t2[9], 16, dim=1)
  p3[160], p3[161], p3[162], p3[163], p3[164], p3[165], p3[166], p3[167], p3[168], p3[169], p3[170], p3[171], p3[172], p3[173], p3[174], p3[175] = torch.chunk(t2[10], 16, dim=1)
  p3[176], p3[177], p3[178], p3[179], p3[180], p3[181], p3[182], p3[183], p3[184], p3[185], p3[186], p3[187], p3[188], p3[189], p3[190], p3[191] = torch.chunk(t2[11], 16, dim=1)
  p3[192], p3[193], p3[194], p3[195], p3[196], p3[197], p3[198], p3[199], p3[200], p3[201], p3[202], p3[203], p3[204], p3[205], p3[206], p3[207] = torch.chunk(t2[12], 16, dim=1)
  p3[208], p3[209], p3[210], p3[211], p3[212], p3[213], p3[214], p3[215], p3[216], p3[217], p3[218], p3[219], p3[220], p3[221], p3[222], p3[223] = torch.chunk(t2[13], 16, dim=1)
  p3[224], p3[225], p3[226], p3[227], p3[228], p3[229], p3[230], p3[231], p3[232], p3[233], p3[234], p3[235], p3[236], p3[237], p3[238], p3[239] = torch.chunk(t2[14], 16, dim=1)
  p3[240], p3[241], p3[242], p3[243], p3[244], p3[245], p3[246], p3[247], p3[248], p3[249], p3[250], p3[251], p3[252], p3[253], p3[254], p3[255] = torch.chunk(t2[15], 16, dim=1)

  p4[0], p4[1], p4[2], p4[3], p4[4], p4[5], p4[6], p4[7], p4[8], p4[9], p4[10], p4[11], p4[12], p4[13], p4[14], p4[15] = torch.chunk(t3[0], 16, dim=1)
  p4[16], p4[17], p4[18], p4[19], p4[20], p4[21], p4[22], p4[23], p4[24], p4[25], p4[26], p4[27], p4[28], p4[29], p4[30], p4[31] = torch.chunk(t3[1], 16, dim=1)
  p4[32], p4[33], p4[34], p4[35], p4[36], p4[37], p4[38], p4[39], p4[40], p4[41], p4[42], p4[43], p4[44], p4[45], p4[46], p4[47] = torch.chunk(t3[2], 16, dim=1)
  p4[48], p4[49], p4[50], p4[51], p4[52], p4[53], p4[54], p4[55], p4[56], p4[57], p4[58], p4[59], p4[60], p4[61], p4[62], p4[63] = torch.chunk(t3[3], 16, dim=1)
  p4[64], p4[65], p4[66], p4[67], p4[68], p4[69], p4[70], p4[71], p4[72], p4[73], p4[74], p4[75], p4[76], p4[77], p4[78], p4[79] = torch.chunk(t3[4], 16, dim=1)
  p4[80], p4[81], p4[82], p4[83], p4[84], p4[85], p4[86], p4[87], p4[88], p4[89], p4[90], p4[91], p4[92], p4[93], p4[94], p4[95] = torch.chunk(t3[5], 16, dim=1)
  p4[96], p4[97], p4[98], p4[99], p4[100], p4[101], p4[102], p4[103], p4[104], p4[105], p4[106], p4[107], p4[108], p4[109], p4[110], p4[111] = torch.chunk(t3[6], 16, dim=1)
  p4[112], p4[113], p4[114], p4[115], p4[116], p4[117], p4[118], p4[119], p4[120], p4[121], p4[122], p4[123], p4[124], p4[125], p4[126], p4[127] = torch.chunk(t3[7], 16, dim=1)
  p4[128], p4[129], p4[130], p4[131], p4[132], p4[133], p4[134], p4[135], p4[136], p4[137], p4[138], p4[139], p4[140], p4[141], p4[142], p4[143] = torch.chunk(t3[8], 16, dim=1)
  p4[144], p4[145], p4[146], p4[147], p4[148], p4[149], p4[150], p4[151], p4[152], p4[153], p4[154], p4[155], p4[156], p4[157], p4[158], p4[159] = torch.chunk(t3[9], 16, dim=1)
  p4[160], p4[161], p4[162], p4[163], p4[164], p4[165], p4[166], p4[167], p4[168], p4[169], p4[170], p4[171], p4[172], p4[173], p4[174], p4[175] = torch.chunk(t3[10], 16, dim=1)
  p4[176], p4[177], p4[178], p4[179], p4[180], p4[181], p4[182], p4[183], p4[184], p4[185], p4[186], p4[187], p4[188], p4[189], p4[190], p4[191] = torch.chunk(t3[11], 16, dim=1)
  p4[192], p4[193], p4[194], p4[195], p4[196], p4[197], p4[198], p4[199], p4[200], p4[201], p4[202], p4[203], p4[204], p4[205], p4[206], p4[207] = torch.chunk(t3[12], 16, dim=1)
  p4[208], p4[209], p4[210], p4[211], p4[212], p4[213], p4[214], p4[215], p4[216], p4[217], p4[218], p4[219], p4[220], p4[221], p4[222], p4[223] = torch.chunk(t3[13], 16, dim=1)
  p4[224], p4[225], p4[226], p4[227], p4[228], p4[229], p4[230], p4[231], p4[232], p4[233], p4[234], p4[235], p4[236], p4[237], p4[238], p4[239] = torch.chunk(t3[14], 16, dim=1)
  p4[240], p4[241], p4[242], p4[243], p4[244], p4[245], p4[246], p4[247], p4[248], p4[249], p4[250], p4[251], p4[252], p4[253], p4[254], p4[255] = torch.chunk(t3[15], 16, dim=1)

  p2_tensor = pad_sequence(p2, batch_first=True)
  p3_tensor = pad_sequence(p3, batch_first=True)
  p4_tensor = pad_sequence(p4, batch_first=True)

  cc = p2_tensor.unsqueeze(0)
  cc2 = p3_tensor.unsqueeze(0)
  cc3 = p4_tensor.unsqueeze(0)

  p2_cuda = cc.to(torch.device("cuda"))
  p3_cuda = cc2.to(torch.device("cuda"))
  p4_cuda = cc3.to(torch.device("cuda"))

  aug = T.ResizeShortestEdge(
    # [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
    # [480, 480], cfg.INPUT.MAX_SIZE_TEST
    [768, 768], cfg.INPUT.MAX_SIZE_TEST
  )
  image = cv2.imread(opt.valid_data_path + '000000'+ image_file_number +'.jpg')
  height, width = image.shape[:2]
  image = aug.get_transform(image).apply_image(image)
  image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
  inputs = [{"image": image, "height": height, "width": width}]

  with torch.no_grad():
      images = model.preprocess_image(inputs)  # don't forget to preprocess
      features = model.backbone(images.tensor)  # set of cnn features
      features['p2'] = p2_cuda
      features['p3'] = p3_cuda
      features['p4'] = p4_cuda

      proposals, _ = model.proposal_generator(images, features, None)  # RPN

      features_ = [features[f] for f in model.roi_heads.box_in_features]
      box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
      box_features = model.roi_heads.box_head(box_features)  # features of all 1k candidates
      predictions = model.roi_heads.box_predictor(box_features)
      pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
      pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)

      # output boxes, masks, scores, etc
      pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)  # scale box to orig size
      # features of the proposed boxes
      feats = box_features[pred_inds]

  pred_category = pred_instances[0]["instances"].pred_classes.to("cpu")
  pred_segmentation = pred_instances[0]["instances"].pred_masks.to("cpu")
  pred_score = pred_instances[0]["instances"].scores.to("cpu")

  xxx = pred_category
  xxx = xxx.numpy()

  xxx = xxx + 1

  for idx in range(len(xxx)):
      if -1 < int(xxx[idx]) < 12:
        xxx[idx] = xxx[idx]
      elif 11 < int(xxx[idx]) < 25:
        xxx[idx] = xxx[idx] + 1
      elif 24 < int(xxx[idx]) < 27:
        xxx[idx] = xxx[idx] + 2
      elif 26 < int(xxx[idx]) < 41:
        xxx[idx] = xxx[idx] + 4
      elif 40 < int(xxx[idx]) < 61:
        xxx[idx] = xxx[idx] + 5
      elif 60 < int(xxx[idx]) < 62:
        xxx[idx] = 67
      elif 61 < int(xxx[idx]) < 63:
        xxx[idx] = 70
      elif 62 < int(xxx[idx]) < 74:
        xxx[idx] = xxx[idx] + 9
      else:
        xxx[idx] = xxx[idx] + 10

  imgID = int(image_file_number)
  if image_idx == 0:
    anns = []
  else:
    anns = anns

  for idx in range(len(pred_category.numpy())):

    anndata = {}
    anndata['image_id'] = imgID
    anndata['category_id'] = int(xxx[idx])
      
    anndata['segmentation'] = encode(np.asfortranarray(pred_segmentation[idx].numpy()))
    anndata['score'] = float(pred_score[idx].numpy())
    anns.append(anndata)

  image_idx = image_idx + 1
  # print("###image###:{}".format(image_idx))

annType = ['segm','bbox','keypoints']
annType = annType[0]      #specify type here
prefix = 'instances'
print('Running demo for *%s* results.'%(annType)) 
# imgIds = [560474]

annFile = './instances_val2017_dataset100.json'
cocoGt=COCO(annFile)

#initialize COCO detections api
resFile = anns
cocoDt=cocoGt.loadRes(resFile)

# running evaluation
cocoEval = COCOeval(cocoGt,cocoDt,annType)
# cocoEval.params.imgIds  = imgIds
# 맨 윗줄
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()