calculate_mAP_HR.py
21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# # # [1]
# # # install dependencies:
# !pip install pyyaml==5.1
# import torch, torchvision
# print(torch.__version__, torch.cuda.is_available())
# !gcc --version
# # opencv is pre-installed on colab
# # # [2]
# # # install detectron2: (Colab has CUDA 10.1 + torch 1.8)
# # # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
# import torch
# assert torch.__version__.startswith("1.8") # need to manually install torch 1.8 if Colab changes its default version
# !pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html
# # exit(0) # After installation, you need to "restart runtime" in Colab. This line can also restart runtime
# # # [3]
# # # Some basic setup:
# # # Setup detectron2 logger
# import detectron2
# from detectron2.utils.logger import setup_logger
# setup_logger()
# import some common libraries
import torch
import numpy as np
import os, json, cv2, random, math
from PIL import Image
from torch.nn.utils.rnn import pad_sequence
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.modeling import build_model, build_backbone
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.utils.visualizer import Visualizer
import detectron2.data.transforms as T
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools.mask import encode
import argparse
parser = argparse.ArgumentParser(description="PyTorch CARN")
parser.add_argument("--valid_data_path", type=str)
parser.add_argument("--rescale_factor", type=int, default=4, help="rescale factor for using in training")
parser.add_argument("--model_name", type=str,choices= ["VDSR", "CARN", "SRRN","FRGAN"], default='CARN', help="Feature type for usingin training")
parser.add_argument("--loss_type", type=str, choices= ["MSE", "L1", "SmoothL1","vgg_loss","ssim_loss","adv_loss","lpips"], default='MSE', help="loss type in training")
parser.add_argument('--batch_size', type=int, default=256)
opt = parser.parse_args()
print(opt)
def myRound(x): # 양수와 음수에 대해 0을 대칭으로 rounding
abs_x = abs(x)
val = np.int16(abs_x + 0.5)
val2 = np.choose(
x < 0,
[
val, val*(-1)
]
)
return val2
def myClip(x, maxV):
val = np.choose(
x > maxV,
[
x, maxV
]
)
return val
image_idx = 0
cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
model = build_model(cfg)
DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)
model.eval()
image_idx = 0
anns = 0
# Original_8bit
image_files = ['001000', '002153', '008021', '009769', '009891', '015335', '017627', '018150', '018837', '022589']
image_files.extend(['022935', '023230', '024610', '025560', '025593', '027620', '155341', '161397', '165336', '166287'])
image_files.extend(['166642', '169996', '172330', '172648', '176606', '176701', '179765', '180101', '186296', '250758'])
image_files.extend(['259382', '267191', '287545', '287649', '289741', '293245', '308328', '309452', '335529', '337987'])
image_files.extend(['338625', '344029', '350122', '389933', '393226', '395343', '395633', '401862', '402473', '402992'])
image_files.extend(['404568', '406997', '408112', '410650', '414385', '414795', '415194', '415536', '416104', '416758'])
image_files.extend(['427055', '428562', '430073', '433204', '447200', '447313', '448448', '452321', '453001', '458755'])
image_files.extend(['462904', '463522', '464089', '468965', '469192', '469246', '471450', '474078', '474881', '475678'])
image_files.extend(['475779', '537802', '542625', '543043', '543300', '543528', '547502', '550691', '553669', '567740'])
image_files.extend(['570688', '570834', '571943', '573391', '574315', '575372', '575970', '578093', '579158', '581100'])
for iter in range(0, 100):
image_file_number = image_files[image_idx]
aug = T.ResizeShortestEdge(
# [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
# [480, 480], cfg.INPUT.MAX_SIZE_TEST
[768, 768], cfg.INPUT.MAX_SIZE_TEST
)
image_prefix = "COCO_val2017_"
image = cv2.imread(opt.valid_data_path + '000000'+ image_file_number +'.jpg')
# image = cv2.imread('./dataset/validset_100/000000'+ image_file_number +'.jpg')
height, width = image.shape[:2]
image = aug.get_transform(image).apply_image(image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = [{"image": image, "height": height, "width": width}]
with torch.no_grad():
images = model.preprocess_image(inputs) # don't forget to preprocess
features = model.backbone(images.tensor) # set of cnn features
p2_feature_original = features['p2'].to("cpu")
p3_feature_original = features['p3'].to("cpu")
p4_feature_original = features['p4'].to("cpu")
bitDepth = 8
maxRange = [0, 0, 0, 0, 0]
def maxVal(x):
return pow(2, x)
def offsetVal(x):
return pow(2, x-1)
def maxRange_layer(x):
absolute_arr = torch.abs(x) * 2
max_arr = torch.max(absolute_arr)
return torch.ceil(max_arr)
act2 = p2_feature_original.squeeze()
maxRange[0] = maxRange_layer(act2)
act3 = p3_feature_original.squeeze()
maxRange[1] = maxRange_layer(act3)
act4 = p4_feature_original.squeeze()
maxRange[2] = maxRange_layer(act4)
globals()['maxRange_{}'.format(image_file_number)] = maxRange
p2_feature_img = Image.open('/content/drive/MyDrive/validset_features/features/LR_1_2/p2/'.format(opt.rescale_factor) + image_prefix + '000000' + image_file_number + '_p2' +'.png')
p3_feature_img = Image.open('/content/drive/MyDrive/validset_features/features/LR_1_2/p3/'.format(opt.rescale_factor) + image_prefix + '000000' + image_file_number + '_p3' +'.png')
p4_feature_img = Image.open('/content/drive/MyDrive/validset_features/features/LR_1_2/p4/'.format(opt.rescale_factor) + image_prefix + '000000' + image_file_number + '_p4' +'.png')
# p2_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p2.png'
# p2_feature_img = Image.open('./result/{}/inference/{}_p2x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
# # y_p2, cb, cr = p2_feature_img.split()
p2_feature_arr = np.array(p2_feature_img)
p2_feature_arr_round = myRound(p2_feature_arr)
# p3_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p3.png')
# p3_feature_img = Image.open('./result/{}/inference/{}_p3x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
# # y_p3, cb2, cr2 = p3_feature_img.split()
p3_feature_arr = np.array(p3_feature_img)
p3_feature_arr_round = myRound(p3_feature_arr)
# p4_feature_img = Image.open('./original/qp32/COCO_val2014_000000'+ image_file_number +'_p4.png')
# p4_feature_img = Image.open('./result/{}/inference/{}_p4x{}/SR_{}.png'.format(opt.loss_type,opt.model_name,opt.rescale_factor,str(iter)))
# y_p4, cb3, cr3 = p4_feature_img.split()
p4_feature_arr = np.array(p4_feature_img)
p4_feature_arr_round = myRound(p4_feature_arr)
# 복원
recon_p2 = (((p2_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[0].numpy())
recon_p3 = (((p3_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[1].numpy())
recon_p4 = (((p4_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[2].numpy())
tensor_value = recon_p2
tensor_value2 = recon_p3
tensor_value3 = recon_p4
# # MSB 코드 끝
# lsb 및 원래 코드
# 복원
# recon_p2 = (((p2_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[0].numpy())
# recon_p3 = (((p3_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[1].numpy())
# recon_p4 = (((p4_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[2].numpy())
# recon_p5 = (((p5_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[3].numpy())
# recon_p6 = (((p6_feature_arr_round - offsetVal(bitDepth)) / maxVal(bitDepth)) * maxRange[4].numpy())
tensor_value = torch.as_tensor(recon_p2.astype("float32"))
tensor_value2 = torch.as_tensor(recon_p3.astype("float32"))
tensor_value3 = torch.as_tensor(recon_p4.astype("float32"))
#lsb 및 원래 코드 끝
t = [None] * 16
t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9], t[10], t[11], t[12], t[13], t[14], t[15] = torch.chunk(tensor_value, 16, dim=0)
p2 = [None] * 256
t2 = [None] * 16
t2[0], t2[1], t2[2], t2[3], t2[4], t2[5], t2[6], t2[7], t2[8], t2[9], t2[10], t2[11], t2[12], t2[13], t2[14], t2[15] = torch.chunk(tensor_value2, 16, dim=0)
p3 = [None] * 256
t3 = [None] * 16
t3[0], t3[1], t3[2], t3[3], t3[4], t3[5], t3[6], t3[7], t3[8], t3[9], t3[10], t3[11], t3[12], t3[13], t3[14], t3[15] = torch.chunk(tensor_value3, 16, dim=0)
p4 = [None] * 256
p2[0], p2[1], p2[2], p2[3], p2[4], p2[5], p2[6], p2[7], p2[8], p2[9], p2[10], p2[11], p2[12], p2[13], p2[14], p2[15] = torch.chunk(t[0], 16, dim=1)
p2[16], p2[17], p2[18], p2[19], p2[20], p2[21], p2[22], p2[23], p2[24], p2[25], p2[26], p2[27], p2[28], p2[29], p2[30], p2[31] = torch.chunk(t[1], 16, dim=1)
p2[32], p2[33], p2[34], p2[35], p2[36], p2[37], p2[38], p2[39], p2[40], p2[41], p2[42], p2[43], p2[44], p2[45], p2[46], p2[47] = torch.chunk(t[2], 16, dim=1)
p2[48], p2[49], p2[50], p2[51], p2[52], p2[53], p2[54], p2[55], p2[56], p2[57], p2[58], p2[59], p2[60], p2[61], p2[62], p2[63] = torch.chunk(t[3], 16, dim=1)
p2[64], p2[65], p2[66], p2[67], p2[68], p2[69], p2[70], p2[71], p2[72], p2[73], p2[74], p2[75], p2[76], p2[77], p2[78], p2[79] = torch.chunk(t[4], 16, dim=1)
p2[80], p2[81], p2[82], p2[83], p2[84], p2[85], p2[86], p2[87], p2[88], p2[89], p2[90], p2[91], p2[92], p2[93], p2[94], p2[95] = torch.chunk(t[5], 16, dim=1)
p2[96], p2[97], p2[98], p2[99], p2[100], p2[101], p2[102], p2[103], p2[104], p2[105], p2[106], p2[107], p2[108], p2[109], p2[110], p2[111] = torch.chunk(t[6], 16, dim=1)
p2[112], p2[113], p2[114], p2[115], p2[116], p2[117], p2[118], p2[119], p2[120], p2[121], p2[122], p2[123], p2[124], p2[125], p2[126], p2[127] = torch.chunk(t[7], 16, dim=1)
p2[128], p2[129], p2[130], p2[131], p2[132], p2[133], p2[134], p2[135], p2[136], p2[137], p2[138], p2[139], p2[140], p2[141], p2[142], p2[143] = torch.chunk(t[8], 16, dim=1)
p2[144], p2[145], p2[146], p2[147], p2[148], p2[149], p2[150], p2[151], p2[152], p2[153], p2[154], p2[155], p2[156], p2[157], p2[158], p2[159] = torch.chunk(t[9], 16, dim=1)
p2[160], p2[161], p2[162], p2[163], p2[164], p2[165], p2[166], p2[167], p2[168], p2[169], p2[170], p2[171], p2[172], p2[173], p2[174], p2[175] = torch.chunk(t[10], 16, dim=1)
p2[176], p2[177], p2[178], p2[179], p2[180], p2[181], p2[182], p2[183], p2[184], p2[185], p2[186], p2[187], p2[188], p2[189], p2[190], p2[191] = torch.chunk(t[11], 16, dim=1)
p2[192], p2[193], p2[194], p2[195], p2[196], p2[197], p2[198], p2[199], p2[200], p2[201], p2[202], p2[203], p2[204], p2[205], p2[206], p2[207] = torch.chunk(t[12], 16, dim=1)
p2[208], p2[209], p2[210], p2[211], p2[212], p2[213], p2[214], p2[215], p2[216], p2[217], p2[218], p2[219], p2[220], p2[221], p2[222], p2[223] = torch.chunk(t[13], 16, dim=1)
p2[224], p2[225], p2[226], p2[227], p2[228], p2[229], p2[230], p2[231], p2[232], p2[233], p2[234], p2[235], p2[236], p2[237], p2[238], p2[239] = torch.chunk(t[14], 16, dim=1)
p2[240], p2[241], p2[242], p2[243], p2[244], p2[245], p2[246], p2[247], p2[248], p2[249], p2[250], p2[251], p2[252], p2[253], p2[254], p2[255] = torch.chunk(t[15], 16, dim=1)
p3[0], p3[1], p3[2], p3[3], p3[4], p3[5], p3[6], p3[7], p3[8], p3[9], p3[10], p3[11], p3[12], p3[13], p3[14], p3[15] = torch.chunk(t2[0], 16, dim=1)
p3[16], p3[17], p3[18], p3[19], p3[20], p3[21], p3[22], p3[23], p3[24], p3[25], p3[26], p3[27], p3[28], p3[29], p3[30], p3[31] = torch.chunk(t2[1], 16, dim=1)
p3[32], p3[33], p3[34], p3[35], p3[36], p3[37], p3[38], p3[39], p3[40], p3[41], p3[42], p3[43], p3[44], p3[45], p3[46], p3[47] = torch.chunk(t2[2], 16, dim=1)
p3[48], p3[49], p3[50], p3[51], p3[52], p3[53], p3[54], p3[55], p3[56], p3[57], p3[58], p3[59], p3[60], p3[61], p3[62], p3[63] = torch.chunk(t2[3], 16, dim=1)
p3[64], p3[65], p3[66], p3[67], p3[68], p3[69], p3[70], p3[71], p3[72], p3[73], p3[74], p3[75], p3[76], p3[77], p3[78], p3[79] = torch.chunk(t2[4], 16, dim=1)
p3[80], p3[81], p3[82], p3[83], p3[84], p3[85], p3[86], p3[87], p3[88], p3[89], p3[90], p3[91], p3[92], p3[93], p3[94], p3[95] = torch.chunk(t2[5], 16, dim=1)
p3[96], p3[97], p3[98], p3[99], p3[100], p3[101], p3[102], p3[103], p3[104], p3[105], p3[106], p3[107], p3[108], p3[109], p3[110], p3[111] = torch.chunk(t2[6], 16, dim=1)
p3[112], p3[113], p3[114], p3[115], p3[116], p3[117], p3[118], p3[119], p3[120], p3[121], p3[122], p3[123], p3[124], p3[125], p3[126], p3[127] = torch.chunk(t2[7], 16, dim=1)
p3[128], p3[129], p3[130], p3[131], p3[132], p3[133], p3[134], p3[135], p3[136], p3[137], p3[138], p3[139], p3[140], p3[141], p3[142], p3[143] = torch.chunk(t2[8], 16, dim=1)
p3[144], p3[145], p3[146], p3[147], p3[148], p3[149], p3[150], p3[151], p3[152], p3[153], p3[154], p3[155], p3[156], p3[157], p3[158], p3[159] = torch.chunk(t2[9], 16, dim=1)
p3[160], p3[161], p3[162], p3[163], p3[164], p3[165], p3[166], p3[167], p3[168], p3[169], p3[170], p3[171], p3[172], p3[173], p3[174], p3[175] = torch.chunk(t2[10], 16, dim=1)
p3[176], p3[177], p3[178], p3[179], p3[180], p3[181], p3[182], p3[183], p3[184], p3[185], p3[186], p3[187], p3[188], p3[189], p3[190], p3[191] = torch.chunk(t2[11], 16, dim=1)
p3[192], p3[193], p3[194], p3[195], p3[196], p3[197], p3[198], p3[199], p3[200], p3[201], p3[202], p3[203], p3[204], p3[205], p3[206], p3[207] = torch.chunk(t2[12], 16, dim=1)
p3[208], p3[209], p3[210], p3[211], p3[212], p3[213], p3[214], p3[215], p3[216], p3[217], p3[218], p3[219], p3[220], p3[221], p3[222], p3[223] = torch.chunk(t2[13], 16, dim=1)
p3[224], p3[225], p3[226], p3[227], p3[228], p3[229], p3[230], p3[231], p3[232], p3[233], p3[234], p3[235], p3[236], p3[237], p3[238], p3[239] = torch.chunk(t2[14], 16, dim=1)
p3[240], p3[241], p3[242], p3[243], p3[244], p3[245], p3[246], p3[247], p3[248], p3[249], p3[250], p3[251], p3[252], p3[253], p3[254], p3[255] = torch.chunk(t2[15], 16, dim=1)
p4[0], p4[1], p4[2], p4[3], p4[4], p4[5], p4[6], p4[7], p4[8], p4[9], p4[10], p4[11], p4[12], p4[13], p4[14], p4[15] = torch.chunk(t3[0], 16, dim=1)
p4[16], p4[17], p4[18], p4[19], p4[20], p4[21], p4[22], p4[23], p4[24], p4[25], p4[26], p4[27], p4[28], p4[29], p4[30], p4[31] = torch.chunk(t3[1], 16, dim=1)
p4[32], p4[33], p4[34], p4[35], p4[36], p4[37], p4[38], p4[39], p4[40], p4[41], p4[42], p4[43], p4[44], p4[45], p4[46], p4[47] = torch.chunk(t3[2], 16, dim=1)
p4[48], p4[49], p4[50], p4[51], p4[52], p4[53], p4[54], p4[55], p4[56], p4[57], p4[58], p4[59], p4[60], p4[61], p4[62], p4[63] = torch.chunk(t3[3], 16, dim=1)
p4[64], p4[65], p4[66], p4[67], p4[68], p4[69], p4[70], p4[71], p4[72], p4[73], p4[74], p4[75], p4[76], p4[77], p4[78], p4[79] = torch.chunk(t3[4], 16, dim=1)
p4[80], p4[81], p4[82], p4[83], p4[84], p4[85], p4[86], p4[87], p4[88], p4[89], p4[90], p4[91], p4[92], p4[93], p4[94], p4[95] = torch.chunk(t3[5], 16, dim=1)
p4[96], p4[97], p4[98], p4[99], p4[100], p4[101], p4[102], p4[103], p4[104], p4[105], p4[106], p4[107], p4[108], p4[109], p4[110], p4[111] = torch.chunk(t3[6], 16, dim=1)
p4[112], p4[113], p4[114], p4[115], p4[116], p4[117], p4[118], p4[119], p4[120], p4[121], p4[122], p4[123], p4[124], p4[125], p4[126], p4[127] = torch.chunk(t3[7], 16, dim=1)
p4[128], p4[129], p4[130], p4[131], p4[132], p4[133], p4[134], p4[135], p4[136], p4[137], p4[138], p4[139], p4[140], p4[141], p4[142], p4[143] = torch.chunk(t3[8], 16, dim=1)
p4[144], p4[145], p4[146], p4[147], p4[148], p4[149], p4[150], p4[151], p4[152], p4[153], p4[154], p4[155], p4[156], p4[157], p4[158], p4[159] = torch.chunk(t3[9], 16, dim=1)
p4[160], p4[161], p4[162], p4[163], p4[164], p4[165], p4[166], p4[167], p4[168], p4[169], p4[170], p4[171], p4[172], p4[173], p4[174], p4[175] = torch.chunk(t3[10], 16, dim=1)
p4[176], p4[177], p4[178], p4[179], p4[180], p4[181], p4[182], p4[183], p4[184], p4[185], p4[186], p4[187], p4[188], p4[189], p4[190], p4[191] = torch.chunk(t3[11], 16, dim=1)
p4[192], p4[193], p4[194], p4[195], p4[196], p4[197], p4[198], p4[199], p4[200], p4[201], p4[202], p4[203], p4[204], p4[205], p4[206], p4[207] = torch.chunk(t3[12], 16, dim=1)
p4[208], p4[209], p4[210], p4[211], p4[212], p4[213], p4[214], p4[215], p4[216], p4[217], p4[218], p4[219], p4[220], p4[221], p4[222], p4[223] = torch.chunk(t3[13], 16, dim=1)
p4[224], p4[225], p4[226], p4[227], p4[228], p4[229], p4[230], p4[231], p4[232], p4[233], p4[234], p4[235], p4[236], p4[237], p4[238], p4[239] = torch.chunk(t3[14], 16, dim=1)
p4[240], p4[241], p4[242], p4[243], p4[244], p4[245], p4[246], p4[247], p4[248], p4[249], p4[250], p4[251], p4[252], p4[253], p4[254], p4[255] = torch.chunk(t3[15], 16, dim=1)
p2_tensor = pad_sequence(p2, batch_first=True)
p3_tensor = pad_sequence(p3, batch_first=True)
p4_tensor = pad_sequence(p4, batch_first=True)
cc = p2_tensor.unsqueeze(0)
cc2 = p3_tensor.unsqueeze(0)
cc3 = p4_tensor.unsqueeze(0)
p2_cuda = cc.to(torch.device("cuda"))
p3_cuda = cc2.to(torch.device("cuda"))
p4_cuda = cc3.to(torch.device("cuda"))
aug = T.ResizeShortestEdge(
# [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
# [480, 480], cfg.INPUT.MAX_SIZE_TEST
[768, 768], cfg.INPUT.MAX_SIZE_TEST
)
image = cv2.imread(opt.valid_data_path + '000000'+ image_file_number +'.jpg')
height, width = image.shape[:2]
image = aug.get_transform(image).apply_image(image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = [{"image": image, "height": height, "width": width}]
with torch.no_grad():
images = model.preprocess_image(inputs) # don't forget to preprocess
features = model.backbone(images.tensor) # set of cnn features
features['p2'] = p2_cuda
features['p3'] = p3_cuda
features['p4'] = p4_cuda
proposals, _ = model.proposal_generator(images, features, None) # RPN
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_features = model.roi_heads.box_head(box_features) # features of all 1k candidates
predictions = model.roi_heads.box_predictor(box_features)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
# output boxes, masks, scores, etc
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size
# features of the proposed boxes
feats = box_features[pred_inds]
pred_category = pred_instances[0]["instances"].pred_classes.to("cpu")
pred_segmentation = pred_instances[0]["instances"].pred_masks.to("cpu")
pred_score = pred_instances[0]["instances"].scores.to("cpu")
xxx = pred_category
xxx = xxx.numpy()
xxx = xxx + 1
for idx in range(len(xxx)):
if -1 < int(xxx[idx]) < 12:
xxx[idx] = xxx[idx]
elif 11 < int(xxx[idx]) < 25:
xxx[idx] = xxx[idx] + 1
elif 24 < int(xxx[idx]) < 27:
xxx[idx] = xxx[idx] + 2
elif 26 < int(xxx[idx]) < 41:
xxx[idx] = xxx[idx] + 4
elif 40 < int(xxx[idx]) < 61:
xxx[idx] = xxx[idx] + 5
elif 60 < int(xxx[idx]) < 62:
xxx[idx] = 67
elif 61 < int(xxx[idx]) < 63:
xxx[idx] = 70
elif 62 < int(xxx[idx]) < 74:
xxx[idx] = xxx[idx] + 9
else:
xxx[idx] = xxx[idx] + 10
imgID = int(image_file_number)
if image_idx == 0:
anns = []
else:
anns = anns
for idx in range(len(pred_category.numpy())):
anndata = {}
anndata['image_id'] = imgID
anndata['category_id'] = int(xxx[idx])
anndata['segmentation'] = encode(np.asfortranarray(pred_segmentation[idx].numpy()))
anndata['score'] = float(pred_score[idx].numpy())
anns.append(anndata)
image_idx = image_idx + 1
# print("###image###:{}".format(image_idx))
annType = ['segm','bbox','keypoints']
annType = annType[0] #specify type here
prefix = 'instances'
print('Running demo for *%s* results.'%(annType))
# imgIds = [560474]
annFile = './instances_val2017_dataset100.json'
cocoGt=COCO(annFile)
#initialize COCO detections api
resFile = anns
cocoDt=cocoGt.loadRes(resFile)
# running evaluation
cocoEval = COCOeval(cocoGt,cocoDt,annType)
# cocoEval.params.imgIds = imgIds
# 맨 윗줄
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()