region_layer.c 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
#include "region_layer.h"
#include "activations.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"

#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
{
    layer l = {0};
    l.type = REGION;

    l.n = n;
    l.batch = batch;
    l.h = h;
    l.w = w;
    l.c = n*(classes + coords + 1);
    l.out_w = l.w;
    l.out_h = l.h;
    l.out_c = l.c;
    l.classes = classes;
    l.coords = coords;
    l.cost = calloc(1, sizeof(float));
    l.biases = calloc(n*2, sizeof(float));
    l.bias_updates = calloc(n*2, sizeof(float));
    l.outputs = h*w*n*(classes + coords + 1);
    l.inputs = l.outputs;
    l.truths = 30*(l.coords + 1);
    l.delta = calloc(batch*l.outputs, sizeof(float));
    l.output = calloc(batch*l.outputs, sizeof(float));
    int i;
    for(i = 0; i < n*2; ++i){
        l.biases[i] = .5;
    }

    l.forward = forward_region_layer;
    l.backward = backward_region_layer;
#ifdef GPU
    l.forward_gpu = forward_region_layer_gpu;
    l.backward_gpu = backward_region_layer_gpu;
    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif

    fprintf(stderr, "detection\n");
    srand(0);

    return l;
}

void resize_region_layer(layer *l, int w, int h)
{
    l->w = w;
    l->h = h;

    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
    l->inputs = l->outputs;

    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
    l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));

#ifdef GPU
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);

    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
#endif
}

box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h, int stride)
{
    box b;
    b.x = (i + x[index + 0*stride]) / w;
    b.y = (j + x[index + 1*stride]) / h;
    b.w = exp(x[index + 2*stride]) * biases[2*n]   / w;
    b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
    return b;
}

float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride)
{
    box pred = get_region_box(x, biases, n, index, i, j, w, h, stride);
    float iou = box_iou(pred, truth);

    float tx = (truth.x*w - i);
    float ty = (truth.y*h - j);
    float tw = log(truth.w*w / biases[2*n]);
    float th = log(truth.h*h / biases[2*n + 1]);

    delta[index + 0*stride] = scale * (tx - x[index + 0*stride]);
    delta[index + 1*stride] = scale * (ty - x[index + 1*stride]);
    delta[index + 2*stride] = scale * (tw - x[index + 2*stride]);
    delta[index + 3*stride] = scale * (th - x[index + 3*stride]);
    return iou;
}

void delta_region_mask(float *truth, float *x, int n, int index, float *delta, int stride, int scale)
{
    int i;
    for(i = 0; i < n; ++i){
        delta[index + i*stride] = scale*(truth[i] - x[index + i*stride]);
    }
}


void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, int stride, float *avg_cat, int tag)
{
    int i, n;
    if(hier){
        float pred = 1;
        while(class >= 0){
            pred *= output[index + stride*class];
            int g = hier->group[class];
            int offset = hier->group_offset[g];
            for(i = 0; i < hier->group_size[g]; ++i){
                delta[index + stride*(offset + i)] = scale * (0 - output[index + stride*(offset + i)]);
            }
            delta[index + stride*class] = scale * (1 - output[index + stride*class]);

            class = hier->parent[class];
        }
        *avg_cat += pred;
    } else {
        if (delta[index] && tag){
            delta[index + stride*class] = scale * (1 - output[index + stride*class]);
            return;
        }
        for(n = 0; n < classes; ++n){
            delta[index + stride*n] = scale * (((n == class)?1 : 0) - output[index + stride*n]);
            if(n == class) *avg_cat += output[index + stride*n];
        }
    }
}

float logit(float x)
{
    return log(x/(1.-x));
}

float tisnan(float x)
{
    return (x != x);
}

int entry_index(layer l, int batch, int location, int entry)
{
    int n =   location / (l.w*l.h);
    int loc = location % (l.w*l.h);
    return batch*l.outputs + n*l.w*l.h*(l.coords+l.classes+1) + entry*l.w*l.h + loc;
}

void forward_region_layer(const layer l, network net)
{
    int i,j,b,t,n;
    memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float));

#ifndef GPU
    for (b = 0; b < l.batch; ++b){
        for(n = 0; n < l.n; ++n){
            int index = entry_index(l, b, n*l.w*l.h, 0);
            activate_array(l.output + index, 2*l.w*l.h, LOGISTIC);
            index = entry_index(l, b, n*l.w*l.h, l.coords);
            if(!l.background) activate_array(l.output + index,   l.w*l.h, LOGISTIC);
            index = entry_index(l, b, n*l.w*l.h, l.coords + 1);
            if(!l.softmax && !l.softmax_tree) activate_array(l.output + index, l.classes*l.w*l.h, LOGISTIC);
        }
    }
    if (l.softmax_tree){
        int i;
        int count = l.coords + 1;
        for (i = 0; i < l.softmax_tree->groups; ++i) {
            int group_size = l.softmax_tree->group_size[i];
            softmax_cpu(net.input + count, group_size, l.batch, l.inputs, l.n*l.w*l.h, 1, l.n*l.w*l.h, l.temperature, l.output + count);
            count += group_size;
        }
    } else if (l.softmax){
        int index = entry_index(l, 0, 0, l.coords + !l.background);
        softmax_cpu(net.input + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output + index);
    }
#endif

    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    if(!net.train) return;
    float avg_iou = 0;
    float recall = 0;
    float avg_cat = 0;
    float avg_obj = 0;
    float avg_anyobj = 0;
    int count = 0;
    int class_count = 0;
    *(l.cost) = 0;
    for (b = 0; b < l.batch; ++b) {
        if(l.softmax_tree){
            int onlyclass = 0;
            for(t = 0; t < 30; ++t){
                box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
                if(!truth.x) break;
                int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
                float maxp = 0;
                int maxi = 0;
                if(truth.x > 100000 && truth.y > 100000){
                    for(n = 0; n < l.n*l.w*l.h; ++n){
                        int class_index = entry_index(l, b, n, l.coords + 1);
                        int obj_index = entry_index(l, b, n, l.coords);
                        float scale =  l.output[obj_index];
                        l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]);
                        float p = scale*get_hierarchy_probability(l.output + class_index, l.softmax_tree, class, l.w*l.h);
                        if(p > maxp){
                            maxp = p;
                            maxi = n;
                        }
                    }
                    int class_index = entry_index(l, b, maxi, l.coords + 1);
                    int obj_index = entry_index(l, b, maxi, l.coords);
                    delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
                    if(l.output[obj_index] < .3) l.delta[obj_index] = l.object_scale * (.3 - l.output[obj_index]);
                    else  l.delta[obj_index] = 0;
                    l.delta[obj_index] = 0;
                    ++class_count;
                    onlyclass = 1;
                    break;
                }
            }
            if(onlyclass) continue;
        }
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w; ++i) {
                for (n = 0; n < l.n; ++n) {
                    int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
                    box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
                    float best_iou = 0;
                    for(t = 0; t < 30; ++t){
                        box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);
                        if(!truth.x) break;
                        float iou = box_iou(pred, truth);
                        if (iou > best_iou) {
                            best_iou = iou;
                        }
                    }
                    int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, l.coords);
                    avg_anyobj += l.output[obj_index];
                    l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]);
                    if(l.background) l.delta[obj_index] = l.noobject_scale * (1 - l.output[obj_index]);
                    if (best_iou > l.thresh) {
                        l.delta[obj_index] = 0;
                    }

                    if(*(net.seen) < 12800){
                        box truth = {0};
                        truth.x = (i + .5)/l.w;
                        truth.y = (j + .5)/l.h;
                        truth.w = l.biases[2*n]/l.w;
                        truth.h = l.biases[2*n+1]/l.h;
                        delta_region_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, l.delta, .01, l.w*l.h);
                    }
                }
            }
        }
        for(t = 0; t < 30; ++t){
            box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1);

            if(!truth.x) break;
            float best_iou = 0;
            int best_n = 0;
            i = (truth.x * l.w);
            j = (truth.y * l.h);
            box truth_shift = truth;
            truth_shift.x = 0;
            truth_shift.y = 0;
            for(n = 0; n < l.n; ++n){
                int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
                box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h);
                if(l.bias_match){
                    pred.w = l.biases[2*n]/l.w;
                    pred.h = l.biases[2*n+1]/l.h;
                }
                pred.x = 0;
                pred.y = 0;
                float iou = box_iou(pred, truth_shift);
                if (iou > best_iou){
                    best_iou = iou;
                    best_n = n;
                }
            }

            int box_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 0);
            float iou = delta_region_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, l.delta, l.coord_scale *  (2 - truth.w*truth.h), l.w*l.h);
            if(l.coords > 4){
                int mask_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 4);
                delta_region_mask(net.truth + t*(l.coords + 1) + b*l.truths + 5, l.output, l.coords - 4, mask_index, l.delta, l.w*l.h, l.mask_scale);
            }
            if(iou > .5) recall += 1;
            avg_iou += iou;

            int obj_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords);
            avg_obj += l.output[obj_index];
            l.delta[obj_index] = l.object_scale * (1 - l.output[obj_index]);
            if (l.rescore) {
                l.delta[obj_index] = l.object_scale * (iou - l.output[obj_index]);
            }
            if(l.background){
                l.delta[obj_index] = l.object_scale * (0 - l.output[obj_index]);
            }

            int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords];
            if (l.map) class = l.map[class];
            int class_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords + 1);
            delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat, !l.softmax);
            ++count;
            ++class_count;
        }
    }
    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
}

void backward_region_layer(const layer l, network net)
{
    /*
       int b;
       int size = l.coords + l.classes + 1;
       for (b = 0; b < l.batch*l.n; ++b){
       int index = (b*size + 4)*l.w*l.h;
       gradient_array(l.output + index, l.w*l.h, LOGISTIC, l.delta + index);
       }
       axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1);
     */
}

void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
{
    int i;
    int new_w=0;
    int new_h=0;
    if (((float)netw/w) < ((float)neth/h)) {
        new_w = netw;
        new_h = (h * netw)/w;
    } else {
        new_h = neth;
        new_w = (w * neth)/h;
    }
    for (i = 0; i < n; ++i){
        box b = dets[i].bbox;
        b.x =  (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); 
        b.y =  (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); 
        b.w *= (float)netw/new_w;
        b.h *= (float)neth/new_h;
        if(!relative){
            b.x *= w;
            b.w *= w;
            b.y *= h;
            b.h *= h;
        }
        dets[i].bbox = b;
    }
}

void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
{
    int i,j,n,z;
    float *predictions = l.output;
    if (l.batch == 2) {
        float *flip = l.output + l.outputs;
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w/2; ++i) {
                for (n = 0; n < l.n; ++n) {
                    for(z = 0; z < l.classes + l.coords + 1; ++z){
                        int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
                        int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
                        float swap = flip[i1];
                        flip[i1] = flip[i2];
                        flip[i2] = swap;
                        if(z == 0){
                            flip[i1] = -flip[i1];
                            flip[i2] = -flip[i2];
                        }
                    }
                }
            }
        }
        for(i = 0; i < l.outputs; ++i){
            l.output[i] = (l.output[i] + flip[i])/2.;
        }
    }
    for (i = 0; i < l.w*l.h; ++i){
        int row = i / l.w;
        int col = i % l.w;
        for(n = 0; n < l.n; ++n){
            int index = n*l.w*l.h + i;
            for(j = 0; j < l.classes; ++j){
                dets[index].prob[j] = 0;
            }
            int obj_index  = entry_index(l, 0, n*l.w*l.h + i, l.coords);
            int box_index  = entry_index(l, 0, n*l.w*l.h + i, 0);
            int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
            float scale = l.background ? 1 : predictions[obj_index];
            dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h, l.w*l.h);
            dets[index].objectness = scale > thresh ? scale : 0;
            if(dets[index].mask){
                for(j = 0; j < l.coords - 4; ++j){
                    dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
                }
            }

            int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
            if(l.softmax_tree){

                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0, l.w*l.h);
                if(map){
                    for(j = 0; j < 200; ++j){
                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
                        float prob = scale*predictions[class_index];
                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
                    }
                } else {
                    int j =  hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
                    dets[index].prob[j] = (scale > thresh) ? scale : 0;
                }
            } else {
                if(dets[index].objectness){
                    for(j = 0; j < l.classes; ++j){
                        int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
                        float prob = scale*predictions[class_index];
                        dets[index].prob[j] = (prob > thresh) ? prob : 0;
                    }
                }
            }
        }
    }
    correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
}

#ifdef GPU

void forward_region_layer_gpu(const layer l, network net)
{
    copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1);
    int b, n;
    for (b = 0; b < l.batch; ++b){
        for(n = 0; n < l.n; ++n){
            int index = entry_index(l, b, n*l.w*l.h, 0);
            activate_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
            if(l.coords > 4){
                index = entry_index(l, b, n*l.w*l.h, 4);
                activate_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC);
            }
            index = entry_index(l, b, n*l.w*l.h, l.coords);
            if(!l.background) activate_array_gpu(l.output_gpu + index,   l.w*l.h, LOGISTIC);
            index = entry_index(l, b, n*l.w*l.h, l.coords + 1);
            if(!l.softmax && !l.softmax_tree) activate_array_gpu(l.output_gpu + index, l.classes*l.w*l.h, LOGISTIC);
        }
    }
    if (l.softmax_tree){
        int index = entry_index(l, 0, 0, l.coords + 1);
        softmax_tree(net.input_gpu + index, l.w*l.h, l.batch*l.n, l.inputs/l.n, 1, l.output_gpu + index, *l.softmax_tree);
    } else if (l.softmax) {
        int index = entry_index(l, 0, 0, l.coords + !l.background);
        softmax_gpu(net.input_gpu + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu + index);
    }
    if(!net.train || l.onlyforward){
        cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
        return;
    }

    cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs);
    forward_region_layer(l, net);
    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    if(!net.train) return;
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
}

void backward_region_layer_gpu(const layer l, network net)
{
    int b, n;
    for (b = 0; b < l.batch; ++b){
        for(n = 0; n < l.n; ++n){
            int index = entry_index(l, b, n*l.w*l.h, 0);
            gradient_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC, l.delta_gpu + index);
            if(l.coords > 4){
                index = entry_index(l, b, n*l.w*l.h, 4);
                gradient_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC, l.delta_gpu + index);
            }
            index = entry_index(l, b, n*l.w*l.h, l.coords);
            if(!l.background) gradient_array_gpu(l.output_gpu + index,   l.w*l.h, LOGISTIC, l.delta_gpu + index);
        }
    }
    axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
}
#endif

void zero_objectness(layer l)
{
    int i, n;
    for (i = 0; i < l.w*l.h; ++i){
        for(n = 0; n < l.n; ++n){
            int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
            l.output[obj_index] = 0;
        }
    }
}